
Published online 24 February 2015 Nucleic Acids Research, 2015, Vol. 43, No. 10 e63
doi: 10.1093/nar/gkv141

3dRNAscore: a distance and torsion angle dependent
evaluation function of 3D RNA structures
Jian Wang†, Yunjie Zhao†, Chunyan Zhu and Yi Xiao*

Biomolecular Physics and Modeling Group, Department of Physics and Key Laboratory of Molecular Biophysics of
the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

Received March 06, 2014; Revised February 04, 2015; Accepted February 06, 2015

ABSTRACT

Model evaluation is a necessary step for bet-
ter prediction and design of 3D RNA structures.
For proteins, this has been widely studied and
the knowledge-based statistical potential has been
proved to be one of effective ways to solve this
problem. Currently, a few knowledge-based statis-
tical potentials have also been proposed to eval-
uate predicted models of RNA tertiary structures.
The benchmark tests showed that they can iden-
tify the native structures effectively but further im-
provements are needed to identify near-native struc-
tures and those with non-canonical base pairs. Here,
we present a novel knowledge-based potential, 3dR-
NAscore, which combines distance-dependent and
dihedral-dependent energies. The benchmarks on
different testing datasets all show that 3dRNAscore
are more efficient than existing evaluation methods
in recognizing native state from a pool of near-native
states of RNAs as well as in ranking near-native
states of RNA models.

INTRODUCTION

RNA molecules play different biological roles besides mes-
sengers between DNA and protein (1,2), e.g. regulatory
functions (3). Like proteins, the 3D structural information is
needed for better understanding of the functions of RNAs.
Since the number of available RNA experimental structures
is very limited at present, several computational methods
have been proposed for structural modeling or RNA ter-
tiary structures prediction (4–13). These methods usually
generate a large set of candidates that need to be evaluated.

Knowledge-based statistical potential has been proved to
be a powerful approach for evaluating models of protein ter-
tiary structures (14–16). Currently, some knowledge-based
potentials have also been proposed to evaluate models of
RNA tertiary structures (17–21). For examples, the Ri-
bonucleic Acids Statistical Potential (RASP) developed by

Capriotti et al. (17,19) and the coarse-grained and all-atom
RNA KB potentials by Bernauer et al. (18). The all-atom
version of RASP, RASP-ALL, is a distance-dependent
statistical potential with 23 clustered atom types and is
trained on a non-redundant training set (randstr) gener-
ated by MODELLER (22). The RNA KB potentials are
also distance-dependent statistical potentials. In the coarse-
grained version of RNA KB potential, five atoms (P, C4′ in
backbone, and C2, C4, C6 in base) are selected to represent
the nucleotide. In the all-atom version of RNA KB poten-
tial, unlike RASP in which the atom types are clustered,
the atom types in different nucleotides are considered to
be different, so totally 85 atom types are considered rather
than 23 atom types used in RASP-ALL. Furthermore, The
RNA KB potentials used a Dirichlet process mixture model
to obtain the distance distributions instead of bin counting
(23). The fully differentiable feature also makes it possible
for molecular dynamics simulations. The benchmark tests
showed that the RASP and KB potentials could identify the
native state structures effectively (17,18). However, further
improvements are needed to rank near-native structures and
pick out the structure closest to the native state from near-
native structures including those with non-canonical base
pairs, which is important in the prediction of RNA tertiary
structures. Besides, there are other statistical potentials for
evaluating RNA tertiary structures embedded in the RNA
tertiary structure prediction programs and they have been
compared in (17). For example, a full atom RNA poten-
tial (FARFAR, fragment assembly of RNA with full-atom
refinement) available within the ROSETTA suite was suc-
cessfully used for the de novo prediction and design of non-
canonical RNA 3D structures (6,11). This full-atom poten-
tial contains weak carbon hydrogen bonding and solvation
terms, as well as a complete description for potential hydro-
gen bonds between bases and backbone oxygen atoms.

In this work, we introduce a novel all-heavy-atom
knowledge-based statistical potential, 3dRNAscore, to
evaluate the 3D structure of RNA. Unlike the aforemen-
tioned two knowledge-based potentials that utilize the dis-
tances between atoms, a new energy contribution based
on backbone torsion angle (dihedral) is involved in 3dR-
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Figure 1. Flow charts of the building steps of 3dRNAscore.

NAscore. The dihedral-based energy can describe the flex-
ibility of RNA molecules more efficiently (24,25). Further-
more, we also consider the RNA stacking interactions in
adjacent bases in the calculation of the distance-based en-
ergy of 3dRNAscore. It turns out that 3dRNAscore per-
forms better than RASP and KB potentials in identifying
RNA native structures from a pool of structural decoys as
well as ranking a tremendous amount of near-native RNA
tertiary structures.

MATERIALS AND METHODS

The steps for building 3dRNAscore (Figure 1) are as fol-
lows. First, we design the functional form of 3dRNAscore
from Boltzmann distribution, which contains two energy
terms: the distance-dependent energy and the backbone
dihedral-dependent energy. Second, in order to train the pa-
rameters in the scoring function, we select a training set of
non-redundant RNA tertiary structures in which the struc-
tures having high similarity and those having similar sub-
motifs with the structures in the test sets are removed. Using
the training set, we determine the parameters in the scor-
ing function. Third, we use the test sets to test the perfor-
mance of 3dRNAscore. Here, we select three existing test
sets. We use different metrics to compare the performance
of 3dRNAscore with other scoring methods. The detail of
each building step of 3dRNAscore is described in the fol-
lowing figure.

Distance-dependent energy

Our knowledge-based potential 3dRNAscore is composed
of two parts: the first part is based on distance between any
two non-bonded heavy atoms located at different residues in
the molecule, and the second part is based on the backbone
torsion angles. Among them, the distance-dependent part
is constructed as a mean force potential (26) derived from
Boltzmann distribution.

