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Abstract

Interpreting brain diffusion MRI measurements in terms of neuronal structure at a micrometer 

level is an exciting unresolved problem. Here we consider diffusion transverse to a bundle of 

fibers, and show theoretically, as well as using Monte Carlo simulations and measurements in a 

phantom made of parallel fibers mimicking axons, that the time dependent diffusion coefficient 

approaches its macroscopic limit slowly, in a (lnt)/t fashion. The logarithmic singularity arises due 

to short range disorder in the fiber packing. We identify short range disorder in axonal fibers based 

on histological data from the splenium, and argue that the time dependent contribution to the 

overall diffusion coefficient from the extra-axonal water dominates that of the intra-axonal water. 

This dominance may explain the bias in measuring axon diameters in clinical settings. The short 

range disorder is also reflected in the linear frequency dependence of the diffusion coefficient 

measured with oscillating gradients, in agreement with recent experiments. Our results relate the 

measured diffusion to the mesoscopic structure of neuronal tissue, uncovering the sensitivity of 

diffusion metrics to axonal arrangement within a fiber tract, and providing an alternative 

interpretation of axonal diameter mapping techniques.
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Introduction and overview of results

Diffusion-weighted magnetic resonance imaging (dMRI) has become a powerful tool for 

imaging the central nervous system, particularly with the advent of diffusion tensor imaging 

(Basser et al., 1994). Due to the directional and microstructural sensitivity of the diffusion-

weighted signal (which has a meaning of the diffusion propagator), dMRI has become an 

indispensable tool for studying white matter (Beaulieu, 2002).

The diffusion propagator depends separately on the molecular displacement δx via the 

spatial Fourier wave vector q, and on the diffusion time t, Fig. 1. So far, the brain dMRI 

development has mainly focused on exploring as much of the q-space as is possible given 
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clinical limitations, under the overarching theme of q-space imaging (Callaghan et al., 

1988). This corresponds to proceeding vertically in Fig. 1, with diffusion time fixed at t 

~50–100 ms in the clinical settings.

Here we explore the horizontal direction in Fig. 1, along the t-axis. We focus on the origin 

of the time dependence of mean squared displacement 〈[δx(t)]2〉 of water molecules, 

characterized by the diffusion coefficient D(t) = 〈[δx(t)]2〉/2t.

As axonal walls are believed to be the major restrictions to diffusion in the white matter 

(Beaulieu, 2002), the biophysical challenge is to identify which μm-level features of axonal 

packing within a fiber tract are most pronounced in a dMRI measurement with a 

macroscopic, mm-level resolution. It turns out that the relative importance of different 

features of axonal geometry depends on the measurement time scales.

Early understanding of D(t) has relied on the result of Mitra et al. (1992), who found that the 

initial decrease of D(t) is determined solely by the net surface area of all barriers, such as 

cell walls, irrespective of their positions. With transverse dimensions of axons and dendrites 

of ~1 μm (Lamantia and Rakic, 1990), and water diffusion coefficient ~1 μm2/ms, this limit 

demands time scales below 1 ms. These are unre alistically short for the human brain dMRI.

Fortunately, the time dependence observed in neuronal tissue (Horsfield et al., 1994; Does et 

al., 2003; Assaf et al., 2008; Alexander et al., 2010; Aggarwal et al., 2012; Portnoy et al., 

2013; Kunz et al., 2013; Pyatigorskaya et al., 2013; Kershaw et al., 2013; Baron and 

Beaulieu, 2013; Van et al., 2014; Burcaw et al., 2014) extends onto fea sible times t ~1–10 

ms and even beyond, which prompts us to explore the long time limit of D(t), and its 

connection to axonal tract geometry. This is the main objective of this work.

For t long enough so that water molecules travel past one or more axons, it is not just the net 

amount of the restrictions, such as axonal membranes and myelin, but the correlations in 

their positions and ori entations that determine the diffusion propagator (Novikov and 

Kiselev, 2010) and the derived diffusion metrics (Szafer et al., 1995; Fieremans et al., 2008; 

Novikov and Fieremans, 2012; Fieremans et al., 2012) . In particular, when D(t) is 

approaching its macroscopic t → ∞ (tortuosity) asymptote D∞, the short-distance details 

become irrelevant, while the behavior of D(t) is determined by how spatially correlated are 

the restrictions at large distances (Novikov et al., 2014). These correla tions are 

characterized by the structural exponent p, cf. Theory section.

In this work, we apply the framework (Novikov et al., 2014) to diffusion in the extra-axonal 

space at experimentally feasible diffusion times, and obtain the following four results:

(i) By analyzing histology data, we identify the short range disorder in the two-

dimensional fiber tract cross-section (exponent p = 0), and determine how this 

randomness in fiber packing manifests itself in the long-time behavior of the 

common diffusion metrics. These results, summarized in Table 1, are 

independent of whether axonal walls are permeable or not.

(ii) By performing time-dependent pulsed-gradient (PG) DTI on a fiber phantom 

designed to mimic the diffusion in the extra-axonal space, as well as using 
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Monte Carlo simulations, we confirm the logarithmic singularity in D(t), cf. 

Table 1:

(1)

Here the coefficient A is proportional to the value Γ(k)|k→ +0 of the power 

spectrum of fibers within the two-dimensional (2d) cross-section [cf. Appendix 

A, Eq. (A.4)], and tc represents the time to diffuse across the correlation length 

lc of the 2d random packing geometry. For realistic axonal packings, lc closely 

follows mean external axonal radius, with tc ≥ 1 ms for the brain, while A 

roughly scales with , Table 2. The (lnt)/t singularity occurs due to the short 

range 2d disorder in fiber packing (exponent p = 0), and is absent in an ordered 

(lattice) arrangement (p = ∞), as our simulations demonstrate. For PG with 

pulse width δ > tc, ln(t/tc) in Eq. (1) crosses over to ln(t/δ), t >> δ.

(iii) Equivalently, the 2d short-range disorder leads to the character istic ~ |ω| 

frequency dependence, cf. Table 1,

(2)

of the oscillating gradient (OG) measured diffusion coefficient D(ω) transverse 

to axons. By virtue of the cumulant expansion (Kiselev, 2010), Eq. (1) or (2) 

allows one to calculate the effect of the disordered fiber geometry on any 

gradient wave form. We show that recent OG ex vivo data (Portnoy et al., 2013) 

exhibit the behavior (Eq. (2)). This confirms our conclusion about the short 

range disorder, p = 0, in fiber packing. Hence, the structural disorder renders OG 

measurements insensitive to intra-axonal water at low ω, as the latter contributes 

a less pronounced, quadratic frequency dependence ~ ω2 << |ω| for ω → 0.

(iv) The singularity (Eq. (1)) provides a different interpretation of ax onal diameter 

mapping results. Under a common assumption of no exchange between 

compartments, we argue that the contri bution (Eq. (1)) is more relevant (decays 

slower) than the 1/t contribution from water confined inside axons. Hence, 

structural disorder in axonal packing amplifies the role of extra-axonal water. 

This may explain (Fig. 2 and Table 3) the well-known overestimation of axon 

diameters, by factors of ~3–5 or even more, in clinical dMRI (Alexander et al., 

2010; Zhang et al., 2011). This bias has been previously attributed to the 

insensitiv ity of the AxCaliber (Assaf et al., 2008) scheme to small axons 

(Dyrby et al., 2012) or to the noise. We believe the reason may be more 

fundamental: for quantifying compartment sizes and the residual time-dependent 

(and hence non-Gaussian) nature of diffusion in the extracellular space should 

not be neglected. This is especially relevant for clinical dMRI, when the extra- 

axonal signal is dominated by its first few cumulants.

The outline of this paper is as follows. Theoretical arguments in favor of results (i)–(iii) and 

Eqs. (1)–(2), as well as establishing p = 0 for a fiber tract, are given in Theory section. After 
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we present our methods, the experimental and numerical validation of (ii) and (iii) and their 

im plications for OG and PG measurements are given in Results section. Our new 

interpretation (iv) of axonal diameter mapping, the phase diagram for PG measurements 

transverse to axons (Fig. 12), and the explanation of how Fig. 2 has been obtained, are 

outlined in Discussion section.

Theory

One of the fundamental questions of brain dMRI is to identify relevant μm-level structural 

features that affect the observed signal the most. Addressing it would help develop 

parsimonious models of diffusion in neuronal tissue in order to become specific to 

pathological changes at the earliest stages of disease.

Here we identify and quantify the effect of the randomness (disorder) in packing of neuronal 

fibers in a bundle (Fig. 3) as the relevant structural characteristic observable in brain dMRI, 

especially at the clinically feasible diffusion times. Our main object of investigation will be 

the power spectrum Γ(k) of the restrictions, Fig. 4, which is the Fourier transform of their 

density correlation function Γ(r) (cf. Appendix B). We will demonstrate that the way nature 

packs axons within a bundle, Figs. 3e–f, is qualitatively similar to the random packings 

produced in Figs. 3b–d — in all cases, the packings are of the so-called short-range disorder 

type. The similarity in the structure will lead to similarly behaving diffusion metrics and to 

the qualitative differences from those in the ordered packing of Fig. 3a and Table 1.

Relation of time dependent diffusion to structural correlations

The PG diffusion weighting in the narrow-pulse limit yields the time-dependent diffusion 

coefficient, commonly defined as (Callaghan, 1991)

(3)

where δx = x(t) − x(0) is the displacement in a chosen direction  along the Brownian path 

r(t). For the purpose of investigating the temporal evolution, we find it useful to define the 

instantaneous diffusion coefficient via a time derivative,

(4)

While the PG diffusion coefficient (Eq. (3)) characterizes the average rate of the evolution 

of the mean squared displacement over the whole measurement interval t and is a 

cumulative quantity, the instantaneous one describes its rate of change at the moment t. In 

uniform fluids, D≡Dinst = const. In heterogeneous media such as tissues, it is Dinst(t) that is 

most directly related to structure probed at the current diffusion length scale L(t) = 

.
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Definitions of Eqs. (3) and (4) assume the narrow-pulse limit, where the pulse width δ is 

smaller than any characteristic time scale. For understanding the physics of diffusion in 

restricted geometry, these fundamental metrics are the most transparent ones to consider; the 

effects of finite δ will be derived from them below.

At long t, the way of approaching the macroscopic limit D∞

(5)

is characterized by a dynamical exponent ϑ whose value is directly connected to the 

structure via (Novikov et al., 2014)

(6)

in d spatial dimensions, generalizing earlier approaches (Ernst et al., 1984; Machta et al., 

1984; Visscher, 1984). The structural exponent p determines the character of the long-range 

spatial correlations of the re strictions, via the low-k behavior of their power spectrum 

(Appendix B)

(7)

The relations of Eqs. (5) and (6) enable grouping differently looking media (tissues) into a 

relatively few distinct structural universality classes defined in terms of their structural 

exponent p. In other words, the dynamics of the observable diffusion coefficient is 

qualitatively similar for all d-dimensional media with the same structural exponent p 

describing the long-range (k → 0) behavior (Eq. (7)) of the power spectrum of the 

restrictions (Novikov et al., 2014).

Here we consider the two most common classes, short range disor der (p = 0) and order (p = 

∞). We will show that the former corre sponds to neuronal tissue, and use the comparison 

with the latter to exemplify the role of the structural disorder. Other disorder universality 

classes (Novikov et al., 2014) are characterized by distinct values of the exponent p in Eq. 

(7).

Fig. 4 shows the 2d angular-averaged density power spectrum, or equivalently, the spatial 

Fourier transform Γ(k), Eq. (B.2), of the density correlators (Eq. (B.1)), for our examples 

from Fig. 3 (see Appendix B for details). We observe that the low-k behavior, which reflects 

the long range correlations, is qualitatively similar for the disordered arrangements of Fig. 3, 

Panels b–d, and distinctly different in the periodic (ordered) case of Fig. 3a.

Short range disorder is characterized by a finite plateau Γ(k)|k → +0 > 0. It corresponds to 

exponent p = 0 in Eq. (7), and reflects the absence of long range correlations at distances 

beyond the disorder correlation length lc ~ 1/kc, where kc is of the order of the extent of the 

low-k plateau (i.e. Γ(r) is a peak of the width ~ lc). This is the most prevalent disorder class, 

qualitatively similar to Poissonian disorder (for which there are no spatial correlations, e.g. 

for the centers of the disks in Fig. 3d).
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For the opposite case of ordered arrangement, Fig. 3a, Γ(k) is a set of δ-function peaks at the 

reciprocal lattice vectors kn, so that Γ(k)≡0 when k is within a circle of radius less than the 

distance to the smallest recip rocal lattice vector k0. While this Γ(k) does not possess axial 

symmetry, we can still consider the angular-averaged Γ(k) so as to compare with the 

disordered cases above. This Γ(k) vanishes identically, Γ(k)≡0, for k < k0. In the case of Fig. 

