
The search for novel analgesics: targets and mechanisms
Tony L. Yaksh*, Sarah A. Woller, Roshni Ramachandran, and Linda S. Sorkin

Address: University of California, San Diego, Department of Anesthesiology 0818, 9500 Gilman, Dr. (CTF C-312), La Jolla, CA 92093, USA

*Corresponding author: Tony L. Yaksh (tyaksh@ucsd.edu)

F1000Prime Reports 2015, 7:56 (doi:10.12703/P7-56)

All F1000Prime Reports articles are distributed under the terms of the Creative Commons Attribution-Non Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/legalcode), which permits non-commercial use, distribution, and reproduction in any medium,
provided the original work is properly cited.

The electronic version of this article is the complete one and can be found at: http://f1000.com/prime/reports/m/7/56

Abstract

The management of the pain state is of great therapeutic relevance to virtually every medical
specialty. Failure to manage its expression has deleterious consequence to the well-being of the
organism. An understanding of the complex biology of the mechanisms underlying the processing of
nociceptive information provides an important pathway towards development of novel and robust
therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage
between mechanism and the associated behaviorally defined pain state. This review seeks to provide
an overview of current thinking targeting pain biology, the use of preclinical models and the
development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current
development strategies for analgesics are considered.

Introduction
Failure to manage pain has important deleterious
biological consequences including, but not limited to,
cardiovascular pathology (hypertension, myocardial
ischemia), suppression of gastrointestinal motility,
suppression of spontaneous activity leading to joint
and muscle deterioration, and the physiological (loss of
appetite, failure to thrive) and psychological conse-
quences of stress generated by the aversive state [1]. The
negative consequences of pain are readily reflected in
quality of life measures and economic indices [2–4].

Currently, there are several families of agents that have
recognized clinical utility as pain therapeutics. They have
varying degrees of efficacy for the different pain states and
attendant adverse event profiles that often limit their
utility. Management of inflammatory states typically
involve nonsteroidal anti-inflammatory drugs (NSAIDs),
for example, inhibitors of cyclooxygenases (COX-1 and/or
COX-2) [5,6] and opiates [7]. For the states associatedwith
nerve injury, therapies include antidepressants that block
monoamine uptake (amitriptyline, duloxetine, venlafax-
ine) [8–10], anticonvulsants acting through a block of
sodium channels (lidocaine, carbamazepine) [11–13],
alteration of calcium channel function (e.g. ziconotide,

gabapentin) [14,15] or through increasing extracellular
levels of the inhibitory transmitter gamma aminobu-
tyric acid (GABA) (tigabine) [16,17] and, to a lesser
extent, opioids [7] and topical medications (lidocaine,
capsaicin for patients with cutaneous allodynia and
hyperalgesia) [18,19]. Often, combination therapies
employing agents with distinct targets and non-over-
lapping side effect profiles may achieve improved
therapeutic benefit in treating neuropathic conditions
[20]. A point of interest has been whether any of these
agents might be disease-modifying by preventing the
transition from an acute reversible injury state to a
chronic pain state (see below) [21,22].

While these agents may have demonstrated efficacy, it is
frequently the case that, even with aggressive manage-
ment, the patient’s pain remains of such a magnitude
that the patient could still be eligible to be admitted into
the original study [23–25]. It is often difficult to know if
the efficacy is restricted by a limited role for the
mechanisms targeted, limitation of the drug target
engagement, or that the side effects preclude higher
doses [26–28]. Development of novel therapeutics to
manage pain has thus been a focus of significant effort
and investment [26,29]. In this brief overview, we will
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consider current thinking regarding the complex biology
of pain processing and how it informs the development
of drug targets for analgesic therapeutics, and then offer a
commentary on the screening of drugs with analgesic
therapeutic potential. It should be emphasized that the
above commentary is not limited to human therapies.
There is a growing appreciation that the adequate
treatment of pain in companion animals also presents
important therapeutic issues, and the development of
effective analgesics in that clinical population is itself an
important target [30].

Pain phenotypes
Pain is the constellation of behavioral and physiological
sequelae that can arise from three major classes of
initiating conditions: (a) acute high intensity stimuli;
(b) tissue injury and inflammation; and (c) injury to a
specific peripheral nerve (mononeuropathy, e.g. crush,
section) [9,31], or to all peripheral sensory nerves
(polyneuropathy, e.g. diabetes, chemotherapy, or an
immune-mediated reaction) [32,33]. The behavioral
state initiated by these several conditions are intrinsically
aversive, in that the state is associatedwith a negative affect
(e.g. vocalization, facial expression) and supports
complex escape and avoidance behaviors upon the
first (e.g. unconditioned) exposure. These states each
have defining properties.

After an acute stimulus, the pain sensation co-varies with
stimulus intensity, is limited to the body region to which
the stimulus is applied, and is absent with removal of
stimuli.

Following tissue injury/inflammation, there is ongoing
pain, which persists after removal of the injuring stimulus
and the appearance of pain behavior withmodest intensity
stimuli applied to the injury site (primary hyperalgesia)
and to adjacent uninjured regions (secondary hyperalgesia/
allodynia).

Nerve injuries (mono- and polyneuropathies) are
characterized by ongoing pain states (dysesthesia) and
by an exaggerated sensitivity to light touch and cold,
typically referred to the peripheral distribution of the
injured nerve. Mononeuropathies include direct section
or compression of a nerve trunk leading to pain referred
to the distribution of the injured nerve. The polyneuro-
pathy is typically bilateral in the distal extremities and
may be generated by a variety of chemical insults (cancer
chemotherapeutics, retroviral drugs), viral infections
such as HIV, metabolic diseases (e.g. diabetes), and
autoimmune pathologies. Importantly, while the exag-
gerated sensitivity to low intensity stimuli may appear
similar after tissue and nerve injury, it is appreciated that

the mechanical sensitivity observed after nerve injury
may be mediated by the sensory afferents that normally
encode light touch (e.g. Aß axons) [34].

The pain states arising from local tissue injury or
inflammation typically show a time course that parallels
the onset and resolution of the injury state [35], whereas
nerve injury often leads to a persistent condition and may
show little resolution over time. Following nerve injury,
long-lasting changes in thresholds and the existence of an
aversive state is noted in animal models [36–38].