Samudrala (27) pointed out that three assumptions un-
derlie the mean force potential scoring method. The first

assumption is that the total free energy of a molecule rela-
tive to some reference state, �G, can be expressed as a sum
of the relative free energy �G(R) of a number of individual
contributions, where R represents the value of a ‘reaction
coordinate’. The reaction coordinate may be any convenient
measure of properties of the molecule. When using the dis-
tance d between atoms i and j of types a and b as the reaction
coordinate, the assumption can be expressed as:

�G = �G({di j
ab}) =

∑
i j

�Gi j (d
i j
ab) (1)

The second assumption is that the relative free energy can
be deduced from the inverse of Boltzmann’s law:

�G(d) = −kBTln
f OBS(d)
f REF(d)

(2)

Substituting Equation (2) into Equation (1), we have:

�G = −kBT
∑

i j

ln
f OBS
ab (di j

ab)

f REF
ab (di j

ab)
(3)

where T is the absolute temperature and is set to 298 K, kB is
the Boltzmann’s constant, f OBS

ab (di j
ab) is the observed prob-

ability of the distance of di j
ab between two atoms of types a

and b in native RNA structures and f REF
ab (di j

ab) is the prob-
ability of the distance between two atoms of a and b in ref-
erence state structures.

The third assumption is the thermodynamic hypothesis
(28): the lowest free energy conformation represents the na-
tive state. The Equation (3) thus is useful for addressing the
issue of ranking near-native structures.

The probability f OBS
ab (di j

ab) could be evaluated with the
number of occurrence observed in experimental structures:

f OBS
ab (di j

ab) = Nab(di j
ab)∑

d
Nab(di j

ab)
= Nab(di j

ab)
Nab

(4)

The probability f REF
ab (di j

ab) could not be compiled from
experimental structures directly. It relies on which reference
state we choose. The RASP (17) and KB (18) potentials used
averaged (RAPDF) (27) and quasi-chemical (KBP) (29) ap-
proximation reference states, respectively (30). These ref-
erence states consider covalent-bond constraints between
atoms when counting the number of atom pair distances
and usually need larger datasets of experimental RNA
structures to obtain accurate potentials. In the average ref-
erence state, f REF

ab (di j
ab) is evaluated by ignoring the type of

atoms:

f REF
ab (di j

ab) =
∑
ab

Nab(di j
ab)

∑
ab

∑
d

Nab(di j
ab)

= N(di j
ab)

N
(5)
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Table 1. Atom types in 3dRNAscore potential

A P OP1 OP2 O5′ C5′ C4′ O4′ C3′ O3′ C2′ O2′ C1′
N9 C8 N7 C5 C6 N6 N1 C2 N3 C4

U P OP1 OP2 O5′ C5′ C4′ O4′ C3′ O3′ C2′ O2′ C1′
N1 C2 O2 N3 C4 O4 C5 C6

C P OP1 OP2 O5′ C5′ C4′ O4′ C3′ O3′ C2′ O2′ C1′
N1 C2 O2 N3 C4 N4 C5 C6

G P OP1 OP2 O5′ C5′ C4′ O4′ C3′ O3′ C2′ O2′ C1′
N9 C8 N7 C5 C6 O6 N1 C2 N2 N3 C4

Equation (3) could then be expanded by substituting
Equations (4) and (5) to it:

�Gi j (d
i j
ab) =

−kBT ln
f OBS
ab (di j

ab)

f REF
ab (di j

ab)
= −kBT ln

Nab(di j
ab)N

N(di j
ab)Nab

(6)

where Nab(di j
ab) is the counts of the occurrence of the dis-

tance of d between two atoms of types a and b. N is the
total counts. N(di j

ab) is the counts of the occurrence of the
distance d regardless of atom types. Nab is the counts of the
occurrence of atom pairs of types a and b in whole distance
region.

In general, the atom pair in which the two atoms belong
to two adjacent nucleotides along the sequence would not
be considered. This is because that there may be bonding in-
teractions between two atoms in adjacent nucleotides. The
distance-dependent statistical potential just considers non-
bonding interactions. However, atoms in adjacent bases do
not have bonding interactions, and there exist base stacking
interactions between them. Therefore, unlike other statisti-
cal potentials, the atom pair in two adjacent bases are con-
sidered in 3dRNAscore. Furthermore, the maximum value
of the distance d in the process of statistics, namely the cut-
off, is taken as 20 Å in 3dRNAsocre like other scoring meth-
ods.

Our all-heavy-atom distance-dependent potential utilizes
all the 85 atom types (Table 1) in the four nucleotides: ade-
nine (A), cytosine (C), guanine (G) and uracil (U). We num-
ber these 85 atom types from 1 to 85. For each atom-pair
from 1–1 to 85–85, we count the distance distribution in a
discrete space with a bin width of 0.15 Å. We use a matrix
to represent the distance distribution information that each
row denotes an atom-pair type and each column the counts
of occurrences of the distance in the corresponding bin. So
the data in the ith row and jth column of the matrix repre-
sents the counts of occurrences that the ith atom-pair has
appeared at a distance of j in native RNA structure. Finally,
we deposit the matrix into a parameter file that will be used
in the scoring process.

Selection of the bin width

The probability f OBS
i j (d) and f REF

i j (d) are stored as his-
tograms with bin width of �d. The size of the bin has a
great influence on the probability distribution. Once the
bin width is oversized, the probability f OBS

i j (d) and f REF
i j (d)

stored would be truly rough. When the bin width is under-
sized, there may be none or little samples located in certain

bins, leading to an inappropriate and artificial discontinu-
ity of the probability distribution. The size of the bin width
should be compatible with the total counts of the samples
N. With the increasement of the number of the samples, the
size of the bin should be as small as possible, the samples lo-
cated in the bins should be sufficient, and the samples of the
bins should be quite a very small part of the total samples.

Sippl (26) used a bin width of 1 Å, Samudrala (27) used a
bin width of 1 Å and then carried out spline fitting, Capri-
otti (RASP) also used a bin width of 1 Å, Bernauer (KB)
used a Dirichlet process mixture model, which leads to ana-
lytically differentiable potential functions, rather than fixed
binning and spline fitting.

According to Scott’s work (31) in 1979, the most appro-
priate bin width, which provides the most efficient and unbi-
ased estimation of the population distribution, is achieved
when:

W = 3.49σ N− 1
3 (7)

Here, W means the bin width, σ means the standard de-
viation, and N means the number of samples.