3, k0 = π/l0, where l0 is the lattice constant (shortest distance between disk centers). From 

the point of the general classification (Novikov et al., 2014), this means that Γjk<k0 is 

smaller than any power law kp with arbitrary large p as k → 0, hence formally p = ∞ for any 

perfect lattice.

The relations of Eqs. (5) and (6) now predict qualitatively different behavior for Dinst(t). The 

short range disorder in Figs. 3b–d yields the exponent ϑ = 1 in d = 2 dimensions, resulting in

(8)

where tc is the time to diffuse across the disorder correlation length lc (in our examples, lc is 

of the order of the disk size).

In Appendix A we show that the coefficient A is proportional to the plateau value Γ(k)|k → +0 

in Fig. 4. Roughly speaking, the value of A reflects the “strength” of the short range disorder 

component, and determines how pronounced is the power law tail (Eq. (8)).

On the other hand, Dinst(t) in an ordered medium approaches its macroscopic limit 

exponentially fast, as there is no plateau, Γ(k)|k<k0≡0, and thus no power law, A≡0:

(9)

The exponential approach of D∞ is faster than any inverse power law t−ϑ. This allows us, 

using the nomenclature of Novikov et al. (2014), to formally assign the dynamical exponent 

ϑ = ∞ to any lattice; this value of ϑ is then in agreement with Eq. (6) for p = ∞. 

Qualitatively, one can view any lattice as a limiting case of a so-called hyperuniform arrange 

ment (Torquato and Stillinger, 2003) (with infinitely small long-range fluctuations).

The fast decrease (Eq. (9)) in Dinst(t) occurs for times exceeding t0, which is of the order of 

the diffusion time across the period l0. Note that a similar, exponentially fast approach of the 

value D∞ = 0 also occurs when random walkers are confined in an impermeable pore, cf. 

Appendix C, Eq. (C.5) and Fig. C.1, for an impermeable cylinder example.

As we can see, Dinst(t) can be used to probe long-range correlations in tissue architecture. 

Measurement of the exponent ϑ, with the knowledge of sample's dimensionality d, can allow 

one to identify whether the sample is ordered or disordered, and determine the disorder 

universal ity class. The latter can be also identified by determining the exponent p from 

histology. Below we determine p, as well as find out how ϑ can be identified in practically 

measurable PG and OG diffusivities.
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Structural and dynamical exponents transverse to neuronal fibers

What is the structural exponent p for white matter? To answer this question, we obtain an 

electron microscope histology image of a mouse splenium (Zurek et al., 2014), shown in 

Fig. 3e, and identify myelinated axons as the restrictions for water molecules in the extra- 

axonal space. We then manually outline all axons, including both intra-axonal space and 

myelin, assign to them a unit density ρ(r) = 1, and generate an image shown in Fig. 3f, 

similar to those for the disk packings. The correlation analysis as described above now 

yields the finite plateau Γ(k)k<k ≃ const<0 in Fig. 4, corresponding to

(10)

and a very short disorder correlation length lc ~ 1/kc ~ 〈rext〉 ≤ 1μm. While the plateau in 

Γ(k) is not fully pronounced due to a relatively small number of axons within the available 

histology slide, we believe that there is neither a tendency of ordering (which would result in 

the decrease of Γ(k) as k → 0), nor strong fluctuations (which would cause the divergence in 

Γ(k) as k → 0).

We note that p may seem slightly negative, which would indicate density fluctuations 

somewhat stronger than those of short-range disorder. We currently believe that this is most 

likely an artifact of a finite-size histology slide; indeed, the exponents p take well-defined 

discrete values, and we are not aware of a universality class with a negative p such that |p| 

<< 1.

Interestingly, while the axonal volume fraction is 0.7, comparable to the disordered packing 

in Fig. 3b, the plateau for the axons occurs at a value similar to the ϕ = 0.5 disordered disk 

packing in Fig. 3c. This reflects fairly large heterogeneities in the axonal packing: note the 

presence of both highly dense axon clusters and voids in the histology tracing. Similar 

heterogeneities can be seen in the ϕ = 0.5 random disk packing.

To conclude, the analysis of the available histology is compatible with the short range 

disorder in the packing of neuronal fibers within a bundle.

The observation (Eq. (10)) has a number of consequences.

1. Short range disorder is the most common disorder type — nature did not surprise us here. 

We could have expected reduced spatial correlations, if evolution's goal were to pack axons 

most efficiently. That would have led to p > 0, similar to the exponent p ≈ 1 for the 

“maximally random jammed” packing of spheres in d = 3 dimensions (Donev et al., 2005a). 

Conversely, axons do not look particularly “jammed”.

2. The absence of very strong long-range correlations (which would be characterized by a 

strongly diverging Γ(k) with p < − d) is consistent with having a finite nonzero macroscopic 

diffusion constant D∞ transverse to the axons, and is incompatible with the so-called 

anomalous diffusion (Bouchaud and Georges, 1990) for which D∞ does not exist. In other 

words, under the common assumption of cell walls providing the most important restrictions 

to diffusion, at distances beyond lc the hindered extra-axonal diffusion should 

asymptotically become normal. Our histology-based evidence con tradicts the models of the 
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“anomalous”, or “fractal” diffusion in the brain (continuous time random walks, stretched 

exponentials). Here we show that the Gaussian limit is approached slowly, so that the 

residual non-Gaussianity can matter at long but finite t. This slowness is a likely reason for 

relatively good fits provided by unphysical stretched-exponential models in a finite range of 

q and t.

3. Based on Eq. (6), we predict the dynamical exponent

(11)

which will result in the behavior of Eqs. (1) and (2) as we discuss below. (In the unlikely 

case of p turning out to be small and negative as mentioned after Eq. (10), the corresponding 

ϑ < 1 would make the time-dependence of diffusion in the extra-axonal space even more 

dominant than we anticipate.)

4. The exponent (Eq. (10)) gives us a practical recipe to represent and model the packing 

disorder in white matter. For instance, Monte Carlo simulations should be performed for the 

random packings rather than for the periodic ones, even at the cost of more challenging 

implementation. Below, we will identify the dynamical exponent (Eq. (11)) in the Monte 

Carlo data for diffusion transverse to simulated phantoms such as shown in Figs. 3b, and c.

5. The short range disorder identified in the white matter justifies building artificial diffusion 

phantoms in which the same disorder class occurs, e.g. due to random packing of 

hydrophobic fibers in a bundle. In what follows, we will describe how we identify the 

dynamical exponent ϑ = 1, and thereby the structural exponent p = 0, in such a phantom.

Origin of the logarithmic singularity, Eq. (1)

While the power law dependence of Dinst(t) reveals profound differences in the structure, a 

narrow-pulse PG MR measurement yields the cumulative diffusion coefficient (Eq. (3)), in 

which these differences may be masked. From Eq. (4),

(12)

One can see that, whenever we are dealing with structures for which Dinst(t) − D∞ decreases 

faster than 1/t, the corresponding difference D(t) − D∞ always behaves as 1/t at long t. This 

is because the integral in Eq. (12) converges as t → ∞, and hence, to the leading 

approximation, it can be substituted by its t = ∞ limit, ∫t ... → ∫∞ ... = const < ∞. 

Therefore, e.g. both for a periodic (ordered) medium, and for fully confining pores (cells), 

the cumulative diffusion coefficient

(13)

Overall, in all cases with the dynamical exponent ϑ > 1, i.e. when p > 2 − d, D(t) will behave 

in the same way, Eq. (13), which makes it practically harder to distinguish between media 

with different types of structural correlations using PG DTI.
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The exponent ϑ = 1, cf. Eq. (8), which is the subject of our focus, causes a logarithmic 

divergence  in Eq. (12). Hence, its presence survives, albeit marginally, 

the temporal averaging inher ent to the cumulative D(t), and yields a logarithmically 

enhanced time dependence (Eq. (1)) as a function of the upper limit, t, relative to that in an 

ordered or confining geometry, Eq. (13). This is one of our main re sults (cf. Table 1) to be 

checked in simulations and experiment. The lower limit  is the time scale beyond which 

the tail (Eq. (8)) entering Eq. (12) dominates; when PG pulse width δ << tc, , while for 

δ << , as it will be derived in Eqs. (24) and (25) below.

To summarize, the logarithmic singularity (Eq. (1)) in D(t) arises from averaging over time 

the slow 1/t tail in Dinst(t) coming from the short range disorder in two spatial dimensions.

Implications for OG-measured D(ω), Eq. (2)

Practically, the long-time limit for neuronal tissue occurs already for relatively short times 

from the point of a conventional PG measurement. Hence, to increase the diffusion 

weighting and to access shorter time scales, it is convenient to utilize oscillating gradient 

methods (Does et al., 2003).

We begin with the relation [Eq. (8) of Novikov et al. (2014)]

(14)

between Dinst(t) and the dispersive diffusivity defined via velocity autocorrelation function 

(Novikov and Kiselev, 2010)

(15)

Eq. (14) is a nonlocal in time relation between Dinst(t) and Dω, with these two quantities 

having identical information content. also note (Novikov and Kiselev, 2010, 2011) that the 

OG-measured frequency-dependent diffusivity

(16)

equals the real part of D(ω) defined in Eq. (15). Hence, the general relation between the OG 

measurement and Dinst(t) is

(17)

Let us now focus on the low-frequency behavior of Dω, corresponding to the 1/t tail (Eq. 

(8)). Using  (sinωt)/t = (π(/2)) sgn ω, Eq. (17) yields the result (Eq. (2)) advertised in 

the Introduction section, which is the OG counterpart of Eqs. (1) and (8). Hence, the 

dynamical exponent ϑ = 1 is reflected in the 1/t ↔ (π/2)|ω| correspondence between the tails 

in Dinst(t) and in Re D(ω). We also note that the 1/t tail in Dinst is equivalent to the tail
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(18)

(Ernst et al., 1984) in the velocity autocorrelation function, in contrast to its exponentially 

fast decay ~−e−t=t0 for ordered (p = ∞) or confined geometries.

It is instractive to find the full D(ω), Eq. (14). Estimating

with logarithmic accuracy (neglecting terms ~1 as compared to the large logarithm above), 

we choose tc as the lowest limit of integration (time scale from which the tail begins), and − 

1/iω as a long-time cutoff provided by the oscillating eiωt. Thus

(19)

This of course agrees with the direct calculation of the integral in Eq. (A.1) with ΓD(k) → 

const for k ≤ kc. Taking the real part again yields Eq. (2), since ln(−i) = − iπ/2, whereas the 

logarithmic singularity lnω goes entirely into the unobservable (albeit recoverable using 

Kramers–Kronig dispersion relations) imaginary part Im D(ω)≃A ωln|ωtc|, odd in ω, Fig. 5a.

The diffusivity (Eq. (19)) and its real part (Eq. (2)) are non-analytic in frequency around ω = 

0, Fig. 5. The physical origin of this behavior is the structural disorder that results in the 

finite density of disorder eigenstates (i.e. eigenstates of the Laplace equation with the 

stochastic D(r)). As it follows from Eq. (A.1) in Appendix A, this continuum of states, 

whose weight is determined by the disorder strength embodied in the coefficient A, Eq. (A.

4), contributes to the diffusion at the lowest frequencies (longest times). In the time domain, 

this non-analyticity is reflected in the long-time power law tails of Eqs. (8) and (18).

We contrast this with a regular, analytic behavior of Dω for an ordered ordered or confined 

geometry. It stems from representing the diffusion propagator as a sum over discrete 

eigenmodes in a pore (Grebenkov, 2007), cf. Appendices C andD, or as a sumover 

Blochwaves in a periodic (Dunn and Bergman, 1995; Sen et al., 1994; Sukstanskii et al., 

2004; Novikov et al., 2014). In the periodic case, the Bloch eigenstates are labeled by the 

wave vector k within the first Brillouin zone. The D∞ term corresponds to the lowest band k 

= q, whereas the higher bands with k = kn + q corresponding to the reciprocal lattice vectors 

kn, yield the exponentially decaying contributions ~ e−t/tn, with the lowest reciprocal vector 

k0 determining the slowest decaying mode e−t=t0, see the Eq. (S25) of Ref. Novikov et al. 