There is a growing appreciation that the pain state
originating from prolonged inflammation may persist
even when the inflammatory state (e.g. loss of neutro-
phils/macrophages and pro-inflammatory cytokines)
resolves. Thus, following surgeries such as herniorrha-
phies, arthroscopies and thoracotomies, up to 30% of
the population may show pain that lasts more than
3 months [39–41]. In the classic clinical example of
persistent inflammation, rheumatoid arthritis, the
pathology is characterized by joint inflammation and
remodeling as well as pain. While the association of pain
with inflammation is not unexpected, pain may continue
to present as a problem, even in patients in remission or
who show minimal inflammatory signs [42,43], suggest-
ing the development of a chronic or enduring pain state.
In preclinical models of acute injury and inflammation, a
transient change in thresholds is commonly observed
with the loss of the pain state observed with resolution of
inflammation [44,45]. In contrast, long-lasting inflam-
matory states may demonstrate a resolution of inflam-
mation with an enduring allodynia and persistent
aversive component [46,47]. In animal models, the
early phase is characterized by sensitivity to agents such
as NSAIDs and agents that block hyperalgesia (gaba-
pentin), while the late phase is characterized by a
pharmacology resembling that noted with nerve injury
[46,47]. As will be reviewed below, while pain associated
with tissue injury and inflammation may be mechan-
istically and pharmacologically distinguishable from the
states initiated by nerve injury, over time, in the
persistent/chronic pain patient, there appears to be a
convergence in mechanisms underlying chronic inflam-
mation-evoked and nerve injury-evoked pain states.

Preclinical characterization of the “analgesic”
actions of agents
In the following sections, we will briefly survey the
biological targets that underlie the mechanisms through
which the aversive stimulus environment is encoded. It is
recognized that the assertion that a particular state
represents a pain experience, and that conversely the actions
of an agent targeting those mechanisms are “analgesic”,
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depends on the effects of these manipulations upon the
behavior of the intact and unanesthetized animal. Such
preclinical models have been widely employed in defining
thebehavioral correlates of nociceptiveprocessing reflecting
acute, post-tissue injury and post-nerve injury (neuro-
pathic) pain states. Conversely, these models may be
employed to “screen” the activity of a family of agents in
development to define (a) their analgesic efficacy and (b)
their relative analgesic versus behavioral side effect profile.
Table 1 summarizes examples of the principal classes of
models. Several issues may be considered in the imple-
mentation of these models.

Model paradigm
The preclinical experimental models outlined in Table 1
may be broadly divided into three major classes. First,
those that typically utilize changes in the threshold
stimulus intensity (e.g. temperature/mechanical) to
initiate a response or the latency to escape (evoked
behaviors). Some of these behaviors may employ a
response phenotype organized at the spinal level. The
simplest example would be the so-called tail flick
response [48]. Technically, this is a poly-synaptic reflex
movement of the tail, which is evoked by an acute high
intensity thermal stimulus applied to the tail that can be
observed in a spinalized animal. Other escape models
may involve a supraspinal component (even a simple
response such as the withdrawal of a hind paw requires
complex motor coordination) [49]. A variant is the
emission of higher order responses such as vocalization
[50] and characteristic facial expressions in rodents [51].

Second, the measurement of ongoing behaviors that are
otherwise suppressed/altered in a pain state [52,53], such
as ambulation [54–57], weight bearing [58], locomotor
patterns, feeding, or social interactions [59–64], rearing
[65,66], and burrowing [67,68]. Third, an allied
approach has sought to define the intrinsic aversiveness
of a stimulus environment by employing a “conditional
place preference” (CPP) paradigm to establish that a
hypothesized injury state is indeed aversive and that a
proposed intervention is able to attenuate that aversive
component. In this, the animal with a tissue or nerve
injury is exposed to a drug in a distinct environment
versus a vehicle in a different environment. The animal is
then permitted to choose either environment. If the
injury induces an aversive state and if the drug treatment
prevents/reduces that aversive state and if the treatment
is not itself capable of producing a preference in a
normal animal, then it is argued that the drug in the
presence of the aversive state has a positive reinforcing
value and will result in the selection of the paired
environment [45,69–74]. A variant on this paradigm
employs environments that become intrinsically aversive
in the pain state, such as extreme light avoidance in a
migraine model [75].

False positive versus false negative outcomes in analgesic
studies
The incorrect assertion of analgesic activity of an agent
may arise for several reasons. In the case of a behavioral
paradigm, where the aversive stimulus evokes an escape
response, a drug treatment leading to a loss of that

Table 1. Summary of preclinical models

Stimulus environment Model Time course Reference

Acute Heat/cold/mechanical withdrawal Acute [409–411]
Acute Afferent evoked
hyperalgesia

Intraplantar formalin
Intraplantar capsaicin

Min-hours [412,413]

Inflammation - Acute Carrageenan: thermal (heat and cold )/mechanical withdrawal Min-hours [320,414]
Inflammation - Chronic Freunds adjuvant (systemic): allodynia Days-weeks [415]

KBxN serum transfer (joint): allodynia Days-months [46]
CAIA antibody transfer (joint): allodynia Days-months [47]

Osteoarthritis Anterior cruciate ligament section: weight bearing, activity,
mechanical thresholds

Days-months [76,416,417]

Iodoacetate model: weight bearing, activity, and mechanical
thresholds

Days-weeks [418]

Skin Incision Plantar incision: tactile allodynia Hours-days [419]
Paw Burn Plantar burn: thermal and mechanical allodynia Hours-days [420]
Visceral Colonic distention/inflammation:

pseudoaffective response, tactile sensitivity
Days-weeks [421,422]

Pancreatitis Evoked inflammation: affective behavior and hypersensitivity Days-weeks [423]
Bladder (Cystitis) Evoked inflammation: abdominal hypersensitivity Days-weeks [424]
Mononeuropathy Nerve compression: allodynia

Nerve ligation: allodynia
Needle stick: allodynia

Days-months [425–427] [428] [433]

Polyneuropathy Diabetic model (Streptozotocin): allodynia Days-weeks [429]
Chemotherapy: tactile allodynia Days-months [430]

