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Abstract

New carbocyclic nucleoside analogs with five-membered heterocyclic nucleobases were 

synthesized and evaluated as potential anti-HIV and anti-HCV agents. Among the synthesized 

carbocyclic nucleoside analogs, the pyrazole amide 15f exhibited modest selective anti-HIV-1 

activity (EC50 = 24 µM).
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Studies of nucleoside analogs with unmodified naturally occurring nucleo-purine and - 

pyrimidine bases have been more successful in the development of biologically interesting 

nucleoside analogs.1 However, a few nucleosides with five-membered heterocyclic 

nucleobases, such as the 5-amino-1-β-D-ribofuranosylimidazole-4-carboxamide 

(aminoimidazole carboxamide ribonucleotide, AICAR, I) or the inosine 5’-monophosphate 

(IMP, II), display useful biological activity (Figure 1). Both AICAR and IMP are important 

intermediates in the de novo generation of adenine and guanine nucleotides.2 AICAR is well 

known as an adenosine 5’-monophosphate (AMP)-dependent protein kinase (AMPK) 

activator.3 It can activate AMPK in times of reduced energy availability (high cellular 

AMP:ATP ratios) and serves to inhibit anabolic processes.4,5 In addition, AICAR may play 

a role in tumor suppression6 and induction of cellular apoptosis.3,7
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Additionally, AICAR is converted to IMP in two steps by AICAR transformylase and IMP 

cyclohydrolase in purine nucleotide biosynthesis.8 IMP is the precursor for both adenosine 

and guanosine nucleotides. Inosine monophosphate dehydrogenase (IMPDH)9 catalyzes the 

oxidation of IMP to xanthosine 5’-monophosphate (XMP) in guanine nucleotide 

biosynthesis, which is subsequently converted to guanosine monophosphate (GMP) by GMP 

synthetase.10 Recently, IMPDH has received a great deal of attention as a promising target 

for the development of anticancer, antiviral, immunosuppressive, and antimicrobial 

chemotherapy.9

Among the previously reported nucleoside or nucleotide analogs with five-membered 

heterocyclic nucleobases as activators of AMPK or inhibitors of IMPDH, Bredinin, 1a11, 

first isolated from the mold Eupenicillium brefeldianum, is an imidazole containing 

nucleoside analog IMPDH inhibitor that is used clinically as an immunosuppressive agent 

(Figure 1). EICAR (5-ethyleneimidazole-4-carboxamide, 1b)12 is a 5-alkyne substituted 

imidazole derivative that shows potent antitumor and antiviral activity. Ribavirin, 2a13, is 

the most clinically important five-membered heterocyclic nucleoside analog. It possesses a 

1,2,4-triazole nucleobase on a ribo-sugar and exhibits broad-spectrum antiviral activity 

(including HIV, hepatitis (A, B and C) virus, influenza, respiratory syncytial virus (RSV), 

measles and mumps). Taribavirin (viramidine, 1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-

carboxamidine, TCNR, 2b)14 is a prodrug of ribavirin with improved liver-targeting 

pharmacokinetics. It has a shorter half-life, but displays significant antiviral activity against 

HSV, rhino and parainfluenza viruses. Tiazofurin (1,2-(β-D-ribofuranosyl) thiazole-4-

carboxamide, 3, a synthetic C-nucleoside derivative, displayed potent anticancer activity.15 

An early discovery compound, 1,2,3-triazole carbocyclic nucleoside 416, exhibited antiviral 

activity versus vaccinia virus. With these five-membered heterocyclic nucleobase containing 

nucleoside analogs as a backdrop, we designed novel carbocyclic nucleoside analogs as 

potential antiviral agents.

Recently, the azide/alkyne cycloaddition reaction17 has become one of the most 

synthetically useful tools in the formation of the 1,2,3-triazole heterocyclic ring system. A 

variety of reaction conditions for this particular click reaction18 have been reported by 

multiple groups.19 For our work, we envisioned the use of the known cyclopentenol 516 to 

prepare the cyclopentenyl azide 7 for subsequent synthesis of carbocyclic analogs containing 

five-membered heterocyclic bases (Scheme 1).

The hydroxyl group of compound 5 was reacted with methanesulfonyl chloride (MsCl) to 

provide the sulfonyl analog 6, followed by treatment of sodium azide to give its 

corresponding azide derivative 7 in 89 % yield (2 steps).

The 1,3-dipolar cycloaddition reaction of compound 7 with D,L-methyl 2-(tert-

butoxycarbonylamino) pent-4-ynoate in the presence of CuI and triethylamine gave 

carbocyclic 1,2,3-triazole derivative 8 in 98% yield.20 The triazole ester 8 was transformed 

to its corresponding amide with saturated methanolic ammonia, followed by removal of the 

tert-butyldiphenylsilyl (TBDPS), isopropylidene, and tert-butoxycarbonyl (Boc) 

deprotection groups by methanolic hydrogen chloride to afford the carbocyclic 1,2,3-

triazole- propanamide analog 9 in 86% yield over 2 steps (Scheme 1).
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The Mitsunobu reaction21 of compound 5 with NBoc-L-histamine methyl ester provided 

carbocyclic imidazole analog 10 in 76% yield, which was subsequently treated with 

methanolic ammonia then methanolic hydrogen chloride to gave the carbocyclic imidazole 

propanamide 11 in 90% yield as a D/L-mixture at the histidine chiral center. The 

regioselectivity of 10 was determined on the basis of Nuclear Overhauser Effect (1D-NOE). 

The 1D-NOE showed a significant interaction between Ha and Hb that is only possible with 

10 (π-isomer), as the Ha and Hc NOE with τ-isomer 12 would not be observed (Figure 2).