We then extracted information from experimental struc-
ture, and then got the total samples N and calculated the
standard deviation σ . Thus, we found that the most appro-
priate value of the bin width for 3dRNAscore is 0.3 Å. Bin
width of 0.3 Å is small relative to those aforementioned,
which is due to the large amount of samples in training set.

The problem of sparse data

In mathematical statistics, a larger size of samples yields a
more accurate population distribution. A too small size of
samples is likely to result in severe uncertainty for popula-
tion distribution. The accuracy of the distance distribution
of a specific pair of atom types thus heavily depends on the
size of the total observations on this pair of atom types. That
is to say, the Ni j in Equation (4) should not be far too small.

In 1990, Sippl developed a method to address the prob-
lem of small data sets (26). He approximated the genuine
frequency gij(r) by the sum of the total densities f (r ) and
the statistical frequencies fi j (r ):

gi j (d) ≈ 1
1 + mσ

f (d) + mσ

1 + mσ
fi j (d) (8)

where m is actually Ni j , σ represents a custom constant.
In the limit m → ∞, gi j (r ) converges to fi j (r ). In the limit
m → 0, gi j (r ) converges to f (r ). Equation (8) ensures that
the genuine frequency distribution gi j (r ) resembles the total
distribution f (r ) when encountering the situation of sparse
data.

In order to avoid sparse data, we checked all the train-
ing parameters. There are totally about 5.25 × 108 atom
pairs in the dataset of 317 structures. Hence, there are av-
eragely ∼1090 samples (5.25 × 108/(85 × 85 × 20/0.3)) lo-
cated in each distance bin. The atom distances are ignored
when we are counting the total samples for each nucleotide
pair type (one of 85×85 types). There are averagely 39 030
samples for each nucleotide pair type. Thus, both the aver-
age number of samples in each bin (∼1090) and the average
number of samples in each nucleotide pair type (∼39 030)
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Figure 2. The frequency distributions of seven RNA torsion angles (�, �,
� , �, �, � for the nucleotide backbone, and � for the base).

are large enough to avoid the sparse data problem. Further-
more, we do not use the statistics in the 0–3 Å regions where
sparse data most likely appear. Instead, we utilize a penalty
to substitute it. That is to say, once the distance between
two atoms is <3 Å, it will give a penalty to the total energy
score. In physical sense, the penalty corresponds to the Van
der Waals exclusive force between two atoms. These analy-
ses show that 3dRNAscore has no need of using the method
proposed by Sippl to address the issue of sparse data.

Dihedral-dependent energy

We used not only distance-dependent potential, but also a
dihedral-dependent potential, involving seven RNA dihe-
dral angles (�, �, � , �, �, � for the nucleotide backbone,
and � for the base). First, we calculated their statistical dis-
tribution over the training set (Figure 2).

Once we get their statistical distributions, just like the
distance-dependent potential, it can be assumed that all of
these angles obey Boltzmann statistical distribution, and
once again the mean force potential (26) is used:

�Gi (θ i
a) = −kBT ln

f OBS
a (θ i

a)
f REF
a (θ i

a)
(9)

where T is the absolute temperature that is set to 298 K, kB
is the Boltzmann’s constant, f OBS

a (θ i
a) is the observed prob-

ability of angle i (one of �, �, � , �, �, � and � ) of θ degree
(0–360) and type a in the database of experimental RNA
structures and f REF

a (θ i
a) is the expected probability of arbi-

trary angle i of θ degree and type a in reference state.
Then, we could also get a total score �Gtorsion in the same

way as the distance-dependent potential energy:

f OBS
i (θ ) = Ni (θ )∑

θ

Ni (θ )
= Ni (θ )

Ni
(10)

f REF
i (θ ) =

∑
i

Ni (θ )∑
i

∑
θ

Ni (θ )
= N(θ )

N
(11)

Just like the distance-dependent energy, we also use a
matrix to store all the dihedral distribution information.
Each row denotes a dihedral-pair type and each column
the counts of occurrences of the dihedral value in the cor-
responding bin with a bin width of 4.5◦ according to eq.(7).
So the matrix has 7 × 7 rows and 80 columns.

Combination of the two energy terms

In 3dRNAscore the two energy terms are combined to-
gether to get the final total energy:

�Gtotal = �Gdistance + ω�Gdihedral (12)

where �Gtotal is the total energy, �Gdistance is the distance-
dependent energy, �Gdihedral is the dihedral-dependent en-
ergy, and ω is the weight.

To get an appropriate value for 	, we adopt a statis-
tical optimization method, which is based on the coarse-
grained force filed parameterization protocol in recent work
by Leonarski et al. (32). First, we picked out four RNAs
of different types from the training set. These four RNAs
(PDB ID: 28SP, 1I9X, 1KPZ, 1J1U) are representative.
28SP is the structure of the most conserved internal loop
in SRP RNA. It includes a hairpin loop and an internal
loop, and the length is 28nt. 1I9X is the structure of a model
branchpoint-U2 snRNA duplex. It is a duplex structure
containing two bulge. It consists of 26 nucleotides. 1KPZ
is the structure of a luteoviral P1–P2 frameshifting mRNA
pseudoknot with the length of 33nt. 1J1U is a tRNA con-
taining a multi-branch loop and it comprises 77 nucleotides.
We use 3dRNA (12) to predict 1000 models for each RNA.
We then calculated each model’s DI and the energy score.
After that, we use the gradient descent method to maximize
the ES. The final optimized ω is 3.68.

Training set

We have trained 3dRNAscore over the RNA 3D Hub non-
redundant RNA set. RNA 3D Hub hosts non-redundant
set of RNA-containing 3D structures extracted from ex-
perimental RNA structures according to the methodology
described in Chapter 13 in ref. (33). Leontis’ group sum-
marized two categories of structural redundancy existed in
PDB/NDB database (34,35), which are redundancy within
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a given PDB file and redundancy in PDB/NDB database.
They figured out ways to get rid of these redundancies,
and then clustered all structures into 749 classes (Release
1.32, 2013–10–12) based on redundancies between struc-
tures. About how they get rid of these redundancies, please
see Chapter 13 in (33). For each class, they chose a structure
to represent it and assigned a unique and stable id to it. The
dataset can be accessed at http://rna.bgsu.edu/nrlist/oldsite.
html.

