Table 4.
Output for the polynomial hierarchical linear models.
Model 4 | Model 5 | Model 6 | Model 7 | |||||
---|---|---|---|---|---|---|---|---|
Parameter | S.E. | Parameter | S.E. | Parameter | S.E. | Parameter | S.E. | |
γ00 = Intercept | 7.26*** | 0.30 | 7.26*** | 0.32 | 8.64*** | 0.60 | 8.69*** | 0.57 |
γ10 = Coefficient of d | −0.09 | 0.10 | −0.09 | 0.12 | −0.47* | 0.21 | −0.51*** | 0.14 |
γ20 = Coefficient of d2 | −0.05*** | 0.01 | −0.05*** | 0.01 | −0.06** | 0.02 | −0.05*** | 0.01 |
γ01 = Coefficient of u | −0.28** | 0.11 | −0.29** | 0.10 | ||||
γ11 = Coefficient of d:u | 0.08* | 0.04 | 0.09*** | 0.02 | ||||
γ21 = Coefficient of u:d2 | 0.00 | 0.00 | ||||||
AIC | 2076.96 | 2076.73 | 2066.84 | 2064.90 | ||||
BIC | 2106.73 | 2119.27 | 2109.37 | 2103.18 | ||||
Deviance | 2063.0 | 2056.7 | 2046.8 | 2046.9 | ||||
Residual df | 513 | 510 | 510 | 511 | ||||
Number of level-1 observation | 520 | 520 | 520 | 520 | ||||
Number of level-2 clusters | 52 | 52 | 52 | 52 | ||||
τ20 = var(U0i) | 3.40 | 3.90 | 2.82 | 2.82 | ||||
τ21 = var(U1i) | 0.19 | 0.41 | 0.14 | 0.14 | ||||
τ22 = var(U2i) | 0.00 | |||||||
σ2e = Var(ϵij) | 2.24 | 2.07 | 2.24 | 2.24 |
p < 0.001,
p < 0.01,
p < 0.05;
d, dimension; u, individual differences variable; U0i, random intercept effect; U1i, random slope effect of dimension; U2i, random slope effect of quadratic dimension; ϵij, level-1 residuals.