Spinal Injury Compression/section: tactile allodynia Days-months [207]
Bone Cancer Femoral osteosarcoma: pressure/allodynia Days-weeks [431,432]
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response may be interpreted as a change in the processing
of the aversive stimulus suggesting an “analgesic” treat-
ment effect. Tominimize the likelihood of a false positive,
several controls may be taken. Firstly, at a minimum, this
assertion of analgesic action rests upon the absence of a
block of the animal’s motor capacity to make the required
response. Increased thresholds or latencies may reflect
changes in motor strength, motor coordination, and
competing arousal states (sedation or hyperactivity/
stereotypic behaviors), leading to competing behaviors.
The presence of ongoing spontaneous activity, normal
ambulatory patterns, and simple reflexesmay be necessary
to corroborate the absence of obtunding behaviors or
incapacity [76]. Secondly, the use of thesemodels provides
the greatest information when performed in the context of
a range of doses, concurrently with a range of doses of
standard, well-characterized agents, for example, NSAIDs
(such as Ibuprofen or ketorolac), anti-convulsants (such as
gabapentin), and/or opiates (such as morphine). Con-
current comparison of the dose response curves for side
effect profile (e.g. changes in ambulation) and the anti-
nociceptive action allows calculation of therapeutic ratios
to permit comparison of the predicted relative safety of
different agents or their combinations (see, for example,
[77–79]). The use of pharmacologic standards permits
comparison between research groups. Thirdly, co-varying
results (namely equi-effective dosing and time course) on
multiple behavioral paradigms in tests with common
underlying mechanisms can also be used. Given compar-
able hypothesized mechanisms in different models we
would not anticipate major differences in potency and
time course for a given agent. Such differences should be
considered as unanticipated. Fourthly, covariance between
pharmacokinetic and pharmacodynamics as regards
behavioral effects versus time course and concentrations
in plasma and brain provides an indication that the drug
as formulated and delivered has a predictable target
engagement (see, for example, [80,81]).

Model selection
Model selection in Table 1would likely be based on one of
several factors. Firstly, an assumed target mechanism (an
inflammatory model such as carrageenan or KBxN for an
anti-inflammatory agent or models of central facilitation,
such as intraplantar formalin or capsaicin). Secondly, an
apparent comparability of the target model with the
intended clinical target (e.g. face validity: an incision
model for postoperative pain or a nerve injurymodel for a
mononeuropathy). Thirdly, the specfic clinical pathology
(e.g. chemotherapy-induced neuropathy). Fourthly, the
specificmodel choice could depend uponwhether the aim
was to characterize the role of a novel mechanism in a
specific pain state (such as a chemotherapy neuropathy) or
whether the drug target is known, and a simple “screening”

model is needed to characterize the relative activity of a
family of agents. Here, opiates might be examined using
acute thermal escape [82,83] or studies with glutamate
receptor antagonists might employ the formalin flinching
model [84,85]. Neither of those models have face validity
for a clinical condition, but both reflect endpoints
mediated by specific elements regulated by the respective
drug targets. Labor-intensive models, such as the CPP,
would be considered more appropriate to comfirm the
analgesic properties of a specific target or drug effect, as
opposed to the need to screen large numbers of agents.

Species
The majority of such work has involved rodents. Several
points should be made. There are strain differences
reported amongst mice and rats in various pain models
and these must be considered when considering reported
results [86]. With regard to the use of non-rodent species,
experimental primate models of threshold, tissue and
nerve injuries have been described [87–89], but there is no
consensus that suchmodels reveal distinctivemechanisms
or are associatedwith increased predictive reliability. There
has been an increase in interest in using othermodels such
as companion animals (e.g. dogs and cats) in the context
of clinical trials with validated behavioral inventories in
animals with an ongoing clinical pathology (e.g. osteo-
sarcoma and osteoarthritis) [90–92].

Sex
The majority of studies considering mechanisms and
pharmacology of nociceptive processing have involved
males. It has become apparent that, where examined, as
with the role of cyclooxygenases [93], ASICs [94], toll-like
receptors [95,96], and analgesics such as opiates [97],
there can be significant differences between the responses
of males and females.

Ethical considerations
While the importance of preclinical evaluations in pain
research is apparent [86], an important caveat in the use of
the unanesthetized animal to study persistent, inescapable
pain states is the need to minimize unnecessary stress and
utilize sufficiently powered paradigms to minimize
animal use [98,99]. Importantly, the models listed in
Table 1 have been subject to approval in the US by the
relevant institutional animal care and use committees.

Mechanisms of behaviorally defined pain states
The protocol for defining systems relevant to pain
processing involves demonstrating convergence between
the underlying physiology of those systems that are
activated by stimuli (which evoke the constellation of
events defining a pain state) and the pharmacology that
modifies the observed behaviorally defined pain state.
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Acute high intensity thermal or mechanical stimuli
Acute high intensity thermal or mechanical stimuli result
from activation of populations of lightly myelinated
(A∂) and slowly-conducting, unmyelinated (C) fibers. As
summarized in Figure 1, the response properties of these
afferents are defined by thermal or mechanical transduc-
tion channels such as the TRP family of channels (TRPA1/
TRPV1) or mechanically sensitive large cation channels

[100], which are expressed in dorsal root ganglion (DRG)
cells and small afferent terminals. This depolarization of
the C nociceptor leads to conducted potentials mediated
by several types of voltage-gated sodium channels, some of
which are selective for small afferents (e.g. NaV 1.7, 1.8
and 1.9) [101,102]. This afferent traffic invades the central
terminal, opens voltage-gated calcium channels of the
N type (CaV2.2), which serve to mobilize populations of

Figure 1. Summary of peripheral targets in nociceptive processing

Stimuli, such as tissue injury, inflammation, or infection, lead to the release of pro-inflammatory mediators from local/resident cells (mast cells, Schwann cells),
migrating cells (macrophages, neutrophils), damaged cells, and blood vessels, at the peripheral terminal. These mediators act on receptors expressed on dorsal
root ganglion cells and, when activated, evoke excitation and activation of intracellular kinases. This results in the phosphorylation of receptors inducing
activation at lower thresholds, increased afferent traffic, and terminal sensitization.
DRG, dorsal root ganglion; DNA, deoxyribonucleic acid; RNA, ribonucleic acid; FP, formyl peptide; 5-HT, 5-hydroxytryptamine (serotonin); CGRP, calcitonin
gene related peptide; ATP, adenosine triphosphate; NGF, nerve growth factor; BDNF, brain-derived neurotrophic factor; CCL, chemokine (C-C motif) ligand;
CX3CL1, chemokine (C-X3-C motif) ligand; TNF, tumor necrosis factor; IL, interleukin; sP, substance P; H+, hydrogen ions; TRK, tyrosine receptor kinase;
NK-1, neurokinin 1; ASIC, acid-sensing ion channel; TRPV1, transient receptor potential cation channel subfamily V, member 1; TRPA1, transient receptor
potential cation channel, subfamily A, member 1; Nav1.7, voltage-gated sodium channel type 1.7; Cav2.2, voltage gated calcium channel type 2.2; PKC,
protein kinase C; PKA, protein kinase A; CaMK, calcium/calmodulin-dependent protein kinase; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase;
MAPK, mitogen-activated protein kinase; GPCR, G protein-coupled receptor; TLR, Toll-like receptor.