To construct the training set, we first gathered all the rep-
resentative structures of 749 classes of RNA 3D Hub non-
redundant RNA set. RNA 3D Hub ensured that sequence
identity between any two sequences is <95%. By the way,
RASP also used a sequence identity of 95% and the cover-
age of 80% to reduce redundancy in training set. RNA KB
potential used a lower sequence identity of 80% to delete
homologies in training set. We then used the blastn (36)
program to discard all the RNAs with sequence identity
>80% and coverage greater than 80%. After that, we car-
ried out 3D structure alignment by the ARTS program (37)
to discard all the RNAs where the coverage of aligned part
was >80%. However, there exist recurrent motifs, e.g. the
sarcin motifs and the GNRA motifs, in RNA 3D struc-
tures, and they often have quite different sequences and are
hardly found by sequence alignment. These recurrent mo-
tifs may also affect the training of a scoring function and
should remove this kind of redundancy. Based on RNA 3D
Motif Atlas (38), which is a collection of RNA 3D motifs,
we can find out the motifs contained in each structure in the
training set. Then, RNAs having the motifs also contained
in other RNAs in training set or in test sets were removed
from the training set. These steps ensure that structures in
the training set and test sets have no sequence and structural
overlap. Finally, structures having low quality (resolution >
3.5 Å) are removed. Thus, there are 317 structures remained
in the training set, which do not share any structures or mo-
tifs that are homologous to those in the test sets and have
high structure quality (resolution < 3.5 Å).

Test sets

We tested our knowledge-based potential using three differ-
ent decoy sets available at present. Test set I is a randstr de-
coy set (17), which is generated by MODELLER (39) with
a set of Gaussian restraints for dihedral angles and atom
distances from 85 native structures. This is the largest de-
coy dataset in the benchmark. It can be downloaded from
http://melolab.org/supmat.html.

Test set II consists of the decoys built by Bernauer group
(18) and FARNA decoys (11). The former is generated
by position restrained dynamics, REMD simulation and
normal-mode perturbation method (40,41). In the REMD
simulation, 1ns REMD simulations are performed for each
RNA structures. The temperature is roughly distributed
from 285 to 592 K for 50 different temperatures. In the
normal-mode perturbation approach, the structures pos-
sess stereochemically correct bond lengths and angles but
without correct contacts (42). These methods can generate
decoy sets with RMSD ranging from 0 to 10 Å. It can be
downloaded from http://csb.stanford.edu/rna. The FARNA

decoys used in this study consist of lots of near-native ter-
tiary models (11).

Test set III is the FARFAR decoy set which was generated
by RNA modeling with ROSETTA-3.1 (11). The FARFAR
decoy dataset consists of five lowest energy clusters of ter-
tiary structures with non-canonical base pairs for each of
32 motifs. The FARNA and FARFAR decoys can be down-
loaded from http://www.stanford.edu/∼rhiju/data.html.

Metrics of measuring RNA structures

To compare any two RNA structures quantitatively, we
should make use of some metrics to assess their tertiary
structures. The most commonly used metric is RMSD (root
mean square deviation). RMSD depicts the global geom-
etry differences between two RNA 3D structures but it is
usually difficult to describe the hydrogen bond networks
of RNA molecules. Hence, some metrics accounting for
hydrogen-bonding networks intramolecular in RNA have
been proposed to assess RNA structures. One of the com-
monly used metrics specifically devised for RNA is DI (de-
formation index) proposed by Parisien (43). The DI is de-
fined as

DI(A, B) = RMSD(A, B)
INF(A, B)

(13)

where RMSD reflects the geometry discrepancy and INF
reflects the topology discrepancy. INF(A,B) is the interac-
tion network fidelity between two structures A and B. Base-
pairing and base-stacking are the two major interactions in
RNA. These two interactions constitute the interaction net-
work of RNA. Suppose Sr is the set of interactions in ref-
erence structure and Sm is the set of interactions in mod-
eled structure, then the true positives TP is defined as TP =
Sr ∩ Sm, the false positives FP is defined as FP = Sm − Sr,
and the false negatives FN is defined as FN = Sr − Sm. In
Parisien’s paper, INF is defined as MCC, that is to say

INF(A, B) = MCC(A, B) (14)

where MCC is the Matthews correlation coefficient. They
used the approximate definition of MCC (44,45):

MCC ≈ √
PPV × STY (15)

where PPV(precision) = TP
TP+FP and STY(sensitivity) =

TP
TP+FN . For comparison, here we also use this approxima-
tion.

In this work, we use both RMSD and DI to measure how
well a RNA model recapitulates the corresponding experi-
mental structure in the benchmark of the performance of
3dRNAscore and other scoring functions.

RESULTS

Identifying native RNA structures

An important function of scoring methods is to identify
the native-like tertiary structure of target RNA in a pool of
structural decoys correctly. To compare such ability of 3dR-
NAscore with three existing RNA knowledge-based poten-
tials: RASP (17), KB (18) and Rosetta (FARFAR) (6), for
the sake of fairness, we use all-heavy-atom representation

http://rna.bgsu.edu/nrlist/oldsite.html
http://melolab.org/supmat.html
http://csb.stanford.edu/rna
http://www.stanford.edu/~rhiju/data.html
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Figure 3. Counts of native states identified correctly from test set I and test
set II by 3dRNAscore, RASP, KB and Rosetta, respectively.

for all the potentials and evaluate them over the same de-
coy sets.

Two tests are done on test set I and test set II, respectively
(see Figure 3). When using 3dRNAscore, 84 out of 85 native
structures are identified in test set I, and 36 out of 39 in test
set II. For RASP, 79 out of 85 in test set I and 34 out of
39 in test set II. KB potentials could identify 80 out of 85
native structures in test set I, and 33 out of 39 in test set II.
For Rosetta, the former is 53 out of 85 and the latter is 26
out of 39. These results show that 3dRNAscore has a better
performance than other three methods on identifying native
RNA structures.

It is noted that Capriotti’s group has verified that RASP
has a better performance than NAST (46) and the molec-
ular force field energy function: AMBER pseudo-energies
(47).