(2014) for a 1d example. For sufficiently long t, keeping only the lowest mode, separated by 

a finite gap from the rest, is sufficient, which explains an exponentially fast approach of D∞ 

in Eq. (9), cf. Appendix C. In the frequency domain, calculating the Fourier transform in Eq. 

(14) of Eq. (9) yields a Lorentzian corresponding to the lowest eigenmode,
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(20)

cf. Eq. (D.1). Note the crucial difference from Eq. (19): Eq. (20) is analytic in ω at ω = 0, i.e. 

it has a regular Taylor expansion with a finite conver gence radius 1/t0 in the complex plane 

of ω.

Since 〈v(t)v(0)〉 is real-valued, the real part of its Fourier transform (Eq. (15)) must be even 

in ω. If D(ω) is also analytic around ω = 0, its Taylor expansion involve only even powers of 

ω, starting from a quadratic one,

(22)

in agreement with Eq. (20) and with Appendix D.

In contrast, for the random geometry, the convergence radius of D(ω) at ω = 0 is zero, due to 

the non-analytic term ~ (−iω)ϑ originat ing from the long tail (Eq. (5)). If ϑ < 2, the lowest 

order behavior (Eq. (21)) will mask the existence of the term ~ (−iω)ϑ, much like the 1/t 

term masks the long-time tail in PG D (t), Eq. (13). In our case of ϑ = 1, (−iω)ϑ|ϑ → 1 → 

(−iω)ln(−iω), so already the lowest order in ω in Eqs. (2) and (19) is explicitly non-analytic 

at ω = 0.

The absolute value (modulus) |ω| in the real part (Eq. (2)) is essential: Re D(ω) cannot have 

odd powers of ω (without the modulus) in its low-frequency expansion (see Fig. 5a) as it 

must stay even in ω. The only way to have a term linear in frequency in Re D(ω) is via a 

non-analytic kink ~|ω| (no Taylor expansion at ω = 0), Fig. 5(b).

We emphasize that the absence of linear-in-frequency term in the OG-measured diffusivity 

(Eq. (21)) for any regular or confined geome-try is a universal consequence of the analytic 

behavior of D(ω) in these cases. For naive dimensional estimate would ~ ωa2 for the OG 

diffusivity in an impermeable pore of size ~ a, similar to the PG estimate ~ a2/t; however, 

this term enters Dω with an imaginary i and therefore is not captured by the OG, which is 

only sensitive to the second-order real term ~ D0 · (ωt0)2 ~ ω2a4/D0, where D0 is the free 

diffusion coefficient and t0 ~ a2/D0, cf. Fig. D.1 and Eq. (D.4) of Appendix D, as well as the 

Fig. 3 of Ref. Stepisnik et al. (2007). This makes it more difficult to measure the sizes of 

small confining compartments using OG at low frequencies.

Effect of finite PG pulse duration δ >>tc

D(ω)is the fundamental characteristic using which one can calculate the effect of any 

sequence for the lowest (second) order cumulant of the dMRI signal (Novikov and Kiselev, 

2011)

(22)
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where qω is the Fourier transform of the integral  of the applied Larmor 

frequency gradient g(t). The finite-pulse PG corresponds to (Callaghan, 1991)

(23)

where g is the maximum gradient value, and Δ is the diffusion time, defined as the interval 

between the front edges of the pulses (whenever it does not cause confusion, we denote this 

diffusion time Δ≡t similar to the narrow-pulse case). The PG measurement becomes a low-

pass filter |qω|2 which resolves the time-dependent tail (Eq. (18)) only for t = Δ ~ 1/ω >> δ, 

in which case qω ≃ (gδ)(eiωΔ − 1)/(iω) coincides with that for the narrow-pulse limit. While 

the details of the calculation for the low-pass filter effect will be reported elsewhere (Lee et 

al., 2015), here we will announce the result for ϑ = 1. The frequency integral in the first term 

of Eq. (22) is found using Eq. (23) by deforming the inte gration contour in the complex 

plane of ω from the real axis to the one passing along both edges of the branch cut of lnω, 

connecting ω = 0 and ω = ∞ via the lower-half-plane, yielding

(24)

(25)

where the diffusion weighting parameter b = (gδ)2(Δ − δ/3). Note that F(1) = 2ln2 ≈ 1.38 

and ; the latter asymptotic behav ior practically works already for x ~ 1. 

Eqs. (24) and (25) establish the behavior (Eq. (1)) for δ >> tc.

Physically, finite PG pulse width δ allows the tail (Eq. (8)) to be manifest only at the time 

scales  ~ max{tc, δ}. Therefore, finite δ may mask the correlation time tc, and hence, 

the correlation length lc. However, since F(x)|x ≥ 1 < 1 and grows monotonically for x ≥ 1, 

the time-dependent part ~ AF(t/δ)/(t − δ/3) of D(t) defined via , 

t≡Δ, decreases slower than 1/t, asymptotically approaching the  behavior (Eq. 

(1)). Hence, finite δ does not change the overall (lnt)/t dependence (Eq. (1)), only affecting 

the higher-order corrections ~ 1/t to the “ideal” narrow-pulse D(t).

Table 1 summarizes the results of the Theory section.

Methods

To demonstrate the effect of disorder on the two-dimensional diffusion in the long time 

limit, we employ an artificial model system mimicking extra-axonal space. By utilizing 

fibers with a mean diameter larger than axonal diameters by about tenfold, the required 

diffusion times are increased by about a factor of a hundred, from a few millisec onds to 

hundreds of ms, which are much easier to observe on a standard clinical MR system. To 

access such long diffusion times (of up to a second in our case), we use a stimulated echo 
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sequence to reduce the echo attenuation due to T2 decay, as we describe in more detail 

below.

Phantom construction

The diffusion phantom for this study was constructed using Dyneema® fibers held together 

with a flexible, polyolefin low tempera ture shrinking tube (Fieremans, 2008; Fieremans et 

al., 2008). The fibers are 17 ± 2.6 μm in diameter and are comprised of an ultra-high- 

molecular-weight polyethylene (UHMWPE) which is ultrahydrophobic and impermeable to 

water. Approximately 195,000 fibers were placed in a shrinking tube measuring 8 cm long, 

and the fiber and tube bundles were placed in a hot water bath with temperature 90 °C for 10 

min to shrink the tube. To facilitate the removal of air bubbles, which could contribute to 

susceptibility artifacts, the tubes were squeezed and shaken as they were shrunk in the hot 

water bath. The fiber bundle was suspended in the center of a 1.5 L plastic bottle using zip 

ties. The bottle was then filled with a distilled water solution of 0.09% w/v NaCl to reduce 

 field inhomogeneities.

MRI measurements

Imaging was performed at 16 °C on a 7 T Siemens clinical whole- body MRI scanner using 

a 28 channel knee coil. A high resolution (1 mm × 1 mm × 1 mm) MPRAGE image was first 

acquired to locate the presence of any air bubbles within the fiber bundle to determine where 

best to place the diffusion tensor imaging slices. DTI was carried out using the stimulated 

echo acquisition mode (STEAM) sequence which allows for long diffusion times while 

minimizing echo attenua tion caused by T2 relaxation. Twenty five measurements were 

performed at b values of 0 and 1 ms/μm2 in 20 directions, each with a constant TE = 68 ms, 

δ = 17.5 ms, and a TM ranging from 10 ms to 980 ms, corresponding to diffusion times t = 

TE/2 + TM of 44 ms to 1014 ms. Two slices of resolution 2.2 mm × 2.2 mm × 10 mm were 

used. The fiber bundle was placed parallel to the B0 field to eliminate the possibility of 

susceptibility-induced internal field inhomogeneities produced by the fibers.

Monte Carlo simulations in the intra- and extra-axonal spaces

We generate three types of impermeable two-dimensional disk packings – one to simulate 

our fiber phantom, one to simulate a periodic packing, and another to simulate white matter. 

The disk packing mim icking the fiber phantom is comprised of N ≈ 10,000 disks with a 

radius of 8.5 ± 1.3 μm packed to a density of 75%. This density is chosen as it best matches 

the FA value of 0.54 calculated for the phantom for t > 700 ms. For the periodic packing we 

generate a lattice of disks with a radius 8.5 μm packed to a density of 72%; a higher density 

lattice is unachievable for our current simulation.

For the white matter, we generated three different packings based on the axon inner diameter 

distributions in sectors 2, 4, and 6 of the rhesus monkey corpus callosum determined by 

Lamantia and Rakic (1990), and packed to a density of 70% for all sectors, i.e. extra-axonal 

space occupies fraction ϕext = 0.3 of the volume. To determine these distributions, we first 

digitized the histograms provided in Lamantia and Rakic (1990) for the internal axonal 

diameters 2r. The correspond ing external diameters 2rext were found by dividing 2r by the 

myelin g-ratio gm = r/rext = 0.6 (Rushton, 1951) which we assumed to be the same for all 
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simulated axons. We do not account for the possible shrinkage of the axons due to a 

conflicting evidence of the extent of this effect; our results can be readily rescaled to account 

for the shrink age. These external diameters were then used for randomly packing N 

impermeable disks for the simulations, see Supplementary figs. S1–S3.

All packings (except for the periodic one) were generated using a collision-driven molecular 

dynamics simulation script written by Donev et al. (Donev et al., 2005b,c).

To simulate the narrow-pulse cumulative diffusion coefficient Dext(t) in the extra-axonal 

space, 1 × 106 tracers are placed randomly outside the disks, and allowed to perform 2d 

Brownian motion restricted by the impermeable disk walls, following the Monte Carlo 

dynamics previously described in detail (Fieremans et al., 2010). Briefly, during each time 

step dt, a tracer steps a fixed distance dr given by  with d = 2 in a randomly chosen 

direction. For the phantom simulation, dt = 7.5 × 10−4 ms, and for the white matter 

simulation, dt = 7.5 × 10−5 ms, corresponding to step lengths of 0.0775 μm and 0.0245 μm, 

respectively. If a tracer encounters a barrier, it will elastically reflect off the barrier. We 

verified our MC algorithm by simulating D(t) inside one impermeable cylinder, and 

obtained a perfect agreement with the exact result, see Fig. C.1 in Appendix C. Expanding 

upon this, we also simulate the intra-axonal D(t) within the impermeable cylinders of all 3 

sectors assuming inner radii based on the reported values in Lamantia and Rakic (1990), 

which agrees with the asymptotic behavior (Eq. (27)) below. For all simulations, D0 = 2 

μm2/ms.

The time-dependent diffusion coefficient in direction n is calculated via Eq. (3), withδx(t)

≡R × n, where R(t) is the cumulative displacement for a given tracer over the Monte Carlo 

time t. In this paper, n is taken in the two orthogonal directions separately, and the resulting 

mean square displacements are further averaged between the two directions to yield the 

isotropic diffusion coefficient transverse to cylinders (disks).

We do not simulate the diffusion-weighted signal, as the effect of the finite gradient pulses 

can be derived from the narrow-pulse MC using Eqs. (24) and (25). This makes results more 

reliable, since simulating the signal with finite pulses involves adding oscillating phases, 

which notably reduces the precision.

Model for diffusion inside axons and for overall D(t)

For comparing the roles of extra- and intra-axonal spaces, we use a common assumption of 

effectively impermeable axonal walls (Assaf et al., 2008; Alexander et al., 2010; Zhang et 

al., 2011) which is reason able given thick myelin layers covering axons within major fiber 

tracts. Hence, the total time-dependent diffusion coefficient (Eq. (3)), defined via the second 

cumulant of the total signal (Appendix E), is given by the weighted average of the diffusion 

coefficients of the intra- and extra- axonal compartments (Fieremans et al., 2010):

(26)
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where fext + fint = 1 are the fractions of intra- and extra-axonal water, and Dext(t) is simulated 

as described above. We assume that water within myelin is effectively invisible in diffusion 

due to its short T2.

We model diffusion in the intra-axonal space in the narrow-pulse limit using the 

impermeable cylinder model (Stepišnik, 1993; Callaghan, 1995). As it follows from our 

analysis of the exact solution in Appendix C, for the relevant diffusion times, within each 

cylinder with internal radius a the diffusion coefficient is very well approximated by its 

asymptotic limit D(t) ≃ a2/4t, Eq. (C.4) and Fig. C.1. We obtain Dint(t) from impermeable 

cylinders according to the distribution of axonal sizes from Lamantia and Rakic (1990). As a 

result, the diffusion coefficient from inside the axons entering Eq. (26) is found as

(27)

In terms of the moments 〈rn〉 of the axonal size distribution,

(28)

With a fixed value of the g-ratio, the fractions ϕext, ϕint, and (1/g2 − 1)ϕint are the volume 

fractions of extra-axonal water, intra-axonal water and myelin, correspondingly, such that 

ϕext + ϕint/g2 = 1. The water fractions entering Eq. (26) are

(29)

Hence, for sectors 2, 4, 6, ϕext = 0.3, ϕint = 0.7 · 0.62 = 0.252, so that fext = 0.54, fint = 0.46 

in Fig. 11.