Furthermore, the chiral cyclopentenyl alcohol 5 and sulfonyl derivative 6 were utilized for 

the synthesis of additional new five-membered heterocyclic nucleoside analogs. The 

displacement reaction of 5 (or 6) with commercially available five-membered heterocyclic 

analogs such as pyrroles, imidazoles, and pyrazoles esters with either a Mitsunobu reaction 

(method A for 5) or nucleophilic conditions of sodium hydride in dimethylformamide 

(method B for 6) afforded their corresponding derivatives 14a–h (Table 1). The reaction of 5 
separately with 4,5-dimethylester imidazole carboxylate 13a, 4-methylester imidazole 

carboxylate 13b, 3,5-diethylester pyrazole carboxylate 13e, 4-ethylester pyrazole 

carboxylate 13f, ethyl 3-pyrazolecarboxylate 13g and ethyl 3-(trifluoromethyl)-1H-

pyrazole-4-carboxylate 13h in the presence of triphenylphosphine and diisopropyl 

azodicarboxylate in tetrahydrofuran provided their corresponding methyl ester imidazole 

nucleoside 14a (80%), 14b (76%) and ethyl ester pyrazole nucleosides 14e (88%), 14f 
(92%), 14g (85%) and 14h (62%), respectively. Unexpectedly, the Mitsunobu reactions of 5 
with ethyl ester pyrrole carboxylates (13c and 13d) afforded only a trace amount of their 

corresponding pyrrole nucleoside derivatives 14c and 14d. Therefore, compound 6 was 

employed as an alternative approach for the efficient synthesis of pyrrole nucleoside 

derivatives. The displacement reactions of 6 with 3,5-diethyl ester pyrrole carboxylate 13c 
and 5-methyl ester pyrrole carboxylate 13d were performed under method B conditions to 

obtain the pyrrole nucleoside derivative 14c (69%) and 14d (72%), respectively (entry 3 and 

4). The imidazole esters 14a–b and pyrazole esters 14e–h were transformed to their 

corresponding amides with saturated methanolic ammonia, followed by deprotection of 

TBDPS and isopropylidene groups by using methanolic hydrogen chloride solution to afford 

the desired compound 15a–b and 15e–h22 in good yields. However, subsequent removal of 

TBDPS and isopropylidene groups of 14c–d with methanolic hydrogen chloride, and 

treatment of deprotected esters with methanolic ammonia solution gave amide 15c in 40% 

yield and amide 15d in 25% yield (2 steps) as the reaction of the pyrrole esters (14c–d) with 

the methanolic ammonia provided the amides in low yield. Additionally, the ester 

intermediates 14a–h were converted to their corresponding cyclic (pyridazine) or acyclic 

(hydraizde) derivatives 16a–h. The treatment of 14a–h with hydrazine in methanol, 

followed by deprotection of TBDPS and isopropylidene with methanolic hydrogen chloride 

to provide pyridazine analog 16a (87%), as well as hydrazide derivatives (16b–h)23 in high 

yields as summarized in Table 1. The newly synthesized carbocyclic five-membered 

heterocyclic nucleosides (9, 11, 15a–h, and 16ah) were evaluated for their antiviral activity 

versus both HIV-1LAI and HCV (genotype 1b). For HCV activity, compounds were 

evaluated for their ability to inhibit HCV RNA replication using an Huh7 cell based 

subgenomic replicon assay.24 Cytotoxicity in Huh7 cells was determined simultaneously 

with anti-HCV activity by extraction and amplification of both HCV RNA and Huh7 
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ribosomal RNA (rRNA). In addition, all compounds were evaluated against HIV-1 in human 

peripheral blood mononuclear (PBM) cells and cytotoxicity was determined in PBM, CEM 

and Vero cells.25

Unfortunately, most of the nucleoside analogs did not show antiviral activity versus HIV-1 

or HCV. Only the pyrazole amide 15f showed mild antiviral activity versus HIV-1 (median 

effective concentration or EC50 = 24 µM). None of these nucleoside analogs displayed 

cytotoxicity in PBM, CEM or Vero cells up to 100 µM.

Isopropyl alanine phenoxy phosphoramidate prodrugs were prepared for nucleoside analogs 

15b, 15f, 15g and 15h and evaluated for antiviral activity and cytotoxicity to determine if 

the phosphorylation of these nucleoside analogs was the limiting factor for their antiviral 

activity (Figure 3).

These monophosphate prodrugs did not improve the antiviral activity versus HIV-1 or HCV, 

but also did not increase cytotoxicity versus PBM, CEM or Vero cells. Further studies of 

potential antiviral activity against other RNA viruses is progressing and will be reported in 

due course.
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Figure 1. 
Structures of AICAR, IMP and related biologically active five-membered heterocyclic 

nucleobase nucleoside analogs.
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Figure 2. 
1D-NOE spectra of compound 10 and its isomer 12.
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Figure 3. 
Phosphoramidate prodrugs of nucleoside analogs 15b, 15f, 15g and 15h.
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Scheme 1. 
Reagents and reaction conditions: a) see reference 16 for synthesis of 5, MsCl, Et3N, 

CH2Cl2, 0 °C, 3h; b) NaN3, DMF, 70 °C, 8h; c) D,L-methyl 2-(t-

butoxycarbonylamino)pent-4-ynoate, CuI, Et3N, THF, rt, 12h; d) NH3/MeOH, rt, 12h; e) 

HCl/MeOH, rt, 6h; f) N-Boc-L-histidine methyl ester, DIAD, PPh3, THF, rt, 12h.
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