Ranking near-native RNA structures

Another significant function of scoring function is to rank
near-native structures reasonably. In the RNA structure
prediction, a natural question is how to affirm that a pre-
dicted structure is closer than others to the native state.
For RNA, a structure could be geometrically and topolog-
ically close to another structure. Hence, both RMSD and
DI are used in this work to evaluate structure discrepancy.
Mentioned earlier, RMSD measures similarity of two RNA
structures from the aspect of geometry and DI is from both
geometry and topology.

To describe the performance of a scoring function, the ES
(enrichment score (18,48)) is employed here and it is defined
as

ES = |Etop10% ∩ Rtop10%|
0.1 × 0.1 × Ndecoys

(16)

where Etop10% is the number of structures with energies
(scores given by scoring function) in the lowest 10% of the
energy range. For RMSD-based ES, Rtop10% is the number
of structures with RMSD in the lowest 10%. For DI-based

ES, Rtop10% is the number of structures with DI in the lowest
10%. |Etop10% ∩ Rtop10%| is the intersection of Etop10% and
Rtop10%. If the relationship between the scores and RMSD
or DI is completely linear, then ES is equal to 10. If the re-
lationship is random, ES is equal to 1, so

ES =
{ 10, perfect scoring

1, perfectly random
< 1, bad scoring

(17)

We have benchmarked the performance of 3dRNAscore,
RASP, KB and Rosetta in ranking near-native structures on
test set II, using both RMSD and DI metrics. Table 2 shows
that when we are using ES of DI, 3dRNAscore (ES = 4.5)
outperforms other three scoring methods (RASP(ES = 3.8),
KB(ES = 3.7) and Rosetta(ES = 2.7)) on the overall aver-
age level. It also outperforms them on the REMD decoys,
normal mode decoys and FARNA decoys of test set II. The
result is the same when the test set II is divided into two
parts: NMR and X-ray. When we are using ES of RMSD,
the result is similar. These results suggest that 3dRNAscore
is better than other methods when it’s used to rank near-
native structures. A more detailed table than Table 2 and
energy-RMSD (DI, INF) plots are provided in the supple-
mentary data.

Selecting correct structure containing non-canonical base
pairs.

Non-canonical base pairs occur frequently in RNA tertiary
folds and functional motifs (49–51). The selection of near-
native conformations containing non-canonical base pairs
is an inevitable and intractable problem in current RNA 3D
structure prediction (6). Test set III is used to test the ability
of 3dRNAscore in selecting correct structures containing
non-canonical base pairs. Test set III (the FARFAR decoy
set) consists of five lowest energy clusters of tertiary struc-
tures with non-canonical base pairs for each of 32 motifs.
We calculated the energy score with RASP, KB, ROSET-
TAmin and 3dRNAscore, respectively. The lowest energy
models according to each potential are then selected and
compared with the lowest DI models. The results are pre-
sented in Table 4. 3dRNAscore, RASP, KB and Rosetta are
able to identify the lowest DI models of 10, 9, 8 and 2 out
of the 32 RNA motifs from the FARFAR decoy set, respec-
tively (see Figure 4 (A)). 3dRNAscore can pick out models
with lower DI than those by RASP, KB and Rosetta for 8,
12 and 21 out of 32 motifs and models with DI identical to
those by RASP, KB and Rosetta for 22, 16 and 1 out of 32
motifs, respectively (see Figure 4 (B)). Moreover, 3dRNA
can pick out models with DI greater than those by RASP,
KB and Rosetta for 2, 4 and 10 out of 32 motifs, respectively.

Contribution of the dihedral-dependent potential

Most statistical potentials for RNA structures are based
on distance distribution of intermolecular atom pairs or
residue pairs. 3dRNAscore incorporated an additional en-
ergy contribution based on the distribution of backbone di-
hedrals (torsion angles) in the light of molecular force field.
This will be discussed in the ‘Discussion’ section.
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Table 2. Comparison of the performance of 3dRNAscore, KB potential and Rosetta methods in test set II

Decoy RNA Length Method Enrichment score (RMSD) Enrichment score (DI)

3dRNAscore KB RASP Rosetta 3dRNAscore KB RASP Rosetta

Position
restrained
dynamics
and REMD
(A)

1duq 26 X-ray 8.5 7.6 7.6 7.1 8.3 7.5 7.6 7.0

1f27 30 X-ray 8.3 7.9 6.6 6.2 8.1 7.8 6.6 6.2
1msy 27 X-ray 7.5 5.7 5.7 3.6 7.6 6.0 5.6 3.5
1nuj 24 X-ray 7.7 7.3 5.2 6.9 7.4 7.2 5.2 6.7
434d 14 X-ray 8.0 7.7 7.0 6.8 7.6 7.7 6.9 6.8

Normal
modes (B)

1duq 26 X-ray 7.5 7.0 5.7 3.8 6.9 7.0 5.7 3.5

1esy 19 NMR 4.9 5.4 4.5 5.6 6.5 5.5 4.7 5.7
1f27 30 X-ray 5.9 5.8 3.7 2.6 6.7 5.8 3.7 2.5
1i9v 76 X-ray 6.1 2.6 5.3 3.0 5.5 2.7 5.1 3.0
1kka 17 NMR 5.7 4.6 4.1 4.6 6.9 4.3 4.1 4.8
1msy 27 X-ray 5.9 5.6 2.2 4.6 6.7 5.4 2.7 4.5
1nuj 24 X-ray 7.1 7.4 5.9 2.4 4.5 7.0 5.9 2.2
1qwa 21 NMR 3.5 3.2 2.0 3.8 3.7 3.3 2.2 3.9
1×9k 62 X-ray 6.7 1.6 5.2 3.0 3.1 1.9 5.2 2.8
1xjr 46 X-ray 7.7 5.4 7.9 2.2 6.2 5.0 7.9 2.5
1ykq 19 X-ray 4.6 3.4 3.5 2.8 5.0 3.3 3.8 2.5
1zih 12 NMR 7.7 5.4 5.7 6.6 6.9 5.3 5.7 6.5
28sp 28 NMR 5.7 4.0 6.5 1.8 5.7 4.5 6.7 2.9
2f88 34 NMR 6.8 5.4 4.9 4.4 4.1 5.4 4.7 4.2
434d 14 X-ray 7.7 7.4 7.4 5.2 6.9 7.4 7.6 5.2

FARNA
(C)