Results

Identifying the logarithmic singularity, Eq. (1)

The eigenvalues from the experimentally measured diffusion tensor in our fiber phantom are 

plotted in Fig. 6a, with the principle eigenvalue, λ1, shown by the circles, and the transverse 

eigenvalues, λ2 and λ3, shown by the triangles and squares, respectively. Since the direction 

of λ1 is aligned parallel to the fibers for all t, it corresponds to practically unrestricted 

diffusion, as seen in the figure. However, as λ2 and λ3 are measured transverse to the bundle, 

they indeed decrease with t due to geometric restrictions by impermeable fibers. Note that 

differences between λ2 and λ3 are probably the result of the eigenvalue repulsion due to 

noise. The larger errorbars associated with these two eigenvalues likely arise due to the 

Gibbs ringing present in transverse direction.

We see similar behavior in our simulation data as indicated by the solid black line. To better 

represent the experimental conditions, which were at 16 °C rather than 20 °C, we applied a 

rescaling factor of 1.8/2.0 = 0.9 to D(t) and 1/0.9 to t based on the free D0 = 1.8 μm2/ms for 

water at 16 °C (Tofts et al., 2000).
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To study the nature of the time dependence, the transverse eigen values are averaged 

together to obtain the isotropic two-dimensional component of the transverse diffusivity

(30)

Taking the average (30) significantly reduces bias due to noise. Indeed, the effect of 

eigenvalue repulsion is exactly compensated by taking the mean of eigenvalues in a 2 × 2 

tensor; the residual repulsion in our 3 × 3 case coming from the presence of λ1 is small, 

since λ2 − λ3 << λ1 − λ2,3. We use the narrow-pulse PG notation (Eq. (3)) in Eq. (30) since 

we are studying t ~ 100 − 1000 ms, orders of magnitude longer than δ = 17.5 ms.

The approach of D⊥(t) towards D∞ is shown in Fig. 6b, where D∞ is determined via a fit to 

Eq. (1). The fit parameters D∞, A, and  are shown in the “Experiment” column of Table 2. 

We also observe that the value  is close to δ, so while the agreement with tc from MC 

simulations is very good, this fit parameter value might be rather indicating the “filter 

effect” of a finite-δ PG; besides, it is generally hard to obtain reliable fit results for quantities 

under the logarithm.

Even on a qualitative level, it is clear that the slope of the experimen tal curve is not 

constant. Hence, the time-dependence clearly deviates from 1/t, as the fit to D∞ + c/t shows. 

This fit also looks particularly poor due to the double-logarithmic axes exaggerating the 

small devia tions the fit has to the data. The fit to Eq. (1) shown by the black dashed line is 

considerably better (the R2 value increases from 0.82 to 0.95). This is the first indication of 

the anticipated logarithmic singularity (Eq. (1)). The simulation data (blue dotted line) 

shows a trend similar to the experimental data, with the parameters summarized in the “MC: 

Phantom” column of Table 2.

Another way to see the effect of the (lnt)/t dependence is presented in Fig. 7. Here, the 

transverse component (Eq. (30)) is plotted with respect to 1/t (Figs. 7a, c) and with respect to 

ln(t/tc)/t (Figs. 7b, d). The top row shows Monte Carlo simulated fiber phantom diffusion 

data, and the bottom row is the experimental data. As is evident from Fig. 7a, the slope of 

the data keeps changing with respect to 1/t, indicat ing that the behavior is slower than 1/t. 

However, when the data is plotted with respect to ln(t/tc)/t, as in Fig. 7b, this curve 

straightens out, indicating the logarithmic singularity. We also see this trend in our 

experimental data as shown in Figs. 7c and d.

In contrast, Fig. 8a shows the D(t) from the exterior of the simulated square lattice of disks, 

exhibiting a 1/t dependence as expected from Eq. (13).

Identifying the dynamical exponent ϑ

Alternatively, we can determine the instantaneous diffusion coeffi cient Dinst(t) using Eq. (4) 

from both experimental and simulated data, and confirm the value ϑ = 1 of the dynamical 

exponent, which is equivalent to the singular behavior (Eq. (1)). To do this, we use a 

Savitzky–Golay (Savitzky and Golay, 1964) second order polynomial smoothing procedure 
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written in house using Matlab (Mathworks, Natick, MA) to smooth and differentiate our 

data.

The results of this procedure are shown in Figs. 8 and 9.

In Figs. 8a and b, D(t) and the derived Dinst(t) is shown for the Monte Carlo simulated data 

for the square lattice disk pack. The semilog scale in Fig. 8b indicates that, in contrast to the 

disordered samples, Dinst(t) approaches its D∞ value in the ~ exp(−t/t0) fashion, as expected 

from Eq. (9), corresponding to the dynamical exponent ϑ = ∞. A fit of this data (shown by 

the black line) reveals a t0 ≈ 3.1 ms, which is somewhat small compared to the diffusion 

time of ≈ 20 ms across the lattice constant. This smallness is similar to what is observed in 

the d = 1 lattice (Novikov et al., 2014).

Fig. 8c contrasts Dinst(t) for both the periodic and random geometries, plotted with respect to 

1/t. Note that Dinst(t) for both geometries have markedly different approaches to their 

corresponding D∞ values, indicating the strong sensitivity of Dinst(t) to order/disorder at 

long times.

In Fig. 9, to emphasize the t−1 behavior, we plot Dinst(t) as function of 1/t for our 

experimental and simulated data, respectively. In Panel (a), different symbol shapes indicate 

different Savitzky–Golay smoothing window sizes (see legend). We note that at long times 

(i.e. small 1/t), no matter how much the data is smoothed, there is an as ymptotically linear 

dependence on 1/t (indicated by the solid black line), showing that Dinst(t) approaches its 

D∞ limit as ~ 1/t, in agreement with the exponent ϑ = 1 in Eq. (5), expected in a 2d random 

packing geometry.

In Fig. 9b, the same Dinst(t) as in Fig. 8c is plotted for the long t (small t−1). For MC data, 

we use adaptive Savitzky–Golay window growing with t from 21 to 2001 MC time points.

While it may seem that the time dependence of the blue curve in Fig. 8c is far from t−1, this 

is only because the shortest times are overemphasized due to the t−1 inversion of the time 

axis. The asymp totically linear dependence on t−1 becomes evident in Fig. 9b, which 

displays about 90% of all our MC time points, corresponding to 100 ms ≤ t ≤ 1000 ms.

What does this mean for diffusion transverse to WM fibers? Since diffusion time scales as 

length squared, and given that axonal diameters are about 10 times smaller than those of the 

Dyneema fibers, Fig. 9 suggests that the long-time 1/t tail in Dinst(t) and, thereby, the 

logarithmically enhanced behavior (Eq. (1)) would manifest themselves in WM as long as 

the diffusion time is about 100 times smaller than its onset of ≈100 ms in Fig. 9, i.e. for t ≥ 

1 ms in vivo, cf. Table 2. This, for all prac tical purposes, covers all MRI-observable 

diffusion times. From Fig. 9, we also note that the dynamical exponent ϑ = 1 becomes 

manifest when Dinst(t) is within roughly 10% of D∞ for both experiment (a) and simulation 

(b). Our MC simulations for the realistic axonal geometries discussed below and shown in 

Fig. 11 are in agreement with the above estimates.
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Dominant role of extracellular water in OG diffusion transverse to neuronal fibers

Let us now turn to the recent OG experiment (Portnoy et al., 2013), whose data we replot in 

Fig. 10. In this figure, the frequency dependent diffusion coefficient was measured inside an 

ex vivo rat hippocampus with 10 cosine modulated diffusion gradients ranging from 67 Hz 

to 1 kHz on a 600 MHz Bruker spectrometer. The data shown is from the stratum radiatum 

section of the hippocampus transverse to the fibers. We can clearly see the linear 

dependence (Eq. (2)) at low ω (as long as ReD(ω) is within about 20% of D∞), 

corresponding to the dynamical exponent ϑ = 1. From that, it follows that the structural 

exponent p = 0, corresponding to short range disorder, in agreement with our correlation 

analysis performed in a different brain region within a single fiber tract (splenium, cf. Figs. 

3f and 4). As the ~ |ω| behavior occurs for up to 0.4 kHz, the corresponding tc ≤ 1 ms and 

the disorder correlation length lc ≤ 1 μm. This suggests that short range disorder in fiber 

packing with lc ~ 1 μm is likely to be a universal feature of brain anatomy com mon to all 

fibrous regions, making our results on diffusion in random 2d packings widely applicable.

Furthermore, we observe no trace of the “parabolic” dependence of Eqs. (21) and (D.4) from 

water presumably confined within fibers or elsewhere. This is not surprising, as the linear 

term wins over the quadratic one at low enough frequency (cf. Fig. 5b):

(31)

Therefore, at low ω, due to the structural disorder, the dispersive contribution to D(ω) of the 

hindered component wins over that of the fully restricted component in a 2d geometry. In 

otherwords, the contribution of the confined water to the overall D(ω), and with that, any 

information about the inner fiber diameters, is practically unobservable with diffusion 

measured using OG transverse to the fibers in the small ω limit.

We note that extra-axonal ω also has regular contributions, such as ω2 further increases ω to 

“catch” the ω2 term on the background of |ω|, it does not help to quantify internal axonal 

diameters without knowing which part of this term comes from intra-axonal water.

In Appendix F we argue that the |ω| behavior in D(ω) is determined by the random packing 

geometry irrespective of the exchange rate  between intra- and extra-axonal 

compartments, and that OG is thus asymptotically insensitive to internal axonal diameters at 

low ω even when exchange is present.

Dominant role of extra-axonal water in narrow-pulse PG diffusion transverse to axons

Consider first the common assumption of negligible exchange, which is likely to hold for 

major fiber tracts. In this limit, the overall diffusion coefficient is given by Eq. (26). We 

now show, similar to the frequency case (Eq. (31)), that the extra-axonal contribution is 

domi nant at long times. Here we focus on the narrow-pulse PG limit in order to understand 

the ideal situation. In Discussion section, we will use these results to argue that for finite δ, 

the extra-axonal contribution becomes relatively even more important and biases axonal 

diameter results, Fig. 2.
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The extra-axonal (lnt)/t contribution (Eq. (1)) to the overall narrow- pulse diffusion 

coefficient (Eq. (26)) should become gradually more pronounced, due to its slower decrease 

with time, than the 1/t contribution of the confined intra-axonal water, Eq. (28), since

(32)

The extra-axonal dominance should be less dramatic for PG than for OG, Eq. (31), as lnt is a 

relatively slowly growing function.

How significant is this effect for realistic axonal packings? To address this question 

quantitatively, we calculate the time dependence of the diffusion coefficient (Eq. (26))

(33)

where the overall . In Fig. 11, we show the results of Monte Carlo simulations 

for Dext(t) for the three cylindrical (disk) packings based on sectors 2, 4, and 6 of the rhesus 

monkey corpus callosum, as well as analytical and numerical results for Dint(t) (see Methods 

section). The left column of Fig. 11 shows small fragments of the cylinder packs used in the 

simulation with the corresponding histograms of the radii (Lamantia and Rakic, 1990) in the 

center column (for full packings, see Supplementary figs. S1–S3). The main results are 

shown in the right column, where we plot the first and the second terms of Eq. (33) along 

with the total D(t) − D∞.

In all three cases, the extra-axonal contribution dominates the over all time dependence at 

practically relevant times (t ≥ 1 ms). The long time limit begins at approximately 1 ms, 

meaning that this dominance is always present, as already anticipated from the results of 

Fig. 9. At the experimentally feasible time scales of t = 10 and 100 ms, the t-dependent part 

of Dext(t) comprises over 80% of the total D(t) for all sectors as seen in Table 3, and 

logarithmically grows with t.

In other words, similar to the OG case, the intra-axonal compartment becomes 

asymptotically invisible on the background of the extra-axonal contribution.

The results of fitting of Dext(t) to Eq. (1) are presented in the last three columns of Table 2. 