Page 5 of 27
(page number not for citation purposes)

F1000Prime Reports 2015, 7:56 http://f1000.com/prime/reports/m/7/56



synaptic proteins (soluble N-ethylmaleimide-sensitive
factor activating protein receptor [SNAREs]) [103]. This
results in deployment of synaptic vesicles that contain and
release a variety of excitatory (glutamatergic and peptider-
gic) transmitters at the first order synapse; these transmit-
ters act through eponymous ionotropic (AMPA) and
metabotropic (metabotropic glutamate receptor [mGluR]
1 and 5; NK1) receptors to acutely depolarize the second
order membrane [104].

The first order linkages of the primary afferents are
formed with two functionally defined populations of
second order neurons: those that receive largely A∂/C
fiber input (and are hence nociceptive specific neurons)
and those that receive convergent input from both low
threshold (Aß) and the high threshold sensory axons
(referred to as wide dynamic range [WDR] neurons). In
the nociceptive specific neurons, the frequency of
discharge rises as stimulus intensity exceeds the thresh-
old of the nociceptive afferents, while in the WDR
neurons, the frequency of discharge progressively
increases as the stimulus intensity increases over the
thresholds for the low threshold and then high threshold
nociceptive afferents, thus encoding as a function of
frequency the range of stimulus intensity from non-
aversive to aversive [105,106].

The postsynaptic activation resulting from large afferents
projecting into the dorsal horn is subject to pre- and
postsynaptic inhibitory regulation through GABAergic
and glycinergic interneurons. Loss of that inhibition will
typically lead to a marked enhancement of the post-
synaptic activation otherwise initiated by Aß input [107],
leading in vivo to a prominent tactile evoked pain
behavior (e.g. allodynia) [108].

Tissue/nerve injury
Peripheral terminal/DRG
The ongoing pain represents ongoing small afferent
traffic generated at the peripheral terminal by active
factors released from blood (vascular injury, plasma
extravasation), damaged/disrupted tissue, local-resident
cells (keratinocytes, mast cells, endothelial cells,
Schwann cells), and migrating inflammatory cells
(macrophages, neutrophils) [109,110].

These factors include products derived from injured cells
(RNA/DNA; H+, HMGB1) [111], or DNA released from
inflammatory cells (e.g. neutrophil extracellular traps
[112], endothelial cells/clotting cascade and blood
(bradykinin, serotonin), a variety of local inflammatory
cells yielding lipid mediators formed by cyclooxygenase
(prostaglandins) and lipoxygenases (hepoxilins, 5,6-
epoxyeicosatrienoic acid [EET] [113–115]), proteinases

(trypsin), ATP, growth factors (NGF/ brain-derived neuro-
trophic factor [BDNF]) [115], pro-inflammatory cytokines
(tumor necrosis factor [TNF], interleukin [IL]-1b, IL-6)
[116,117], chemokines (CCL2, CXCL1 and CXCL5) [118–
120], and Gram negative and positive bacterial products
acting through toll-like receptor 4 (TLR4) and formyl
peptide receptor 1 [121,122]. In addition, the local milieu
is altered by products released from sympathetic (epi-
nephrine) and primary afferent terminals (substance P
[sP], calcitonin gene related peptide [CGRP]) [123–126].

In each case, these products act upon eponymous
receptors that are expressed on peptidergic (C fiber)
DRG cells and, when activated, evoke excitation and
activation of intracellular signaling through increased
intracellular calcium ions (Ca2+) and activation of
different cascades, including that signaling through IP3,
which leads to activation of a variety of terminal kinases
including cyclic adenosine monophosphate (cAMP)-
dependent protein kinase (PKA), protein kinase C
(PKC), calcium/calmodulin-dependent protein kinase
(CaMK) [127], phosphoinositide 3-kinase (PI3K) [128],
and mitogen-activated protein kinases (MAPKs), includ-
ing extracellular signal-regulated kinase (ERK), p38 MAPK
and c-Jun N-terminal kinase (JNK). These kinases phos-
phorylate a variety of terminal membrane channels and
protein, leading to their activation at lower thresholds and
with increased functionality. The net effect of these events
is to initiate and sustain ongoing small afferent traffic and
produce a sensitization of the terminals of small afferents,
such that they display an enhanced discharge for a given
stimulus intensity.

After local injury to the nerve, there is a dying back of the
injured axon and reactive changes in the DRG neuron
(including an increase in protein expression and the
expression of various transcription factors, such as
activation transcription factor 3: ATF3) and sprouting
of the peripheral afferent terminal. Of interest, after
persistent peripheral inflammation, peripheral terminals
also show evidence of extensive sprouting and changes in
the DRG, resembling those observed after nerve injury
[46,129]. Physiologically, the injured afferent axon
shows prominent ongoing activity that is believed to
provide a source for the ongoing pain that often
characterizes the nerve and tissue injury states
[130,131]. The ectopic afferent activity in the injured
axon has been shown to arise from the neuroma and
from the dorsal root ganglion cell body [132]. The origin
of this ongoing activity reflects changes in channel
expression where local nerve injury and persistent
inflammation can lead to the following: (a) an upregula-
tion of sodium channels in the C-fiber afferent axon
[133–135] and a downregulation of potassium channels
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[136]; (b) sympathetic ingrowth [137]; (c) cytokines and
chemokines released from migration of inflammatory
cells [138–140]; (d) activation of non-neuronal (satellite)
cells [141]; and (e) cross-talk between ganglion neurons
[142]. These effects jointly enhance excitability of the
DRG membrane, leading to ectopic activity that projects
into the dorsal horn. Further, as noted above, nerve injury
pain states are often characterized by an exaggerated
response to light touch (tactile allodynia), which is
mediated, in part, by activity in large, low threshold
mechanoreceptive afferents [31]. The ability of the large
Aß axons to drive a pain state may reflect an exaggerated
activation of the WDR neurons with which they make
synaptic contact, secondary to loss of intrinsic inhibition
otherwise regulating large afferent input (see below).

