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Mini-review: Does Notch promote or suppress cancer? 
New findings and old controversies
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Abstract: Notch signaling in tumorigenesis and cancer progression presents a certain enigma. Numerous experi-
mental studies reported significant effects in cancer, yet of varying magnitude and opposite sign. This mini review 
is aimed to streamline our understanding of the Notch role in tumor progression, and outline future experiments to 
clarify the modality of Notch function and perspectives of the Notch-based anticancer treatments.
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Notch cell fate choice mechanism is the key 
factor in regulating the balance between the 
pool of stem and progenitor cells, and differen-
tiating cell lineages in organ development [1]. In 
vertebrates, Notch signaling is activated by 
binding of the Notch receptor (Notch1-4) to the 
extracellular domain of the Notch ligand, repre-
sented by Delta-like 1-4 and Jagged 1-2 [2]. 
Ligand binding initiates the three-step cleavage 
of the Notch receptor, thereby releasing the 
Notch Intracellular Domain (NIC) that translo-
cates to the nucleus by a yet unknown trans-
port mechanism, where it interacts with its 
DNA-binding cofactor RBP-J/CBF1/CSL. In the 
absence of Notch signaling, RBP-J can still bind 
to its DNA consensus sequence C/TGTGGGAA, 
and function as a transcriptional repressor, pre-
venting opportunistic expression of Notch tar-
gets [3, 4]. RBP-J/N1IC transcriptional complex 
activates a set of basic helix-loop-helix tran-
scriptional repressors in a tissue-specific man-
ner: Mash1, Math1, Neurogenin, and other tis-
sue-specific targets. At the early stages of tis-
sue development, these helix-loop-helix factors 
repress differentiation in cells, positive for 
Notch signaling (NIC+) [5, 6]. In contrast, neigh-
boring cells, often express high levels of Delta-
like 1 (Dll1) or Jagged (Jag) ligands, and are 
negative for Notch signaling. These cells have 
de facto escaped maintenance as Notch-

dependent progenitors and can choose a differ-
entiation path. At the later stages of tissue 
maturity, levels and timing of Notch signaling 
can also regulate selection between terminally 
differentiated lineages [7-9].

Considering the universality of the Notch mech-
anism in the maintenance of tissue-specific 
progenitor cells, investigations of the Notch 
rolein the incidence and progression of various 
tumors were pursued from the start of Notch 
studies. These investigations uncovered many 
exciting findings. In particular, experiments, 
using mouse models of human disease, showed 
that inhibition of Notch receptor can not only 
slow, but completely reverseprogression of vari-
ous tumors.For example, pharmacological inhi-
bition of Notch pathway inintestinal adenocarci-
nomas lead to normal differentiation of goblet 
cells [10]. This finding was recently extended to 
include a clinical application for treatment of 
Barrett’s esophagus, a potential predecessor 
to carcinoma, by inducingnormal intestinal cell 
differentiation with a site-specificpharmacolog-
ical inhibition of Notch signaling [11]. 

On the other hand, multiple studies have con-
sistently showed that cooperative interaction 
between Notch and Wnt pathways increases 
the likelihood of cancerous transformation [12, 
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13]. This effect has been well described for 
solid tumors [12] as well for cancerous trans-
formation of lymphocytes leading to acute 
myeloid leukemia [13]. 

Interestingly, a number of studies reported that 
at the onset of tumorigenesis, Notch signaling 
can be adverse to cancer progression. For 
instance, in adult prostate, Notch signaling 
activates the helix-loop-helix repressor, Hey1, a 
co-factor of androgen receptor (AR), which can 
inhibit AR-dependent targets, including those 
involved in prostate cancer [14]. In addition, in 
various organs, including prostate [6, 15] and 
lymph [16], Notch signaling can play a role of a 
tumor suppressor by directly regulating tran-
scription of PTEN protein phosphatase, a clas-
sic negative regulator of the PI3K/PTEN/AKT 
cell survival and proliferation pathway. Another 
aspect of Notch/PTEN regulation of tumor 
microenvironment may be associated with 
PTEN function in preventing senescence of 
tumor cells, which can escape immune surveil-
lance and resist hemotherapies [31].

The apparent contradiction in the signof Notch 
effects in cancer progression may be explained 
by the importantcaveat thatimpacts of Notch 
signals are intrinsically linked to the internal 
clock of tissue differentiation, whether during 
normal development or in cancer. For instance, 
we [5, 6] and Wang et al. [17, 18] reported that 
Notch/RBP-J activity is essential for cell fate 
specification in the prostate epithelium as well 
as inthe stromal compartment. Inactivation of 
Notch1 or RBP-J genes during prostate devel-
opment results in a confusion in cell fate speci-
fication in between basal and luminal epitheli-
um [6, 18], and in degeneration of smooth 
muscle [6]. In turn, Notch hyperactivation 
causes overproliferation of prostate epithelium 
and muscle [6]. 

In relation to prostate cancer (PCa), interac-
tions between Notch and Wnt pathways is likely 
to play a pivotal rolein disease progression. 
Wnt/beta-catenin signaling is a notorious pro-
cancer agent in PCa [19, 20], where it leads 
tooverexpression of genes with proliferative 
and cell transforming properties, such as 
cyclins D1/3 and c-myc. Mounting evidence 
points that Notch signaling is also hyper-acti-
vated in advanced and metastatic PCa, where 
it cooperates with Wnt [21-23]. Few studies to 
date systematically examined Notch effects at 

key disease progression steps such as microin-
vasion of stroma by epithelial cancers, popula-
tion of blood stream and lymph, and formation 
of secondary tumors. These reports indicate 
that in the context of metastatic processes, 
Notch signals promote disease progression by 
collaborating with ERK kinases [23] and by 
inhibiting expression of the tumor suppressor, 
PTEN [16].

Various facets of interaction between Notch 
and Wnt pathways point to mutual regulation, 
and reveal organ and cancer-specific features. 
Intestinal adenomas clearly show simultane-
ous activation of both pathways [10]. In endo-
thelium, Notch4 activates a negative feedback 
target, Nrarp, which limits forward Notch signal-
ing, but promotes Wnt/beta-catenin action by 
stabilizing Lef1 protein [24, 25]. During retinal 
development, Notch and Wnt cooperate in 
modulating cell fate of retinal stem cells, and 
this interaction is also exercised through Notch 
regulation of Lef1, and a Frizzled antagonist, 
sFRP2 [26]. Wnt regulation of Notch has also 
been reportedin mouse and human cell line 
models [27]. In particular, Lef1 can modulate 
Notch signaling by inducing expression of Dll1 
[28]. 

Given the individual significance of Notch and 
Wnt pathways in PCa progression, and mount-
ing evidence of Notch/Wnt interactions [29, 
30], further studies should specifically address 
the effects of Notch/Wnt module in induction 
and maintenance of cancer cell fate at various 
stages of tissue, organism and cancer maturity, 
using genetic mouse model systems to condi-
tionally modulate Notch and Wnt pathways in 
specific organs in a background of increased 
cancer risk and progressive disease.
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