As the three-parameter fitting can become un stable, especially for tc entering under the 

weakly-varying logarithm, we first derive the corresponding instantaneous diffusion 

coefficient (Eq. (8)) using the Savitzky–Golay procedure outlined above, which allows us to 

eliminate tc (Supplementary fig. S5); after D∞ and A are fit, they are fixed in the fitting of 

Dext(t) to Eq. (1) in order to obtain tc. We observe that the correlation length lc ≈ 〈rext〉 does 

not parametrical ly exceed the mean external axonal radius. This indicates that local order 

due to a mutual “repulsion” of disks in all our packings disappears already at the level of 

nearest neighbors. (Presumably, packing at a higher density may lead to emergence of short 

range order, lc > > 〈rext〉.) We also note an approximate scaling , Supplementary fig. 

S4, expected from the dimensional considerations: At t >> tc, the t-independent length scale 

that the system still “remembers” after the coarse-graining is the correlation length 
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, and A has dimensions of (length)2. This scaling is only approximate since 

the plateau Γ(k)|k→+0 is governed not only by  but by the packing details, see Fig. 4 and an 

estimate at the end of Appendix A.

If exchange is present, our argument in 6 translated to the time do main suggests that the 

(lnt)/t term due to extra-axonal space geometry will similarly prevail for the slow exchange 

τex > tc, and will apply to all water molecules in the fast exchange limit τex < tc.

Discussion: what do we measure with dMRI transverse to axonal fibers?

Quantifying μm-level structure of neuronal tracts in vivo has been brought to the forefront of 

neuroscience research primarily due to the axonal diameter mapping (ADM) concept, 

developed within AxCaliber framework (Assaf et al., 2008; Barazany et al., 2009) and their 

exten sions (Alexander et al., 2010; Zhang et al., 2011). Their common theme is the focus on 

the intra-axonal compartment (assuming no exchange), which is typically done by 

approximating axons as imper meable cylinders, and building on exact solutions (Neuman, 

1974; Stepišnik, 1993; Callaghan, 1995). Water diffusion in the extra-axonal space in all of 

the above approaches is assumed to be Gaussian (time- independent).

Our findings of the unexpectedly dominant role of the time-dependence of dMRI signal 

from extra-axonal water prompt us to reconsider the applicability and interpretation of 

ADM.

ADM in the narrow-pulse limit δ < tc

In Appendix E, by attributing the time-dependencies of both Dint(t) and Dext(t) in Eq. (33) to 

the intra-axonal water, i.e. assuming Gaussian extra-axonal diffusion, up to order  in 

the cumulant expansion we obtain an apparent internal axonal radius rapp(t) growing with 

diffusion time t:

(34)

While the first term in Eq. (34) reflects the volume-weighted contri bution of water inside all 

axons, cf. Eq. (28), the second term comes from the singular time-dependent contribution (1) 

of the extra-axonal water. It results in the overestimation of the value of the axonal radius. 

This bias has been illustrated in Fig. 2 of Introduction, where rapp(t) (dashed lines) is 

calculated from Eq. (34), using A and tc determined from Fig. 11, Table 2. Based on these 

parameters, the second term in Eq. (34) exceeds not only 〈r〉2 but even 〈r4〉/〈r2〉, so that the 

apparent internal axonal radii could be significantly biased by the extra-axonal contribution. 

Indeed, as seen from the second row of Table 3, the calculated value of rapp is roughly 3–4 

times greater than 〈r〉 for all three corpus callosum sectors.

Furthermore, our analysis in Appendix E shows that including the  terms leads to the 

further increase of the apparent rapp(t), making it grow even faster with time, as (tlnt)1/4, Eq. 

(E.9), which occurs due to the corresponding (lnt)/t behavior of the kurtosis Kext(t) in the 
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extra-axonal space, Eq. (E.4). While being numerically too small to affect fits of quantities 

such as axonal (or neurite) water fraction especially at the clinical times t ~ 10 − 100 ms 

(Assaf et al., 2008; Jespersen et al., 2007, 2010; Fieremans et al., 2010), Kext(t) generally 

cannot be neglected for more subtle techniques such as axonal diameter mapping, since all 

the (time-dependent) corrections originating from finite axonal diameters are comparably 

small, cf. Fig. 11.

To get a sense when Eq. (34) applies, let us employ dimensionless time and Larmor 

frequency gradient variables

(35)

where the disorder correlation time scale tc ~ r2/D∞ ~ τ r2/D0 ~ 0.1 − 1 ms is practically 

similar to the diffusion time τD within axon with typical radius r (Table 2), and gr is the 

characteristic scale for the Larmor frequency gradient needed to efficiently probe distances ~ 

r. Using the variables (Eq. (35)), we make order-of-magnitude estimates by dropping all 

dropping all coefficients  in Appendis E:

(36)

where Ā =A/r2 ~ 0.1−1, and the dephasing strengthα = qr = grδ ≡ gδ is usually small, as 

diffusion gradients are generally weak relative to the scale gr. Indeed, the scale gr ≈ 20(μm· 

ms)−1 for 2r = 1 μm, assuming free axoplasm diffusivity D0 = 2.4 μm2/ms (Beaulieu, 

2002),where-as g = γ · 40mT/m = 0.0107(μm·ms)·1 for a typical clinical scanner, and g ~ 

0.1(μm·ms)−1 for animal systems. This makes ; assuming δ < tc makes 

α<<1.

We can see that in the  limit considered in Eq. (36), the three dimensionless quantities t, 

δ, and g enter only in the two combinations: α and . Hence, the phase diagram in this limit 

is two-dimensional, and is schematically outlined in the left panel of Fig. 12. The extra-

axonal signal is effectively suppressed when , i.e. above the green line . 

As α << 1, the intra-axonal signal is practically never small (we are always below the red 

line). The ADM applies in the green shaded region where the extra-axonal contribution can 

be neglected, while the intra-axonal signal is still not too small. However, below the green 

line (regime I), when both Sint and Sext are not exponentially suppressed, the above results of 

Appendix E apply, and Eq. (34) becomes asymptotically exact for . While it is 

advan tageous for the ADM to increase the diffusion time , the right edge of the phase 

diagram is limited by T2, so that t ≤ 100 ms, , and so for , we are 

practically always in the regime I, , where Eq. (34) asymptotically applies.
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ADM on clinical scanners, δ >> tc

Clinical acquisition employs wide pulses, with duration δ ≥ 10 ms exceeding both the 

diffusion time τD = r2/D0 across the inner radius of a typical axon, and the correlation time 

tc in the extra-axonal space. In this limit, the above analysis gets modified. It turns out that 

diffusion attenuation (at a given b-value) becomes generally weaker in both intra- and extra-

axonal space. However, while extra-axonal contribu tion changes only logarithmically, 

ln(t/tc) → ln(Δ/δ), cf. Eq. (24), the intra-axonal attenuation becomes smaller by the factor 

τD/δ << 1. Physically, this ineffectiveness of diffusion gradients stems from the motional 

narrowing of the transverse relaxation rate  within an axon under the applied 

gradient.

To get an idea of just how insensitive clinical systems are to typical axonal sizes, we find the 

attenuation (Neuman, 1974)

(37)

where we used g = 0.0107(μm · ms)−1 corresponding to 40 mT/m gradient, D0 = 2.4 

μm2/ms, δ = 50 ms, and a typical internal axonal diameter 2r = 1 μm. Even with the r4 

scaling, the very large axons with 2r = 4 μm give − lnSint ≈ 0.0056, i.e. less than 1% 

attenuation.

For dimensionless estimates, the variables (35) are  ~ 10−3;  ≡ Δ/tc 102−103;  10−102 . 

The contributions to signal S = fintSint + fextSext are Eqs. (37) and (24)–(25) respectively,

(38)

The full phase diagram is now 3-dimensional. To simplify it and to gain further intuition, we 

assume , i.e. pulses are as wide as possi ble, δ ~ Δ, which is often the case. This leaves 

and  as variables, cf. right panel of Fig. 12. The extra-axonal signal is suppressed and ADM 

applies above the green line, scaling as . Below this line (regime II), both Sint and 

Sext are not suppressed, and we can again use their cumulant expansions to estimate the role 

of t-dependence of Sext in the ADM.

Restoring numerical coefficients in Eq. (38), expanding up to  similar to Appendix 

E, and assigning all t-dependence to − ln , cf. Eq. (37), as it would 

effectively occur in a fit to ADM models, we obtain in regime II

(39)

The apparent axonal radius according to Eq. (39) is shown in Fig. 2 (solid lines). It exceeds 

the one from Eq. (34) due to the relative small ness of the intra-axonal contribution (Eq. 
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(37)) in the δ >> tc limit. For the corpus callosum parameters determined from MC, Table 2, 

the intra-axonal term 〈r6〉/〈r2〉 of Eq. (39) gives a less than 1% contribution to the right-hand 

side. Therefore, the apparent radii rapp found in regime II of Fig. 12, third line of Table 3, 

exceeding the ones from histology (Lamantia and Rakic, 1990) by almost an order of 

magnitude, are completely determined by the extra-axonal geometry, embodied in the 

parameter A, Eq. (A.4), and have little to do with intra-axonal diameters. This observation 

makes studying the effect of spatial correlations of axonal packing on the dMRI signal 

highly relevant. It is also likely to explain the noted overestimation of axonal diameters 

(Alexander et al., 2010; Zhang et al., 2011), in ADM at clinical gradient strengths, when the 

overall signal is mainly determined by its few lowest-order cumulants (regime II). The 

cumulant expansion performs within its convergence radius, b < bc (Kiselev, 2010), which 

can be roughly estimated as bc ≈ 3 ms/μm2 for the white matter.

In this picture, the main contribution to Eq. (39) coming from the term ~A growing with the 

external radii (Table 2), can rationalize correlation between rapp and neuronal signal 

propagation speed (amount of myelin) (Horowitz et al., 2014). The observed decrease of 

rapp with increasing gradients (Huang et al., 2015) is consistent with moving up-wards from 

regime II towards the green domain in Fig. 12. Dedicated suppression of extra-axonal 

contribution (Dhital et al., 2014) requires strong gradients, or the stimulated echo weighting. 

OG measurements, much like PG, strongly benefit from larger axons, such as in spinal cord 

(Xu et al., 2014). For OG, it is essential to reach high enough ω such that D(ω) saturates, 

and ideally to combine this with axonal water fraction estimation (at high b) in the t → ∞ 

limit, in order to be able to resolve intra- and extra-axonal contributions in the view of the 

remark after Eq. (31).

Mesoscopic effects: a novel kind of dMRI contrast

The unexpectedly strong contribution of the extra-axonal water to the overall time-

dependent diffusion cumulants such as diffusion coefficient and kurtosis, and their 

sensitivity to the fiber packing embodied in the structure correlation function Γ(k), opens up 

a possibility to sense pathologies affecting the extra-axonal space geometry, such as demye 

lination and axonal loss, as well as possibly signal propagation speed, with diffusion.

Overall, our work brings to the forefront the mesoscopic effects — i.e. effects of spatial 

arrangement, correlations and structural disorder — in dMRI. Embracing the complexity of 

cellular architecture at the mesoscopic scale, intermediate between the molecular level 

(where local NMR parameters originate) and the macroscopic MRI resolution, offers a 

variety of physical effects relevant to quantifying tissue architecture. Mesoscopic transport, 

an area of condensed matter physics investigating the role of disorder in transport properties 

of complex systems, has enjoyed over a half-century of development motivated primarily by 

the electron conductivity (Anderson, 1958; Abrahams et al., 1979; Bouchaud and Georges, 

1990; Kamenev, 2011; Mott and Davies, 1971; Shklovskii and Efros, 1984). This spurred 

the development of sophisticated methods and physical intuition which extends far beyond 

semi-conductor physics. The rapidly improving quality of dMRI acquisition is now enabling 

us to investigate the mesoscopic effects in vivo (Novikov et al., 2014). This novel kind of 

sensitivity to structure requires going beyond the conventional modeling paradigm of 
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Gaussian com partments (with or without exchange), such as the Kärger model (Fieremans 

et al., 2010) and its multiexponential anisotropic extentions (Panagiotaki et al., 2012). The 

focus of the mesoscopic approach is on the averaging of the diffusion propagator over the 

disorder in positions of restrictions at the mesoscopic scale. Remarkably, methods developed 

previously in a different physical context are now becoming relevant to neuroscience and to 

noninvasive imaging, with an exciting prospect of identifying highly specific markers of 

pathology in neuronal tissue.