Central (spinal) sensitization
Ongoing small afferent input leads to increased transmit-
ter release at the first order synapse, and a robust increase
in the frequency of the response evoked by large and small
afferent input in dorsal horn projection neurons. The
increased activity secondary to C fiber input leads to
increased neuronal excitability, such that subsequent
afferent input will evoke a greater response in these
second order projection neurons, a phenomenon char-
acterized by the classic description of the enhanced
response initiated by repetitive small afferent input
(“wind-up”) [143]. Convergence between the pharmacol-
ogy of spinal facilitation and hyperpathic states empha-
sizes that this enhancement of spinal afferent processing
contributes mechanistically to the enhanced pain states
observed after tissue and nerve injury. Components of the
biology of the facilitated state are summarized in Figure 2.

Enhanced excitability of the second order neuron
Enhanced excitability of the second order neuron results
from engagement of the N-methyl-D-aspartate (NMDA)
receptor (a calcium ionophore) secondary to removal of a
magnesium channel block [144], increased trafficking of
AMPA (2-amino-3-(5-methyl-3-oxo- 1,2-oxazol-4-yl) pro-
panoic acid) receptor subunits, leading to an increase in the
expression of calcium-permeable AMPA sites [145–147]
and activation of mGluRs. For glutamate, activation of
group I (mGluR1 and mGluR5), present on neurons and
glia [148], leads to stimulation of phospholipase C,
increased intracellular Ca2+ levels, activation of adenylate
cyclase and induction of the ERKs/MAPKs [149]. Agents
blocking these ionotropic [150–154] and group 1 meta-
botropic receptors (mGluR1 andmGluR5) [155,156] have
potent effects upon the associated hyperalgesic states.

Increased intracellular calcium and activation of cAMP and IP3-DAG
Increased intracellular calcium and activation of cAMP
and IP3-DAG pathways by the metabotropic receptors

lead to increases in the activity of dorsal horn kinases,
including CaMK [127], PI3K [128], PKA, PKC, and
MAPKs serving to phosphorylate local membrane
receptors and channels enhancing their functionality,
such as the NR1 and NR2A or NR2B subunits of the
NMDA receptor [157–159].

Other calcium-dependent pathways
Aside from being a charge carrier, increased intracellular
calcium further serves to activate a variety of intracellular
enzymes that are part of multiple facilitatory cascades.
Several examples can be noted. Isoforms of phospholi-
pase A2 lead to activation of signaling by a wide variety
of constitutively expressed cyclooxygenases (COX-1 and
COX-2) and lipoxygenase metabolites [110,160,161].
Prostaglandin E2, which through several eponymous
receptors serves by activation of protein kinases (e.g. A
and C) [162] to enhance pre-synaptic voltage-gated
sodium and calcium channel function (in part through
enhanced channel trafficking to the membrane) [163],
also acts post-synaptically by attenuating glycine receptor
function, thus, reducing constitutive dorsal horn glycine-
mediated inhibition [164]. Nitric oxide synthases
(NOSs) are constitutively expressed in neurons and glia
and are activated by afferent traffic (through calcium
ionophores such as NMDA and voltage gated calcium
channels), leading to increased intracellular calcium
[165,166]. Nitric oxide initiates downstream signaling
through cyclic guanosine monophosphate (cGMP) and
protein kinase G (PKG) to modulate neurotransmission
through various ion channels [167] leading to the release
of a variety of proalgesic factors [168]. Drugs targeted at
several isoforms, notably neuronal NOSs, have been
shown to possess efficacy in a variety of hyperpathic pain
states [166,169–171].

Neuronal chloride homeostasis
As reviewed above, current work emphasizes the
importance of constitutively active glycine and GABA-A
receptors (chloride ionophores) in down regulating
dorsal horn afferent-evoked activation, particularly that
initiated by large afferent input [172]. Following nerve
injury and in the face of high levels of spinal activation,
there is an increased release of BDNF from the primary
afferent and from microglia [173]. BDNF, acting through
tyrosine receptor kinase (TRK)B, evokes down regulation
of the K+-Cl− co-transporter (KCC2) in dorsal horn
neurons [174]. In addition, activation of WNK-SPAK
kinases inhibits KCC2 via phosphorylation [175]. This
decrease in KCC2 activity leads to an increase in
intracellular Cl− [176–180]. Alternately, increasing intra-
cellular Cl− can occur secondary to increasing Na+-K+-
2Cl- cotransporter-1 (NKCC1) [176,181]. In either case,
these changes alter the result of chloride ionophore
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(GABA-A and glycine receptors) activation to yield
membrane depolarization and hyperexcitability, rather
than inhibition. Inhibition of NKCC1 with bumetanide
or the recently discovered KCC2 activators lowered
intracellular chloride concentrations and attenuated
injury-evoked neuronal hyperactivity and hyperpathia
in rodent models [181,182], emphasizing the potential
utility of this approach in managing a variety of
hyperpathic states influenced by this aberration of
inhibitory regulation [175].