1a4d 41 NMR 2.4 3.8 2.0 0.8 2.1 4.0 2.0 0.7

1csl 28 X-ray 2.0 1.5 1.6 1.3 2.4 1.4 1.6 1.4
1dqf 19 X-ray 4.2 1.8 2.8 1.0 3.6 2.0 3.2 1.0
1esy 19 NMR 3.2 3.7 4.8 1.2 3.8 3.5 4.2 1.1
1i9x 26 X-ray 3.4 1.3 2.2 1.5 4.0 1.5 3.6 1.6
1j6s 24 X-ray 0.2 1.4 0.2 0.6 1.6 1.7 0.8 0.5
1kd5 22 X-ray 3.2 0.3 0.8 0.2 2.4 0.5 1.6 0.3
1kka 17 NMR 1.4 1.2 0.6 0.6 2.0 0.8 0.8 0.6
1l2x 27 X-ray 0.6 3.2 1.0 1.8 1.5 3.2 1.2 1.8
1mhk 32 X-ray 1.6 1.2 1.6 1.0 1.4 1.2 1.4 1.2
1q9a 27 X-ray 2.6 0.5 0.8 0.8 3.2 0.5 1.2 0.8
1qwa 21 NMR 2.2 1.2 0.4 1.0 1.4 1.3 0.6 1.0
1xjr 46 X-ray 2.4 2.0 2.4 1.2 3.2 1.9 3.4 1.0
1zih 12 NMR 4.8 5.0 4.8 2 6.8 5.5 7.2 1.9
255d 24 X-ray 2.4 0.7 0.6 1.3 2.0 0.7 0.6 1.1
283d 24 X-ray 1.4 0.8 0.8 0.7 1.8 0.8 1.0 0.7
28sp 28 NMR 2.8 1.5 3.0 1.7 3.8 1.2 4.2 1.8
2a43 26 X-ray 2.2 2.0 1.4 0.6 3.2 1.8 2.0 0.6
2f88 34 NMR 3.2 1.3 2.2 1.3 3.6 1.3 1.6 1.2

Average
values

(A) 8.0 7.2 6.4 6.1 7.8 7.2 6.4 6.0

(B) 6.2 4.9 5.0 3.8 5.7 4.9 5.0 3.8
(C) 2.3 1.8 1.8 1.1 2.8 1.8 2.2 1.1
X-ray 4.8 3.8 3.7 2.8 4.7 3.8 3.9 2.7
NMR 4.2 3.5 3.5 2.7 4.4 3.5 3.7 2.8
All 4.5 3.7 3.6 2.7 4.6 3.7 3.8 2.7

To verify the contribution of the dihedral-based energy,
we tested the performance of single distance-dependent en-
ergy, single dihedral-dependent energy and combined total
energy according to Equation (12). The results are shown
in Table 3. On average, single distance-dependent energy
performs better than single dihedral-dependent energy but
in some case (5 out of 40) the later is better than the for-
mer, especially four of the five (1a4d, 1j6s, 1l2x, and 28sp) is
for FARNA dataset that consists of many near-native ter-
tiary models (11) and they are just the cases where single
distance-dependent energy performs worth than the best re-
sults of other methods (see Table 2). Furthermore, the av-
erage ES given by single distance-based energy is 4.37 while
that given by the combined energy is 4.57. These results in-
dicate that including dihedral-dependent energy can further
improves accuracy of the distance-dependent energy on av-
erage.

Relationship between 3dRNAscore and physical interactions
in RNA

Capriotti and coworkers have found that all-atom version
of RASP, RASP-ALL, could well capture base-pairing and
base-stacking interactions in RNA. We observed the same
phenomenon using 3dRNAscore. It seems that base-pairing
and base-stacking interactions are implicitly contained in
all-atom distance-dependent statistical potential. For exam-
ple, Figure 5 depicts the distance distribution of the atom
pair between N9 of adenine and N1 of uracil. Three ap-
parent peaks appear on the distance distribution. The first
peak is at the distance of 4.65 Å, and it stems from the
base-stacking interaction between adjacent residues along
the nucleotide residues chain. The second peak is at the dis-
tance of 7.05 Å, and it’s from the indirect interaction be-
tween the ith residue and the (i + 2)th residue. The third
peak is at the distance of 8.7 Å, and it results from the base-
pairing interaction between adenine and uracil.
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Table 3. Comparison of performance of distance-dependent energy, dihedral-dependent energy, and total energy of 3dRNAscore in test set II

Decoy RNA Length Method Enrichment score (DI)

Distance term Dihedral term Total

Position restrained dynamics and REMD (A) 1duq 26 X-ray 8.2 7.5 8.3
1f27 30 X-ray 7.9 5.7 8.1
1msy 27 X-ray 7.4 6.7 7.6
1nuj 24 X-ray 7.3 7.5 7.4
434d 14 X-ray 7.5 7.0 7.6

Normal modes (B) 1duq 26 X-ray 6.3 4.8 6.9
1esy 19 NMR 6.5 5.2 6.5
1f27 30 X-ray 6.7 4.3 6.7
1i9v 76 X-ray 5.5 4.6 5.5
1kka 17 NMR 6.9 2.6 6.9
1msy 27 X-ray 6.3 4.7 6.7
1nuj 24 X-ray 4.5 1.6 4.5
1qwa 21 NMR 3.5 2.2 3.7
1×9k 62 X-ray 3.1 2.5 3.1
1xjr 46 X-ray 5.8 4.8 6.2
1ykq 19 X-ray 5.2 5.0 5.0
1zih 12 NMR 5.9 3.4 6.9
28sp 28 NMR 6.1 5.4 5.7
2f88 34 NMR 3.9 3.2 4.1
434d 14 X-ray 6.5 5.2 6.9