The mesoscopic effects may also affect the intra-axonal contribution to the overall D(t) and 

to rapp, cf. Eqs. (34) and (39). The tail of the axonal diameter distribution strongly affects 

the moments 〈r4〉 and 〈r6〉, giving a large weight to a relatively small number of axons with 

largest diameters. Hence, these contributions are susceptible to the mesoscopic fluctuations 

governed by the tail of the distribution. This general phe nomenon of rare disorder 

configurations determining the measurement outcome has parallels with similar effects 

found in hopping conduction in disordered semiconductors, kinetics of reaction-diffusion 

systems, and other phenomena in disordered media (Lifshitz, 1964; Mott and Davies, 1971; 

Shklovskii and Efros, 1984). In our case, an accidentally large number of thicker axons, or 

even a few very thick axons, may sig nificantly skew the overall Dint(t) for a particular 

voxel. This could lead to strongly enhanced variations (relative to those expected based on 

the measurement noise alone) in the corresponding parametric maps. Addressing how the 

mesoscopic fluctuations affect the measurement, how representative is a “typical” voxel in a 

region of interest, how reliably we know the axonal diameter distribution (Lamantia and 

Rakic, 1990) and its tail (the hardest to determine), and how wide the histograms of the 

inferred parameters are due to the sensitivity to the tail of the distribution, deserves a 

separate investigation.

Generalizations

So far, we considered the parallel fibers geometry. What about non- parallel fibers, such as 

in fiber crossing regions or in gray matter? As long as the neurites are randomly positioned, 

we expect that the dy namical exponent ϑ = 1 in the extra-neurite space will persist, and 

hence the behavior of Eqs. (1) and (2) will still be valid. This can be understood from the 

analysis based on Eq. (6) in d = 3 dimensions, where the structural exponent p = −1 has been 

anticipated in the random-rod geometry, cf. Fig. 2 of Novikov et al. (2014). Qualitatively, 

the spatial fluctuations of the local diffusion coefficient brought by the randomly-positioned 

straight restrictions (“rods”) in 3d behave in the same way as those due to randomly 

positioned “compact” restrictions in 2d. Thus, the change in the structural exponent, 0 → 

−1, exactly compensates the change in the dimensionality, 2 → 3, in the calculation of ϑ. 

Proving that the neurites can indeed be thought of as randomly positioned straight segments 

with p = −1 in three dimensions will re quire a detailed correlation analysis of a 3d histology 

reconstruction, similar to what we have done in a 2d case, Fig. 4.

The overall time- or frequency-dependence in the case of non-parallel fibers may be 

generally dominated by the intra-neurite water due to the d = 1-dimensional short range 

disorder (p = 0) along the neurites, leading to ϑ = 1/2. This means that, practically, when 

diffusion is measured in the direction with a notable diffusion contribution along the 
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neurites, the slower, ~ t−1/2 decrease from Dint(t) will dominate the (lnt)/t decrease from 

Dext(t), similarly to |ω|1/2 dominating |ω| in the OG case (Novikov et al., 2014). Hence, the 

behavior in Eqs. (1) and (2) considered here is most relevant in the case when diffusion is 

measured at the right angle to a major fiber tract (with well aligned fibers), which is indeed 

the case in most applications of axonal diameter mapping techniques.

We also note that a similar time-dependent contribution from the extra-neurite water 

characterized by the dynamical exponent ϑ = 1 will generally be present in more complex 

acquisition schemes, such as multiple-wave-vector PG measurements whose lowest-order 

cumulant is completely determined by the time-dependent D(t) (Jespersen, 2012). The 

corresponding higher-order cumulants, such as kurtosis, Eq. (E.4), will be also affected by 

the relatively slowly decaying (lnt)/tn terms as a result of disordered arrangement of axons in 

a bundle, again amplifying the role of extra-axonal water.

Conclusions

We showed that the long time behavior of diffusion coefficient transverse to a fiber bundle 

is determined by the disordered packing of the fibers. We identified short range disorder in 

the fibrous geometry in brain white matter, which may be a common feature of packings of 

biological building blocks.

As a consequence of the structural disorder, we predicted a charac teristically singular slow 

(lnt)/t decrease of the diffusion coefficient transverse to the axons, Eq. (1). The logarithmic 

singularity (Eq. (1)) coming from extra-axonal space is shown to be more relevant than the 

1/t decrease from water confined within axons, as (lnt)/t eventually takes over the 1/t 

decrease. This may explain the strong bias in the values of apparent axonal diameters, 

especially on human scanners.

The unanticipated effect the random spatial arrangement of axons has on dMRI 

measurements, leads us to conclude that the time-dependent dMRI signal acquired 

transverse to a fiber tract at clinical diffusion weightings may be more sensitive to the extra-

rather than to intra-axonal water, as well as to how randomly fibers are arranged within a 

bundle. This observation points at a crucial role of the mesoscopic effects which can be 

quantified using methods of condensed matter physics outlined here. Understanding this rich 

physics may open up exciting prospects of designing new imaging biomarkers of neuronal 

integrity based on changes of the geometry of extra-axonal space, such as axonal loss and 

demyelination, as a result of disease, aging, or normal development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Relation of the diffusion coefficient to the structure correlation 

function

Knowledge of the structure correlator allows us to tie in long-time diffusion behavior with 

the disorder in a system via the homogenization argument, as introduced in Ref. Novikov et 

al. (2014). Briefly, this argument proceeds in two steps.

At the first step, one realizes that, no matter how strongly heteroge neous the system is 

microscopically, at long times these inhomogeneities become effectively coarse grained 

(homogenized) over the increasing diffusion length scale , 

where D∞ is the finite bulk diffusion coefficient and δx = x(t) − x(0). In other words, while 

at short times the diffusing molecules “see” individual axonal walls and other sharp μm-

level features, at longer times these features are progressively blurred, becoming 

indistinguishable, from the diffusion standpoint, from some effective, almost uniform 

medium. This looks as if a Gaussian filter with a window ~ L(t) >> 〈rext〉 were applied to a 

medium. At this point, it is justifiable to introduce a coarse-grained local diffusion 

coefficient D(r) which smoothly varies on the scale ≥ L(t), and whose variation δD(r) = D(r) 

− D∞ becomes small, asymptotically approaching zero as t → ∞. This smallness in turn 

justifies applying the lowest-order perturbation theory for the effective diffusivity in a 

medium with a weakly-varying local D(r). Technically, this theory is most directly built in 

the frequency domain, for the dispersive diffusivity D(ω) (Ernst et al., 1984; Novikov and 

Kiselev, 2010; Novikov et al., 2014):

(A.1)

where ΓD(k) = ∫ΓD(r)e−ikrddr is the Fourier transform of the two-point correlation function 

ΓD(r) = 〈δD(r0 + r)δD(r0)〉 of the coarse-grained weakly-varying diffusion coefficient in d 

spatial dimensions. Here we con sider a statistically isotropic case, so that ΓD(k) depends 

only on k = |k|. In the time domain, Eq. (A.1) yields

(A.2)

At the second step, one needs to relate a somewhat artificial object, ΓD, entering Eqs. (A.1) 

and (A.2), to the correlation function Γ(r) = 〈ρ(r0 + r)ρ(r0)〉 of the actual restrictions, Eq. (B.

1) above. As it has been realized in Ref. Novikov et al. (2014), in the long-distance (or low 

k) limit, these correlation functions become asymptotically proportional to each other:

(A.3)
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The dependence  of the macroscopic diffusion coefficient on r of the restrictions 

(e.g. axons) is the macroscopic density  of the restrictions (e.g. axons) is non-

singular, such that 0 < C < ∞, as long as the system is not at its percolation transition, so 

that D∞ > 0 in the extracellular space, which is always the case for neuronal tracts. 

Therefore, in a general situation, i.e. away from the singular packing density (for which D∞ 

= 0), the ω → 0 and t → ∞ asymptotic forms of Eqs. (A.1) and (A.2) can be (up to a 

coefficient C) deduced by plugging in the corresponding k → 0 behavior of the structure 

correlator Γ(k) ~ kp.

For the short-range disorder, p = 0, the correlation function Γ(k) has a plateau Γ(k)|k → +0 > 0 

as k → 0, Fig. 4; hence, a similar plateau ΓD(k)|k → +0 = C · Γ(k)|k → +0 enters Eq. (A.1). 

Substituting this value into Eqs. (A.1) and (A.2) for d = 2, we obtain Eqs. (1), (2), (8), (18), 

and (19) with the coefficient

(A.4)

An accurate theory of the parameter A is nontrivial, as it involves finding analytically the 

dependence , and is beyond the scope of this work. Here, we roughly estimate

based on the fact that, similar to the correlation function for the Poissonian disorder, ΓD(r) is 

dominated by a δ-function peak around r = 0 of amplitude ~ var{D(r)} = 〈D2(r)〉 − 〈D(r)〉2 

and width Lmin ~ lc corresponding to the minimal diffusion length scale at which we coarse-

grained the medium and applied Eq. (A.1). This peak sharply decreases to 0 for r >> lc. 

Coarse-graining past lc means that the fluctua tions of D(r) are already small, 

. This estimate for A is in agreement with our data summarized in Table 2. 

The scaling  (Supplementary fig. S4) is only approximate, since the plateau 

ΓD(k)|k → +0 is determined not only by lc but also by how strongly the objects “repel” each 

other, cf. Fig. 4 showing fairly strong sensitivity of the plateau value Γ(k)|k → +0 to the 

arrangement of the objects. Now it is also evident that the units for ρ(r) in the examples of 

Fig. 3 (cf. Appendix B) are inessential, compensated by the respective units in the derivative 

in C, Eq. (A.3).

Appendix B. The structure correlation function Γ(k)

In order to formalize the qualitative difference between the computer-generated ordered 

packing in Panel a and the disordered ones in Panels b–d of Fig. 3, consider the density 

correlation function defined in a standard way,
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(B.1)

where ρ(r) is the density of restrictions (black pixels in our examples in Fig. 3) at the point r, 

and V is the sample volume (area). The units of ρ(r) and the overall normalization are not 

important for the qualitative distinction we are going to illustrate (cf. Appendix A); here we 

assumed ρ = 1 for the black pixels and ρ = 0 for the white pixels in Fig. 3.

Practically, the correlation functions of the restrictions in Fig. 4 are calculated in the Fourier 

domain, using the equivalence with the power spectral density

(B.2)

where ρ(k) = ∫dr e−ikrρ(r) = ρ*(−k). In particular, given the shape functions, vj(r) = 1 inside 

an object and 0 outside (cf. Fig. 3), we find  for any array of shapes, 

with the Fourier transform given by

(B.3)

We note a few important properties of the function (Eq. (B.2)).

1. Large-k behavior For a disk of radius a, v|r <a = 1, v(k) = 2πaJ1(ka)/k, where J1 is a Bessel 

function of the first kind. We note that v|ka>>−3/2. This scaling at large k is a general 

signature of the sharp boundaries with finite curvature in two dimensions, and is indeed 

present in Fig. 4 in the form Γ(k) ~ |v(k)|2 ~ k−3 as k → ∞ both for the disks and for the 

randomly-shaped axons from Fig. 3d. 2. Normalization Consider the case of totally 

uncorrelated positions rj of the objects (the Poissonian disorder), and let us also for simplic 

ity assume them identical, vj ≡ v in Eq. (B.3). Substituting Eq. (B.3) in Eq. (B.2), we obtain

(47)

since only the terms with j = j′ survive and the rest are averaged to zero due to the random 

phases. Hence, the plateau value for the Poissonian disorder is , 

where v0 = v(k)|k = 0 is the volume (area) of a single object, and ϕ = nv0 is the volume (area) 

fraction of the objects.

The Poissonian disorder is a good reference point, hence we have chosen to normalize all 

correlation functions in Fig. 4 onto , and the the value ϕv0. For the axons in Fig. 3f, we 

defined v0≡ϕ/n and the (external) object radius  for the k=axis normalization. 

We can see that the top curve, corresponding to Fig. 3d, plateaus at almost unity. (It does not 

reach unity because we assign ρ = 1 instead of ρ = m to the pixels where m disks overlap, so 

there is a bit of anti-correlation baked in this ρ(r).) Interestingly, all other correlation 
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functions have plateaus notably below ϕv0, which is ex pected since the objects are anti-

correlated due to their “repulsion” (non-overlap condition).