GTP Cyclohydrolase 1 (GCH1) and tetrahydrobiopterin (BH4)
GCH1 is present in spinal cord neurons and glia.
Inflammation and nerve injury have been shown to result
in its upregulation in glia and in neurons [183–185].
GCH1 is a pivotal regulator of BH4, an essential co-factor
for nitric oxide synthase and aromatic hydroxylases that
synthesize tyrosine, and severalmonoamines [186]. Excess
BH4 results in a pain state and, conversely, inhibiting its
synthesis reduces hyperpathic states [187]. Importantly, a
GCH1 haplotype resulting in reduced BH4 synthesis has

Figure 2. Summary of central targets in nociceptive processing

Stimuli, such as tissue injury, inflammation, or nerve injury activates the primary afferents and induces CaV and SNARE-dependent release of neurotransmitters,
growth factors and neuropeptides from the spinal primary afferents. Release of these substances activates the resident glial cells and migrating cells (T cells,
macrophages and neutrophils) in the spinal cord alongwith the second order neurons. These cells release a constellation of pro-inflammatory and anti-inflammatory
molecules which further act on the second order neurons activating several protein kinases responsible for the phosphorylation of several membrane bound
receptors leading to the activation of second order neurons, thus initiating and maintaining the hyperexcitable state of these neurons, and further sending the
nociceptive signals to higher brain centers. The second order neurons also project onto raphe-spinal serotonergic neuronswhich, through the bulbospinal pathway,
terminate in dorsal horn neurons and serve to facilitate the excitability of dorsal horn projection neurons.
5-HT3, 5 hydroxytryptamine 3 receptor; AMPA-CP, a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-calcium permeable; ATP, adenosine
triphosphate; BDNF, brain-derived neurotrophic factor; CaMK, calmodulin-dependent protein kinase; CaV, voltage-gated calcium channels; CCL, chemokine (C-C
motif ) ligand; CGRP, calcitonin gene related peptide; CX3CL1, chemokine (C-X3-Cmotif) ligand; GABA-A, gamma aminobutyric acid; IFNg, interferon gamma; IL,
interleukin; MAPK, mitogen-activated protein kinase; mGluR, metabotropic glutamate receptor; NK-1, neurokinin-1; NMDA, N-methyl D-aspartate; PKA, protein
kinase A; PKC, protein kinase C; SNARE soluble N-ethylmaleimide-sensitive factor activating protein receptor; sP, substance P; TNF, tumor necrosis factor.
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been associated with a pain-protective effect in experi-
mental and clinical pain phenotypes [188,189].

Activation of resident non-neuronal cells
After persistent inflammation and several forms of nerve
injury, morphological changes are observed in a variety
of glial cells in the peripheral nerve: Schwann cells [190],
the dorsal root ganglion (satellite cells) [141], and spinal
dorsal horn (microglia, astrocytes, and oligodendro-
cytes) [191]. Aside from morphology, persistent afferent
traffic and nerve injury rapidly leads to phosphorylation
of p38 MAPK isoforms and mediates the upregulation of
pro-inflammatory pathways in microglia [168,192].
While glial activation is evident in many inflammatory
and neuropathic states, it is not uniform. Thus, in some
chemotherapeutic models, microglial responses are not
evident [73]. This glial activation can be initiated by
synaptic overflow through release from primary afferents
and intrinsic neurons of a variety of molecules, including
glutamate and peptides, such as sP, CGRP, angiotensin
and purines (ATP). These products (delivered spinally or
in cell culture) will lead to increased expression of glio-
typic markers in DRG and spinal cord, and phosphor-
ylation of intracellular transcription factors, such as ERK
and p38 MAPK. Based on the anti-nociceptive suppres-
sion of glial activation of various antagonists, the action
of purine in a variety of tissues and nerve injury pain
states is considered to be mediated through P2X4/P2X7
[193,194] and angiotensin through the AT receptor 1
[195–197], chemokines (such as fractalkine via the
CX3CR1 receptor) [198], and monocyte chemoattractant
protein-1 ([MCP1] through the CCR2 receptor) [199],
growth factors (e.g. neuregulin-1, NRG1) through
tyrosine kinase receptors erbB3 and erbB4) [200],
cytokines such as TNF through TNF-r 1 and 2 [201],
and a variety of products such as HMGB1 and HSP90 via
the TLR4/RAGE and TLR4 receptors, respectively. Many
of these products are increased in spinal cord neurons
and glia with persistent inflammation and nerve injury
and act upon glial TLR4 [202–204], which has been
shown to be expressed on astrocytes and microglia [96].
Glial activation by the above extracellular hormones,
acting through eponymous receptors on microglia and
astrocytes, serves to directly increase the excitability of
the primary afferent terminal and second order neuron
through the increased synthesis and glial release of
purines (ATP), pro-inflammatory cytokines (TNF, IL-1b,
IL-6, and interferon [IFN]g) [71, 113, 205], lipid
mediators (e.g. prostaglandin E2, hepoxylins, chemo-
kines, such as CCL2) [206], and reactive-free radicals
[207]. It has long been appreciated that tissue injury and
inflammation increases spinal dynorphin message and
expression [208,209] and intrathecal dynorphin delivery
initiates proalgesic factor release and hyperalgesia

[210,211]. Recent work has shown that spinal astrocytes
produce and secrete dynorphin [212].

Conversely, injury and inflammation can reduce astro-
cyte expression of excitatory amino acid transporter 1
(EAAT1) and EAAT2, leading to increased extracellular
concentrations of glutamate and excitation [213,214].
The emphasis upon glial activation has led to the effort to
characterize the ability of agents reducing glial activation
to attenuate nerve and post-tissue injury pain states.
Agents such as cannabinoid (CB2) agonists, minocycline
and propentofylline suppress glial activation and attenu-
ate injury-evoked hyperpathia in animal models, though
systematic trials have not shown promise [215,216].
Other approaches suppressing glial activation and injury-
evoked hyperpathia include adenosine agonists
[217,218], inhibitors of purinergic receptors including
P2X7 [219–221] and P2Y12 [222,223], inhibitors of P38
MAPK [224,225], inhibitors of NF-kß [226], and
inhibitors of TLR4 signaling [227–230].

Non-resident inflammatory cells in spinal cord and DRG
Following persistent inflammation and nerve injury, the
presence of macrophages and T cells in the DRG and
spinal cord has been identified [138–140]. The origin of
this transmigration arises from several mechanisms.
Endothelial cells respond to chemokines such as CC-
chemokine ligand 2 (CCL2/MCP1) and CX3C-chemokine
ligand 1 (CX3CL1: fractalkine) with increased expression/
release of chemo-attractants such as CCL2 acting through
CCR-2 to increase the presence of receptors and tethering
proteins that facilitate trans-endothelial migration of
monocytes and T cells across the blood–CNS barrier.
CCL2 and CX3CL1 also attract monocytes and T cells to
the CNS [199,231], and produce an increase in neurovas-
cular permeability secondary to the local release of
transmitters from the peptidergic afferents, such as sP
and CGRP [232,233].