FARNA (C) 1a4d 41 NMR 1.8 2.4 2.1
1csl 28 X-ray 2.2 1.8 2.4
1dqf 19 X-ray 3.6 2.0 3.6
1esy 19 NMR 3.8 2.4 3.8
1i9x 26 X-ray 4.2 1.6 4.0
1j6s 24 X-ray 0.6 2.2 1.6
1kd5 22 X-ray 2.4 1.6 2.4
1kka 17 NMR 1.7 0.8 2.0
1l2x 27 X-ray 0.4 1.4 1.5
1mhk 32 X-ray 1.2 0.6 1.4
1q9a 27 X-ray 3.0 1.6 3.2
1qwa 21 NMR 1.2 0.6 1.4
1xjr 46 X-ray 3.0 1.8 3.2
1zih 12 NMR 6.8 2.4 6.8
255d 24 X-ray 1.8 0.8 2.0
283d 24 X-ray 1.7 0.6 1.8
28sp 28 NMR 3.6 4.2 3.8
2a43 26 X-ray 2.8 1.4 3.2
2f88 34 NMR 3.5 2.1 3.6

Average values (A) 7.66 6.88 7.80
(B) 5.51 3.97 5.69
(C) 2.59 1.70 2.83
X-ray 4.43 3.43 4.65
NMR 4.25 2.84 4.41
All 4.37 3.24 4.57

Figure 6 shows the base-stacking and base-pairing ener-
gies analyzed by 3dRNAscore in RNA 1AFX, which has
a hairpin 3D structure. Figure 6(B) suggests that stack-
ing energies between the bases from the fourth to eighth
nucleotides are lower than the other base-stacking ener-
gies, which just meet the 2D structure: ((((. . . .)))). Figure
6(C) suggests that the base-pairing energies between the nu-
cleotides 1–12, 2–11, 3–10 and 4–9 are the four lowest en-
ergies, which exactly represent the four Watson–Crick base-
pairing in 1AFX.

Choosing a structure model in a robust way

Evaluation function is used to select proper structure mod-
els. Here, we give an example of how to choose a struc-
ture model in a robust way during RNA tertiary structure
prediction. We firstly use the RNA 3D structure building
program 3dRNA (12) to predict 1000 models for a duplex

RNA (PDB id: 1FQZ). The 1000 models can be clustered
into groups based on their INF values and with a thresh-
old. Table 5 and Figure 7 are results for a threshold of 0.18.
Each group is then scored by 3dRNAscore. The structure
with the lowest energy score is selected as the representative
structure of its group. All of these representative structures
constitute the candidates of the native structure.

Table 5 lists the seven largest groups. Figure 7 shows that
Group I includes the model with the lowest DI. Although
the overall energy scores of Group II are lower than Group
I, the model with the lowest DI in Group I can still be picked
up through clustering. Furthermore, most groups exhibit a
funnel shape after clustering, which is conductive to 3dR-
NAscore that the model with the lowest energy score is just
the one with the minimum DI.
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Table 4. The ranking results of Rosetta, RASP-ALL, KB and 3dRNAscore methods on the FARFAR decoy set

Motif name DI of the lowest energy model Minimum DI model

ROSETTAmin RASP-ALL RNA KB 3dRNAscore

G-A base pair 4.026 1.408 2.455 1.408 1.408
Fragment with G/G and
G/A pairs, SRP helix VI

13.910 6.073 6.073 6.073 5.267

Helix with A/C base pairs 2.414 3.262 5.410 5.866 2.414
Four-way junction, HCV
IRES

21.236 21.236 21.526 20.067 15.040

Loop 8, A-type
Ribonuclease P

8.421 4.290 4.290 4.290 1.615

Helix with U/C base pairs 6.012 3.136 3.136 3.136 3.136
Curved helix with G/A and
A/A base pairs

1.062 1.929 3.565 1.929 0.998

Pre-catalytic conformation,
hammerhead ribozyme

30.097 12.830 12.830 12.830 12.830

Loop E motif, 5S RNA 2.404 2.561 2.561 2.561 1.986
UUCG tetraloop 1.284 1.278 1.403 1.278 1.278
Rev response element high
affinity site

7.802 5.826 4.227 5.826 4.227

Fragment with A/C pairs,
SRP helix VI

3.930 2.424 2.424 2.424 2.424

Signal recognition particle
Domain IV

5.516 3.224 3.224 3.224 1.338

Bulged G motif, sarcin/ricin
loop

1.902 7.066 7.838 7.066 1.588

Tertiary interaction,
hammerhead ribozyme

25.215 24.647 24.647 24.647 19.453

GAGA tetraloop from
sarcin/ricin loop

1.075 0.956 0.956 0.956 0.956

Pentaloop from conserved
region of SARS genome

4.147 4.145 4.147 4.145 1.068

L2/L3 tertiary interaction,
purine riboswitch

16.371 19.160 19.160 19.160 16.371

L3, thiamine pyrophosphate
riboswitch

6.076 2.262 2.262 2.262 2.262

Kink-turn motif from
SAM-I riboswitch

1.592 13.086 12.107 12.107 1.454

Active site, hammerhead
ribozyme

20.394 23.413 22.927 22.927 17.947

P1/L3, SAM-II riboswitch 14.885 18.103 10.478 18.174 10.478
J4/5 from P4-P6 domain,
Tetrahymena ribozyme

2.504 2.919 2.919 2.919 2.199

Stem C internal loop, L1
ligase

3.479 3.479 3.226 3.479 3.226

J5/5a hinge, P4–P6 domain,
Tetr. ribozyme

25.063 23.920 28.689 23.920 20.910

Three-way junction, purine
riboswitch

13.693 13.734 10.616 10.616 10.387

J4a/4b region, metal-sensing
riboswitch

6.237 5.012 6.549 5.012 5.012

Kink-turn motif 15.0735 23.997 28.729 16.805 11.695
Tetraloop/helix interaction,
L1 ligase crystal

1.398 0.948 1.398 0.948 0.948

Hook-turn motif 7.598 16.240 15.354 1.985 1.985
Tetraloop/receptor, P4-P6
domain, Tetr. ribozyme

16.803 11.112 4.477 4.477 3.818

Pseudoknot, domain III,
CPV IRES

10.097 7.063 7.771 4.377 4.274

Table 5. Seven largest groups clustered from 1000 models predicted by 3dRNA for 1FQZ

Group I Group II Group III Group IV Group V Group VI Group VII Other

Size 190 39 56 40 19 38 21 597
Center DI 3.738 5.234 18.727 4.632 23.136 4.173 6.724 13.741
Minimum DI 1.429 4.373 13.270 2.713 9.758 2.437 5.129 2.612
DI with minimum energy 1.429 4.487 16.132 2.713 26.532 2.437 5.384 9.537

DISCUSSION

The native structure tends to have the lowest free energy ac-
cording to the thermodynamic hypothesis proposed by An-
finsen (28). So precisely to say, we need to use free energy
to evaluate a structure. For classical molecular force fields,
it is easy to calculate the enthalpy of a structure but it is
very time consuming to calculate its entropy. In contrast to
force fields, statistical potentials extracted from experimen-

tal data of known RNA structures include both enthalpy
and entropy information. Although they are not directly
equal to free energy, they in principle correlate with the lat-
ter. Furthermore, the calculation is easy and fast. So, sta-
tistical potentials are more often used for RNA and protein
structure scoring than molecular force fields.