3. Discontinuity at k = 0 Since ρ(k)|k = 0 = Vϕ, which is the volume (area) occupied by the 

objects, the value Γ(k)|k = 0 ≡Vϕ2. This value is different from the plateau Γ(k)|k → +0 

described above. This reflects the fact that Γ(k) is discontinuous at k = 0. Physically, we are 

inter ested in the plateau Γ(k)|k → +0, as it reflects the statistical properties of the medium at 

distances ~ 1/k which are large, but still smaller than the system size. Conversely, the value 

Γ(k)|k = 0 is irrelevant since it is only approached for k of the order of inverse system size 

(i.e. it is never approached in the thermodynamic limit N, V → ∞), and thereby it cannot 

affect any observable physical quantities.

Appendix C. Time-dependent diffusion inside a perfectly reflecting cylinder 

in the narrow-pulse limit

The diffusion propagator for a perfectly reflecting cylinder of radius a is given by Stepišnik 

(1993) and Callaghan (1995)

(C.1)

where Jn are Bessel functions of the first kind and βnk is the kth root of their derivative 

.

Taylor expanding up to q2 reveals that only the Bessel functions Jn with n = 0 and 1 

contribute at this level, as higher n result in the powers of q greater than 2. Similarly, the 

only k value needed for β0k in the first sum is k = 1 with β01 = 0. Using J0(x) ≃ 1 − x2/4 + 

x4/64 − x6/(36 · 64) and J1(x) ≃ x/2 for x << 1, Eq. (C.1) simplifies to

From the above equation, we find

(C.2)

This expression is plotted in Fig. C.1. Using (Neuman, 1974)

(C.3)
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the short-time limit of Eq. (C.2) is indeed D(t)|t → 0 = D0. The next-order correction, to 

which all the eigenmodes in Eq. (C.2) contribute, is the universal  term (Mitra et al., 

1992), shown in Fig. C.1. It works for t << τD, where τD = a2/D0 is the diffusion time for the 

cylinder. To see how all the eigenmodes contribute to the Mitra limit, one can substitute the 

summation by integration via approximating β1k ≃ πk for k >> 1, and regularize the 

resulting integral

using Euler's Gamma function .(In the above equation, we extended the 

lower limit of integration to k = 0, with the understanding that there is no actual divergency 

at k → 0 in the original discrete sum; the formally divergent integral  with x = 

π2k2t/τD is then understood in terms of the Gamma function Γ(z) after analytic continuation 

in the complex plane of z from z > 0 to z = −3/2.) Collecting all the coefficients yields the 

exact Mitra  correction, with S/V = 2πa/πa2 = 2/a, Fig. C.1.

In our example in Fig. C.1, we use D0 = 2μm2/ms and a cylinder ra dius a = 0.5μm for a 

typical axon with an internal diameter of 1μm. For this case, τD = 0.13 ms, therefore, for 

typical axonal length scales, all dMRI measurements will be in the long time limit. For the 

long times, the sum over the eigenmodes in Eq. (C.2) becomes negligible, and

(C.4)

This limit is utilized in Eq. (27) of the main text.

From Eq. (C.2), using Eq. (4), we obtain the instantaneous

(C.5)

Fig. C.1 shows how distinctly faster is the exponential decrease of Dinst(t) (solid black line) 

as compared to the power law decrease (Eq. (C.4)). Indeed, practically, Dinst(t) is already 

captured by the lowest k = 1 eigenmode in the sum (Eq. (C.5)), as shown by the dashed 

magenta line (cf. Eq. (9) of the main text). The higher modes are only really needed to get 

the correct t << τD behavior of Eqs. (C.2) and (C.5).

Appendix D. Frequency-dependent diffusion coefficient inside a perfectly 

reflecting cylinder

Taking the Fourier transform (Eq. (14)) of Eq. (C.5), we obtain

(D.1)
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The lowest-order term in ω of Eq. (D.1) is purely imaginary, , 

and corresponds to the long-time limit (C.4). The OG-measured real part of Eq. (D.1)

(D.2)

Fig. C.1. 
Cumulative diffusion coefficient (Eq. (C.2)) for an impermeable cylinder for typical axonal 

parameters, D0 = 2μm2/ms and radius a = 0.5μm. The characteristic diffusion time τD is 

shown by the vertical black dashed line. The diffusion times commonly employed in dMRI 

fall into the long time limit for typical axons. Note a much faster, exponential decrease of 

Dinst(t) given by the first term of the sum (Eq. (C.5)) (dashed magenta), as compared to ~ 1/t 

asymptote (Eq. (C.4)) of D(t) (dot-dashed red). The MC simulated D(t) (open circles) 

perfectly agrees with the theoretical value (C.2).

Its Taylor expansion around ω = 0 starts from the ω2 term. Using the relation (Neuman, 

1974)

(D.3)

(note a misprint, 296 → 96 in Eq. (28) of that paper), we find

(D.4)

The result (Eq. (D.2)), together with its low frequency limit (Eq. (D.4)), and its high 

frequency limit based on Ref. Novikov and Kiselev (2011) with S/V = 2/a, are plotted in Fig. 

D.1. We observe that for axons (generally, for impermeable cells) of ~ 1μm size, the high-
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frequency limit is practically unattainable, as it requires frequencies beyond ~ 10 kHz, and 

the OG-measured diffusivity has a clear low-frequency parabolic dependence (Eq. (D.4)) 

within a few kHz range.

As with Eq. (C.5), we again see that the lowest k = 1 eigenmode very well captures the low-

frequency behavior of ω . Indeed, the sums in Eqs. (C.3) and (D.3) converge very rapidly 

and are approximated their respective first terms involving only β11 ≈ 1.8412. For instance, 

keeping only the k = 1 term in Eqs. (D.1)–(D.3), we get the ω2 behavior with a coefficient 

, approximating the exact coefficient in Eq. (D.4) within a 

0.14% accuracy.

We note that a qualitatively similar dominance of the lowest eigen- mode also occurs for 

periodic lattices (Dunn and Bergman,1995; Sen et al., 1994; Sukstanskii et al., 2004; 

Novikov et al., 2014). The physical reason is the same: the spectrum of discrete eigenmodes, 

which, for sufficiently long , where l0 is the lattice constant, allows one to keep 

the lowest one, cf. Eq. (9), that is separated by a gap  from the rest, whose 

contributions exponentially die out even faster. This is the rationale behind the simple 

Lorentzian representation (Eq. (20)) used in the main text.

In disordered media, when there is no spectral gap, the sum (Eq. (A.2)) over the finite 

density of exponentially decaying eigenmodes yields a power law (Ernst et al., 1984; 

Machta et al., 1984; Visscher, 1984; Novikov et al., 2014). More generally, this is why 

transport properties of ordered and disordered systems are so qualitatively dis tinct, even at 

the level of purely classical diffusion, with this distinction becoming even more pronounced 

in the case of quantum transport, where disorder leads to localization of single-particle wave 

functions (Anderson, 1958; Abrahams et al., 1979).

Appendix E. Axonal diameter mapping up to O(q4) in the narrow-pulse limit

Consider first for simplicity the case of all axons to be of the same internal radius r = a, and 

the narrow pulse limit δ << tc of diffusion weighting. The total signal is additive,

(E.1)

where g is the diffusion-sensitizing gradient value (in the units of Larmor frequency per unit 

length) during the short pulse. We will now expand both terms of Eq. (E.1) up to .

The intra-axonal signal in the limit t >> a2/D0 is given by the k = 1 term in the first sum in 

Eq. (C.1). Its expansion

(E.2)

is equivalent to the kurtosis value Kint|t → ∞ = −1/2 transverse to an impermeable cylinder. 

The cumulant expansion of the extra-axonal signal for t << tc
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(E.3)

Using the approach (Novikov and Kiselev, 2010),we found (details to be published 

elsewhere) the kurtosis due to the disordered packing, as

(E.4)

One can already expect the behavior Kext ~ A/(D∞t) on purely dimensional grounds 

(kurtosis is dimensionless and must scale with the disorder strength ~ A). The lnt singularity 

is nontrivial and has the same origin as in Eq. (1). In Eq. (E.3), within the accuracy of 

keeping the terms ~ Alnt, we approximated D(t) by D∞ in the term (D(t)q2t)2. Substituting 

Eqs. (E.2) and (E.3) into Eq. (E.1) and regrouping the terms into the moments 〈xn〉 of the 

total signal, we obtain

(E.5)

(E.6)

(E.7)

Consider now the result of matching the q2 and q4 terms of Eq. (E.5) to those of the 

conventional model

(E.8)

which assumes time-independent Gaussian diffusion in the extra-axonal space, with some 

apparent axonal radius rapp instead of a in the intra-axonal signal expansion (Eq. (E.2)).

Matching of 〈x2〉 terms of models in Eqs. (E.5) and (E.8) yields

which gives Eq. (34) after generalizing a2 → 〈r4〉/〈r2〉 onto the distribution of the internal 

radii r by taking the volume average over the distribution of axons. Hence, fitting of the 

actual signal (Eq. (E.5)) to the conventional model (Eq. (E.8)) at the lowest diffusion 

weighting would give rapp(t) > a.
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Fig. D.1. 
Eq. (D.2) (solid blue line) plotted with D0 = 2μm2 /ms and a cylinder radius a = 0.5μm. Its 

low-frequency limit (Eq. (D.4)) and high-frequency limit are shown by the dashed red line 

and black dash-dotted lines, correspondingly.

The increase in the diffusion weighting would further bias the result for rapp. Matching of 

the 〈x4〉 terms,

where we neglected the ~ A2 term as a small correction, yields a different expression for 

rapp(t). Using Eq. (E.4), we find

(E.9)

where a4 → 〈r6〉/〈r2〉 after averaging over the distribution of internal axonal radii. Eq. (E.9) 

is incompatible with Eq. (34) and requires rapp(t) to increase even faster with t, as (tlnt)1/4 

instead of (lnt)1/2 as t → ∞. Hence, practically, increasing the sensitivity to the 4th-order 

cumulant with increasing diffusion weighting would bias the result (34) towards even 

greater values for rapp, leading to further overestimation of axonal radii.

Appendix F. Effects of finite exchange

In the main text, we considered a common assumption of negligible exchange in axonal 

tracts, τex >> tmax, on the time scale tmax of the measurement (for OG, , where 

ωmin is the minimal OG fre quency). In this case, the two separate contributions to D(ω), ~ 
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fext|ω| (from the extra-axonal space due to the p = 0 disorder) and ~ fint ω2 (from the 

confined water) add up, and the extra-axonal one dominates, cf. Eq. (31).

One may argue, however, that as fibers in the hippocampus are not highly myelinated, 

exchange may be notable, τex ≤ tmax. We consider two limits: fast, τex << tc and slow, τex > 

> tc.

If exchange is fast, τex << tc < tmax, then by the time t ~ ω−1 ~ tc our coarse-graining picture 

(Appendix A) becomes valid, the distinction between intra- and extra-axonal water already 

disappears. Namely, molecules travel both in and out of fibers many times, and collectively 

experience restrictions of the p = 0 universality class in d = 2. After ho mogenization over 

the diffusion length L|t ~ 1/ω >> lc, the coarse-grained D(r) will have short range correlations 

with the same lc ~ 1μ m, but now for all molecules, causing the ~ |ω| behavior. Certainly, the 

faster the exchange, the weaker the disorder and the smaller the amplitude A, Eq. (A.4), of 

the effect will be. In the limit of infinite permeability and equal diffusivities inside and 

outside fibers, the overall t and ω depen dence will disappear.

If exchange is slow, tc << τex < tmax, the picture (Eq. (31)) of two unmixed compartments is 

only valid for . We will now argue that the overall D(ω) will still be dominated by the 

ω| contribution for even smaller , when the compartments become mixed. For these 

long times, we apply the coarse-grained Kärger description (Fieremans et al., 2010). In the t 

→ ∞, i.e. ω → 0 limit, it says that the overall diffusivity  does not depend on 

the exchange rate, and is given in terms of the extra-axonal tortuosity asymptote 

calculated by setting exchange rate . In our case, Dext ω is not stationary; its 

residual dispersion originates as a result o coarse-graining (Appendix A) over the large 

diffusion length . We can now apply the argument (Fieremans et al., 

2010) locally, within the domains of size L|t ~ 1/ω >> lc; each such domain's tortuosity limit 

D(r) = fext(r)Dext(r) is independent both of axonal diameters and of the exchange rate. Here, 

the local fraction fext(r) and the extra-axonal diffusivity Dext(r) are the coarse-grained 

quantities for a given domain of size L|t ~ 1/ω around the point r, and Dext(r) is calculated in 

the  limit in accord with (Fieremans et al., 2010).