Spinobulbospinal facilitatory pathways
Afferent input activates lamina I neuron excitatory
projections onto raphe-spinal serotonergic neurons,
which, in turn, terminate in dorsal horn neurons and
serve to facilitate the excitability of the dorsal horn
projection neurons [234]. Lesions of this system at the
level of the ascending neuron or at the descending
(bulbospinal) link [235–237] abolish allodynia. These
effects are thought to be mediated through a spinal
5HT3 [235] (but see [238]), 5-HT4, 5-HT6 and 5-HT7
receptors [239].

Intrinsic regulation of neuraxial processing
Spinal nociceptive encoding of afferent input is subject to
a robust up-regulation of the input-output function.
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Conversely, this excitation is subject to an extensive
inhibitory control. Several examples of this regulation
can be noted.

GABAergic and glycinergic interneuronal systems
These systems, through GABAA and strychnine-sensitive
glycine receptors, constitutively regulate the excitation
initiated by large afferent input. Thus, low-threshold
primary afferent drive superficial GABAergic interneur-
ons [240]. As reviewed above, loss of this constitutive
inhibitory regulation, as occurs after peripheral inflam-
mation and nerve injury, leads to a prominent allodynia
[164,241].

Glutamate initiates excitation through ionotropic and
metabotropic group 1 (mGLu1) receptors
The metabotropic group III receptors are primarily
located on presynaptic terminals, where they act through
Gi/o-coupled receptors to inhibit transmitter release
through inhibition of voltage-gated calcium channels
and activation of potassium channels [242]. Their
activation can attenuate hyperpathic states after inflam-
mation and nerve injury [243,244].

Bulbospinal regulatory systems
Descending catecholamine-containing projections act
presynaptically on dorsal horn a(2A)-adrenoceptors on
nociceptive primary afferent terminals and on second
order projection neurons to regulate small afferent
throughput [245]. Small afferent traffic has been
shown to increase activity in these descending projec-
tions [246], and activation leads to regulation of
nociceptive processing [245,247].

Anti-inflammatory cytokines
As noted, inflammation and nerve injury can lead to
the appearance of macrophages and lymphocytes.
When activated, these cells can release significant
quantities of cytokines. While widely considered in
terms of their pro-inflammatory phenotype, popula-
tions of these monocytic cells can express an anti-
inflammatory phenotype [248,249], and reduce hyper-
pathic states [250,251]. The presence of such cells is
consistent with the increased spinal expression of a
variety of anti-inflammatory cytokines, including IFNg,
IL-4 and IL-10 and IL-17 following nerve injury and
inflammation [159,252,253]. Agents activating increas-
ing expression of anti-inflammatory agents reduce
allodynia following neuropathies [254]. Increasing
the presence of these anti-inflammatory cytokines in
the spinal space, such as after transfection with viruses
[255,256] or plasmids [257], has significant anti-
hyperalgesic actions [258].

Anti-inflammatory lipid mediators
Considerable attention is paid to proalgesic actions of
the lipid mediators released by neuronal and non-
neuronal cells. However, a variety of anti-algesic lipid
mediators are released in the periphery and spinal cord
after peripheral injury and inflammation and can serve
to suppress generation of the proalgesic and proinflam-
matory milieu. Several examples can be noted, including
those agents synthesized by a cascade of 5- and 12-
lipoxygenase, and cyclooxygenase 2 enzymes, the resol-
vins, protectins and lipoxins. Their actions are mediated
by families of G protein-coupled receptors (GPCRs)
present on macrophages and glia [259]. Local peripheral
delivery of several of these lipids reduced the expression
of proinflammatory cytokines and chemokines, includ-
ing TNF, IL-1b, IL-6 and CCL2 [260]. In mice, their
intrathecal delivery reduced inflammation and nerve
injury-induced hyperpathia [260–263]. Another exam-
ple of anti-inflammatory lipids is the metabolites of
cytochrome P450 enzymes, specifically the EETs. These
epoxy-fatty acids, along with epoxides of parent doc-
osahexaenoic acid and eicosapentaenoic acid, have been
shown to be anti-hyperalgesic in several pain models.
The EETs are subject to rapid enzymatic degradation via
the soluble epoxide hydrolase (sEH). sEH inhibition
increases the concentrations of these EETs and exerts an
anti-hyperalgesic action in inflammatory and neuro-
pathic states [264,265].

Consideration of selected drug targets regulating
nociceptive processing
A variety of targets have been identified that can potently
regulate nociceptive processing at the level of the brain
and spinal cord. Several exciting areas of work are briefly
noted.

Opiates
Opiates exert their potent analgesic effects through one
of three identified G protein-coupled opioid receptors
(mu, delta and kappa) [266,267]. Mechanistically, these
agents exert potent effects through spinal and suprasp-
inal interactions [268,269]. Although well-studied,
opiates have been shown to have mechanisms beyond
simple receptor affiliation for future target development.
Mu opiates have been shown to have a number of splice
variants. The development of novel mu opiates has been
targeted at selectivity for these splice variants [270,271].
Mu opiates are normally considered to couple through
Gi/o protein in a ß arrestin-dependent fashion that serves
to promote receptor internalization and desensitize G
protein signaling [272]. Recent work has suggested
activation can be achieved independently of ß arrestin
signaling and these “G protein biased” ligands yield
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increased analgesic efficacy and persistence [273–275].
Recognizing that opiate receptors can form heterodimers
with a variety of G protein-coupled receptors has
suggested the interesting development of a bivalent
ligand, for example, interacting with opioid heterodi-
mers, such as with a mu and delta receptor. Here, a
combined mu agonist and delta antagonist ligand
displays enhanced efficacy and a reduced propensity
for tolerance [276,277]. Similar results have been
observed with opioid and nonopioid heterodimers
such as bivalent ligands for Mu - CB1 [278] and Mu-
mGluR5 [279,280]. Importantly, the enhanced proper-
ties are not mimicked when unlinked ligands focusing
on the two targets are given concurrently, or if short or
longer linkers are employed [281].

Alpha-adrenergic agonists
Three major alpha-2 receptor subtypes (A-C) have been
identified [282]. Dexmedetomidine and xylazine are
potent alpha 2 adrenergic agonists approved as analgesics
and induction (sedative) agents for human and veterinary
use, respectively [283,284]. The specific roles of the several
subtypes, namely pain processing versus the principal side
effect (sedation), have been suggested [285], but are
controversial.