A significant difference between 3dRNAscore and other
RNA statistical potentials is the combination of the
conventional distance-dependent energy with a dihedral-
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Figure 4. Results on test III. (A) The counts of models having the lowest
energy selected by 3dRNAscore, RASP, RNA KB and Rosetta, respec-
tively. (B) The red part represents the counts of models that are worse than
those selected by 3dRNAscore. Blue represents the counts of models are
that better than those selected by 3dRNAscore. Gray represents the counts
of models that are the same as those selected by 3dRNAscore.

Figure 5. (A) Energy distribution of the distance between N9 of adenine
and N1 of uracil. (B) Diagram of the three representative distance between
N9 of adenine and N1 of uracil.

Figure 6. (A) Sequence, secondary structure and 3D structure of 1AFX.
(B) Base-stacking energies between adjacent two nucleotides in 1AFX cal-
culated by 3dRNAscore. ‘1–2′ means base-stacking energy between the
first and the second nucleotide, ‘2–3′ means the second to the third . . .
and so on. The lower the energy, the better the base-stacking. (C) Base-
pairing energies between each possible base-pair in 1AFX calculated by
3dRNAscore. The lower the energy, the better the base-pairing.

Figure 7. Energy versus DI plot of the groups of the 1000 prediction mod-
els of 1FQZ.

dependent energy. Thus, in principle, 3dRNAscore can take
account of both overall shape and base pairs. The results
above indicate a better performance of this combined po-
tential. It is known that molecular force fields are the
basis of molecular dynamics simulation to study confor-
mations of biomolecules. Many force fields in use today
consist of four components: bond stretching, angle bend-
ing, the rotation of bonds and non-bonded interactions.
The distance-dependent statistical potential corresponds
to non-bonded interactions part of a force field while the
dihedral-dependent potential corresponds to bond rotation
part. The latter can efficiently describe the flexibility of
RNA molecules, which is one of the major features of RNA
structures that are different from that of protein structures.
Originally, we planned to design four different statistical po-
tentials corresponding to the four components of a force
field. However, we found that the potentials corresponding
to bond stretching and angle bending have no significant
effect because all of the decoy sets don’t involve any varia-
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tion of bond length and bond angle in the process of their
generations.

RNA backbone is rotameric (52,53), and this may help
recognize native-like models. Murray and coworkers (52)
processed the backbone torsion angle distributions of an
8636-residues RNA database with quality-filtering tech-
niques like resolution, crystallographic B factor and all-
atom steric clashes. With noise levels greatly reduced, clear
signal appears for the underlying angle preferences. It sug-
gests that native-like models have obvious preference for
certain specific backbone torsion angle distribution. The
dihedral-dependent energy of 3dRNAscore utilizes this
preference to identify the native-like model from decoys
where the dihedral distributions of RNA structures deviate
from the normal dihedral distributions.

The Rosetta RNA scoring function (FARFAR) (6)
is more detailed and precise than most other RNA
knowledge-based potentials. The RNA energy function
used in FARFAR includes a term weakly favoring compact-
ness (proportional to radius-of-gyration), a term to penalize
steric clashes within molecules and other terms that are spe-
cially designed for RNA interactions (6,11). On account of
these precise energy terms contained in FARFAR, its scor-
ing performance depends largely on the quality of the decoy
sets. The less good scoring performance of FARFAR than
that of other three scoring methods in the test above may be
attributed to its unfitness to these decoys sets.

Test set I is generated by Gaussians on distances and tor-
sions and Test set II is generated by molecular dynamics in
a relative short period of time, hence decoys in these two
datasets have low diversity and are distributed around a
local minimum free energy state (in these two sets, the lo-
cal minimum free energy state is just the native state) in
the sense of free energy landscape. Results in these two
sets show that 3dRNAscore is quite qualified for identify-
ing local minimum free energy state and ranking structures
around the local minimum. Test set III is a more real-world
decoy set which is generated by RNA modelling with FAR-
FAR (6), so decoys in test set III have a very high diversity,
which is owed to the Monte Carlo algorithm adopted by
FARFAR. Results in test set III show that 3dRNAscore’s
performance in ranking structures widely distributed in free
energy landscape is not so good, but still better than other
existing statistical potentials.

Other limitations exist for knowledge-based statistical
potentials at present. The limited number of RNA tertiary
structures of the training set is still the major problem
for developing knowledge-based potentials (54–56). Almost
all the knowledge-based potentials face the possibility of
over-training problem because the parameters depend on
the limited number of structures in training datasets (57).
We have tried to use a non-redundant RNA tertiary struc-
ture set as the training set and then remove all the struc-
tures that are similar to certain structures in test sets. More
non-redundant structures would improve the accuracy of
knowledge-based potentials (58,59). Furthermore, RNAs
are very sensitive to electrostatic interactions because of the
negative charges in the phosphate groups of the backbone
(60–62). RNA may be unable to form the functional folds
in the absence of positive ions. The knowledge-based po-
tentials only implicitly consider this effect by counting the

experimental structures. We will study these problems in fu-
ture.

CONCLUSION

In this paper, we have developed a novel RNA knowledge-
based potential for identifying native RNA structures
and ranking predicted structures and functional structural
motifs with non-canonical base pairs. We used a non-
redundant RNA training set to train the parameters by
combining the distances of paired atoms and torsion an-
gles to construct our statistical potential. The benchmark
tests show that our method could identify not only ap-
propriate tertiary folds, but also tertiary motifs with the
non-canonical base pairs. Although some limitations, 3dR-
NAscore performs consistently better than existing meth-
ods in both two cases.
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