Assuming that spatial fluctuations of the local fraction fext(r) are either short range or 

weaker, the correlation function ΓD(r) of the resulting D(r) will have a k → 0 plateau similar 

to that in the  case, hence Eq. (A.1) yields similar ~ |ω| correction to D∞ 

independent of the axonal diameters. In other words, when exchange is slow, τex >> tc, the 

overall diffusivity D(ω) should qualitatively behave as that in the no-exchange limit 

considered above, in agreement with Fig. 10.

As a result, the homogenization picture (Novikov et al., 2014) applies irrespective of the 

exchange, such that the overall behavior (Eq. (2)) remains valid, and the overall D(ω) is 

determined by the short range disordered packing, making the internal axonal diameters 

unobservable in the long time limit.
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Fig. 1. 
Parameter space of diffusion MRI is two-dimensional: by increasing q one accesses the 

progressively higher-order diffusion cumulants 〈(δx)2〉, 〈(δx)4〉 − 3〈(δx)2〉2, ... (Kiselev, 

2010), whereas the dependence along the t-axis reflects their evolution over an increasing 

diffusion length scale . Our focus is on D(t) = 〈(δx)2〉/2t for accessible (i.e. long) 

diffusion time t.
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Fig. 2. 
Apparent axonal radius rapp(t) for rhesus monkey corpus callosum sectors 2, 4, 6 (red, black 

and green), obtained from MC-simulated overall diffusion coefficient D(t) in the narrow-

pulse limit (dashed) and with pulse width δ = 10 ms (derived from MC data, with diffusion 

time t≡Δ ≥ δ), by attributing all time dependence to the intra-axonal water. [Results apply 

for regions I and II of the phase diagram, cf. Discussion, Fig. 12; see Eqs. (34) and (39), and 

Table 3.] Note that rapp(t) greatly exceeds the corresponding mean radius 〈r〉 (thin lines); for 

δ = 10 ms the extra-axonal contribution is completely dominant. Singularity ((1)) is reflected 

in , δ = 0; , δ > tc.
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Fig. 3. 
Examples of 2d packings, relevant for the extra-axonal diffusion transverse to fibers, with 

their correlation functions shown in Fig. 4. a, Order: a square lattice of disks. b, Random 

non-overlapping packing of disks with a volume fraction ϕ = 0.75. c, The same as for b, but 

with a volume fraction ϕ = 0.5. Note the disks have the same distribution of radii as in b, but 

we show a larger subset of the full packing. d, Random disk pack where disks are allowed to 

freely overlap (Poissonian disorder), ϕ = 0.55. e, Electron microscope image of the splenium 

of a 20 week old female C57BL16 mouse (Zurek et al., 2014). f, Axons from e, including 

myelin, outlined by hand, with calculated volume fraction ϕ = 0.7, exemplifying restrictions 

to diffusion in extra-axonal space.
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Fig. 4. 
Angular-averaged Fourier transform Γ(k) of the normalized density correlation function (B.

1) equivalently, power spectrum, Eq. (B.2) for the five structures shown in Fig. 3, as 

function of radial k, which is made dimensionless by multiplying by the average object 

radius 〈rext〉 for each packing (cf. Appendix B). Square lattice of disks (dashed red line), 

Fig. 3a, exhibits Bragg peaks, such that Γ(k) ≡ 0 for k below the first peak, corresponding to 

exponent p = ∞. Randomly placed disks without overlap with a volume fraction ϕ = 0.75 

(blue), Fig. 3b; ϕ = 0.5 (magenta), Fig. 3c; and with overlap (black), Fig. 3d, exhibit short-

range correlations, with the finite plateau Γ(k)|k → +0 = const > 0, corresponding to exponent 

p = 0. As expected by how they are packed, these arrangements are progressively more 

disordered, consistent with an increase in the plateau value Γ(k)|k → +0. The density 

correlator for axons, Fig. 3f, with ϕ = 0.7, seems to approach a finite plateau Γ(k)|k → +0, 

corresponding to the exponent (Eq. (10)). The plateau value is roughly that of the randomly 

packed disks with ϕ = 0.5, indicating a fairly disordered arrangement. For all packings, the 

disorder correlation length lc ~ 1/kc ~ 〈rext〉. The overall 1/k3 decrease at large k for all 

curves is due to the 2d curved boundaries (see Appendix B), a short-scale signature of the 

individual objects that is not relevant for the long-time behavior of diffusion.
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Fig. 5. 
a, The real (solid blue line) and imaginary (dashed red line) parts of D(ω). Note that ReD(ω) 

is an even function, which requires even powers of ω in its Taylor expansion, in case it is 

analytic around ω = 0. By this token, an OG-measured linear-in-frequency behavior of 

ReD(ω) signifies the non-analytic behavior (Eq. (19)) for the full D(ω), involving the 

modulus |ω| rather than ω for ReD(ω)to remain even. b, A graphical representation of Eq. 

(31). At low ω, the singular (non-analytic) |ω| term, which is a signature of short-range 

disorder, will dominate the regular (analytic) ω2 contribution to D(ω).
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Fig. 6. 
a, Diffusion tensor eigenvalues λ1 > λ2 > λ3 as measured in the phantom, as a function of 

diffusion time, t. MC data is shown by the solid black line. b, The difference D⊥(t) − D∞, 

where D⊥(t) is given by Eq. (30). Two fits are shown: ln(t/tc)/t (black dashed line) and c/t 

(red solid line). The MC data is also plotted (dotted blue line) for comparison. The mismatch 

from experiment, amplified by the log scale, is likely due to both imperfect subtraction of 

D∞ and unknown details of packing geometry in the fiber phantom. The slope of the curves 

slowly increases with t, approaching the value −1 of the red line, indicative of the behavior 

(Eq. (1)). As axons are ~10 times thinner than the Dyneema fibers, our range of t 

corresponds to ~100 times shorter time scale for the brain, t ≤ 10 ms, cf. Fig. 11 below.
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Fig. 7. 
Identifying the logarithmic singularity Eq. (1) in the cumulative diffusion coefficient D(t), 

cf. Eq. (3), for the randomly packed fibers. a, MC-simulated D(t) plotted as function of 1/t 

for diffusion in the exterior of a random disk packing (fragment shown in Fig. 3b). The 

logarithmic singularity is manifest in the “bend”. b, This “bend” straightens up when D(t) is 

replotted with respect to ln(t/tc)/t. c, d: The same as for a and b, but with experimental D⊥(t), 

Eq. (30) and Fig. 6, transverse to the fiber phantom.
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Fig. 8. 
Effects of the periodic geometry. a, D(t) for MC simulated diffusion in the exterior of 

periodically ordered disks. Note the absence of the “bend” (cf. Fig. 7), illustrating that the 

logarithmic singularity is absent in an ordered medium. b, Dinst(t) derived from the same 

simulated data, and plotted on a semilog plot, indicating an exponentially fast approach of 

D∞. A fit to const e−t/t0 is shown by the black line. c, The qualitatively different approach to 

D∞ of MC-derived Dinst(t) for the periodic (green) and randomly packed disks (blue). While 

Dinst(t) for the regular lattice of disks reaches its D∞ very rapidly (within about 10 ms), the 

blue curve (mimicking a randomly packed fiber phantom) slowly straightens out, as t−1 → 0, 

cf. Fig. 9b for the magnified time domain 100 ms < ~ t ≤ 1000 ms.
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Fig. 9. 
Identifying the dynamical exponent ϑ in the instantaneous diffusion coefficient Dinst(t), Eq. 

(5): a, in experiment on a fiber phantom; b, in MC simulated diffusion in a random disk 

packing. For a, different symbols correspond to Savitzky–Golay smoothing windows of 

width indicated in the legend. For b, the window is up to 2001 MC time points. a, The solid 

black line indicates the linear dependence on 1/t at long times, indicative of the exponents ϑ 

= 1 and p = 0. b, The long time limit of the simulated random pack shows a linear 

dependence on 1/t (dashed line) similar to that of our experimental data in a. Both curves 

display asymptotic 1/t dependence when Dinst(t) is within about 10% of D∞ (the 

extrapolated intercept at t−1 →0), for the times t ≥ 100 ms. This would correspond to t ≥ 1 

ms for the axons, cf. Fig. 11.
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Fig. 10. 
OG data from Fig. 6a of Portnoy et al. (2013). The dashed black line is the guide to the eye 

indicating the linear frequency dependence at small ω, corresponding to the long diffusion 

times. No trace of the “parabolic” ~ ω2 dependence from water confined within fibers is 

seen, in agreement with our argument in Eq. (31) and Fig. 5b, suggesting that the dispersion 

of D(ω) is dominated by the extra-axonal water with the dynamical exponent ϑ = 1, Eq. 

(11). This yields the structural exponent p = 0, Eq. (10), confirming the short-range disorder 

in packing seen in histology, cf. Figs. 3f and 4.
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Fig. 11. 
Simulated data for sectors 2, 4 and 6 (rows a, b and c) of the rhesus monkey corpus callosum 

based on data from Lamantia and Rakic (1990). Left column: Sample sections of the disk 

packs used in the MC simulation. For full packs, see Supplementary figs. S1–S3. Intra-

axonal areas are indicated by the red pixels, with myelin and extra-axonal areas shown in 

green and blue, respectively. Center column: histograms of the internal radii used in each 

packing. Right column: the intra- and extra-axonal components of the long time diffusion 

coefficient. The total D(t) − D∞, Eq. (33), is given by the magenta solid line, the weighted 

intra-axonal component of the simulation, fintDint(t), is given by the red dashed line, the 

weighted intraaxonal component calculated from Eq. (28) is given by the black dotted line, 

and the weighted extra-axonal component, fextDext(t), from the Monte Carlo simulation (see 

Methods) is given by the blue dot dashed line.
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Fig. 12. 
Phase diagram for dMRI transverse to axonal tract in the narrow-pulse and wide-pulse 

limits. In each panel, area above green line is where extra-axonal contribution is small, Sext 

<< 1, while area above red line is where intra-axonal contribution is small, Sint << 1. Green-

shaded areas indicate applicability of ADM, i.e. sensitivity mostly to the intra-axonal 

contribution. Our results apply in the regime of weak gradients (  ~ 10−3 for clinical 

scanners), in which case both intra- and extra-axonal contributions are important, and ADM-

measured axonal radii become strongly biased: regime I corresponds to Eq. (34) and regime 

II to Eq. (39).
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Table 1

A summary of the long-time dependencies of the instantaneous diffusion coefficient, Dinst(t), Eq. (4), PG-

measured cumulative diffusion coefficient, D(t), Eq. (3), and the OG-measured frequency-dependent diffusion 

coefficient, D(ω), Eq. (15), in 2d. Here  is defined in Eq. (1).

Structure Dinst(t) PG: D(t) OG: ReD(ω)

Ordered (p = ∞), or confining e – t/t 0 1
t

ω 2

Short range disordered (p = 0) 1
t ln(t ∕ t

~
c)

t

|ω|
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Table 2

Results from experiment, and from MC simulations in random disk packings for the geometries of the 

Dyneema phantom (Fig. 6b) and of sectors 2, 4, 6 of monkey CC (Fig. 11). The correlation length estimated as 

 closely follows the mean external radius <rext> of the packings, while the amplitude A scales 

roughly with , as , cf. Supplementary fig. S4.

Parameter Experiment MC: phantom Sector 2 Sector 4 Sector 6

D0, μm2/ms 1.8 1.8 2.0 2.0 2.0

D∞ μm2/ms 0.65 0.66 0.81 0.80 0.80

A, μm2 7.41 5.56 0.046 0.117 0.126

t̃c or tc, ms 13.90 13.76 0.132 0.319 0.276

tc , μm 6.0 6.0 0.65 1.01 0.94

<rext>, μm 8.5 8.5 0.53 0.73 0.88
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Table 3

The relative contribution of the time-dependent part of Dext(t) in the time dependence of the total D(t), and the 

corresponding overestimation of rapp compared to mean axon radius <r>,for t = Δ = 10 ms and 100 ms, cf. 

Fig. 2.

Ratio Sector 2 Sector 4 Sector 6

10 ms 100 ms 10 ms 100 ms 10 ms 100 ms

f ext(Dext
(t) − D∞

ext) : D(t) − D∞
0.84 0.85 0.82 0.89 0.79 0.88

rapp :<r>, δ = 0 3.33 3.99 3.47 4.32 3.13 3.85

rapp : <r>, δ = 10 ms 5.92 7.54 5.46 6.94 4.66 5.82
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