Skip to main content
. 2015 May 12;8:8. doi: 10.1186/s13628-015-0022-x

Table 6.

Parameters used in the 3D analysis and their meaning

Parameter Meaning General Sphere Rhombic dodecahedron
E Energy function or Hamiltonian J s+λ s(sS)2+λ v(vV)2
J Edhesion energy (per contact length) J J J
s Cell surface k s l 2 4π r 2 82l2
v Cell volume k v l 3 43πr3 1633l3
S Rest surface area ksLs2 4πRs2 82Ls2
V Ttarget cell volume kvLv3 43πRv3 1633Lv3
λ s Surface constraint λ s λ s λ s
λ v Volume constraint λ v λ v λ v
l Basic length scale l r (radius) l
k s Surface scaling factor sl2 4π 82
k v Volume scaling factor vl3 43π 1633
L s Rest surface area, using basic length scale Sks Rs=12Sπ S82
L v Target cell volume,using basic length scale Vkv3 Rv=3V4π3 33V163
E Energy function or Hamiltonian, using basic length scale Jksl2+λs(ksl2ksLs2)2+λv(kvl3kvLv3)2 4πJr2+λs(4πr24πRs2)2+λv(43πr343πRv3)2 82Jl2 +λs(82l282Ls2)2+λv(1633l31633Lv3)2
∂E∂l Energy variation per length change 2kslγ3kv2ks 4π r(2γr Π) 162lγl6Π
γ Interfacial tension J+2ksλs(l2Ls2) J+8πλs(r2Rs2) J+162λs(l2Ls2)
Π Pressure 2kvλv(l3Lv3) 83πλv(r3Rv3) 3233λv(l3Lv3)
∂E∂l Energy variation per length change, full expansion 2k s(a l 5+b l 3c l 2+τ l) 8π(a r 5+b r 3c r 2+τ r) 162al5+bl3cl2+τl
a Aggregate parameterin ∂E∂l equation 3kv2λvks 43πλv 1692λv
b Aggregate parameterin ∂E∂l equation 2k s λ s 8π λ s 162λs
c Aggregate parameterin ∂E∂l equation 3kv2λvLv3ks 43πλvRv3 1692λvLv3
τ Length-independent component of interfacial tension J2ksλsLs2 J8πλsRs2 J162λsLs2
ϕ b6a ks2λs9kv2λv λsλv 3λs2λv
ψ c8a Lv38 Rv38 Lv38
ν (when ϕ>0) τ12aϕ2 J2ksλsLs29kv2λv4ks3λs2 J8πλsRs2λv16πλs2 J162λsLs2λv482λs2
μ(when ϕ>0) ψϕ32 27kv3λv32Lv38ks3λs32 Rv3λv328λs32 Lv3λv3266λs32
ν (when ϕ=0) τ12a Jks36kv2λv J16πλv 3J642λv
μ (when ϕ=0) ψ Lv38 Rv38 Lv38
Bifurcation 1 (γ(l )=0) Transition from negative to positive interfacial tension at equilibrium ν=9kv2λvLv22ks2λs ν=λvRv22λs ν=λvLv23λs
ν =0 ν =0 ν =0
Bifurcation 2 (pseudo-transcritical) Transition of l =0 from unstable to stable ν=0 ν=0 ν=0
ν =0 ν =0 ν =0
Bifurcation 3 (fold) Transition from 2 to 0 non-trivial equilibria ν=f(μ)(μf(μ)), where f(μ)=sinh13arcsinhμ ν=f(μ)(μf(μ)) ν=f(μ)(μf(μ))
ν=μ43223 ν=μ43223 ν=μ43223