Oxytocin
Oxytocin receptors are distributed in the superficial
dorsal horn of the human spinal cord [286] and their
activation has been shown to depress spinal excitability
and reduce depression [287,288]. This spinal analgesic
action may be mediated through an enhancement of
GABAergic inhibition [289,290].

Cannabinoids
Cannabinoids interact with two receptors (CB1/CB2),
both coupling through Gi/o proteins [291]. Behavioral
studies have shown that cannabinoids can yield promi-
nent antinociceptive effects in a variety of animal models
of acute, tissue injury-, and nerve injury-induced nocicep-
tion [291]. The psychotropic effects of cannabinoids
appear mediated through CB1 and not CB2 [292,293].
CB1 receptors are located on CNS neurons, notably the
dorsal root ganglia [294] (while CB2 has been identified
on monocytes and microglia), and their activation is
believed to regulate inflammatory processes [291] in glia
and to suppress glial activation [295]. Ligands interacting
with the G protein-coupled CB1 and CB2 receptors have
been shown to regulate nociceptive processing [296,297].
Agents increasing the presence of endogenous CB1
agonists by blocking its metabolism (through fatty acid
hydrolase) have been implicated in activating cannabi-
noid receptor function [298]. Cannabinoid-initiated

change in pain processing is based on the suppression of
spinal and thalamic nociceptive neurons, but peripheral
sites of action have also been identified.

Novel targeting strategies for analgesics
An exciting component of pain modulation has been
the implementation of several novel approaches to
modify the function of systems that process nociceptive
information. A brief note on these approaches will be
given below.

Targeted toxins
This approach takes advantage of toxin delivery to
specific cell systems. Several examples include use of
toxins coupled to agonists for G-protein-coupled recep-
tors, which are internalized along with the receptor
ligand into cells expressing the particular receptors upon
activation. Such receptors include those for mu opiates
and neurokinin 1 for sP, present on cells within the
spinal pain pathway. A toxin, such as saporin, coupled to
these ligands is taken up by cells expressing the relevant
receptor. The internalized saporin blocks ribosylation
and the targeted cells die, leading to a robust analgesia in
a variety of models in several species, including the
rodent [299] and dog [300,301], and is currently in
clinical trials (NCT02036281). The irreversibility of
toxins such as saporin and resiniferatoxin will likely
preclude their use in non-terminal states. Other toxins
that can be delivered in this manner are the light chain of
Botulinum toxins, which, when attached to sP (or other
G protein coupled receptor ligands that undergo inter-
nalization when activated by an agonist), will lead to
cleavage of SNARE protein and block transmitter release
[302]. Such an approach is reversible andmay find utility
in long-lasting, but non-terminal pathophysiological
states. TRPV1 receptors are present on the terminals of
small high threshold primary afferents and, when
activated by ligands such as resiniferatoxin or capsaicin,
will yield desensitization of the central (after spinal
delivery) or peripheral (after peripheral delivery) afferent
terminals expressing the channel, leading to a robust
antinociception in rodents and dogs [303,304]. Topicals
targeted at TRPV1 receptors have been approved [305],
and intrathecal resiniferatoxin is in clinical trials
(NCT00804154). A further modality for targeting
TRPV1 channels takes advantage of the fact that, when
activated, TRPV1 forms a pore that is able to pass
large charged molecules. Protonated local anesthetics
(e.g. QX314), which cannot normally enter the axon, can
pass through TRPV1 channels that have been opened by
TRPV1 agonists such as capsaicin and produce a selective
block of sodium channel function in the TRPV1 (+)
afferent axons [306].
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Gene based approaches: specific block of protein synthesis
Targeting specific proteins that play a role in nociceptive
processing has been accomplished with several meth-
odologies, including intrathecally-delivered antisense
and viral and nonviral transfection [307–309]. Intrathe-
cal antisense has been employed to reduce expression of a
variety of transmitters, including sP cellular matrix
proteins (thrombospondin) [120] and receptors relevant
to nociceptive processing, including the NK1 receptors
[310], NMDA receptor subunits [311], P2X3 [118,312],
TrpV1 receptors [313], and a variety of kinases, such as
p38 MAPK [192,314], phospholipases [315], sodium
channels – such as Nav 1.8: [316], TRKB [317], and
TRPV1 [313] and transcription factors, such as transcrip-
tion factor EGR1. This knock-down has been shown to
yield analgesia. Transfection of small interfering RNAs
has been shown to reduce Nav1.7 miRNA and protein in
DRG and to reduce hyperpathia in diabetic rats [318].

Gene based approaches: transfection
Intrathecal delivery of viral vectors encoding a given
protein or the use of nonviral methods, such as nano-
particles or permeabilizing systems, can enhance targeted
protein expression in vivo. Several examples are noted.
DRG neurons virally transduced with a vector coding
for glutamic acid decarboxylase (QHGAD67) release
GABA to produce an analgesic effect. Increased expression
of endomorphin-2, an opioid peptide, or the preprohor-
mone for enkephalin or ß endorphin after intrathecal viral
vector transfection was found to be analgesic [319–321].
Increased spinal expression of the anti-inflammatory
cytokine IL-10 after intrathecal viral vector or plasmid
delivery was anti-hyperalgesic [257,319,322]. Increasing
expression ofMAPK phosphatase-1 reduces the phosphor-
ylation of p38 MAPKs and reduces nerve injury-evoked
increases in inflammatory cytokines and chemokines and
the associated hyperalgesia [323]. The Ca(2+) channel-
binding domain 3 (CBD3) peptide was found to block the
function of CaV2.2 channels and block nerve injury-
induced hyperpathia [324]. Increased expression of the
potassium channel Kv1.2 reduced nerve injury-induced
hyperpathia [325].

Routes of analgesic delivery
Aside from the normal routes of oral and parenteral drug
delivery, several routes have particular promise in
delivering analgesic therapies.

Spinal delivery
Delivery of a compound to a target site within the central
nervous system may be achieved by systemic adminis-
tration if the agent passes the blood-brain barrier and can
be delivered in doses that achieve an analgesic effect, but
do not have impairing side effects (e.g. sedation). Agents

with poor CNS penetration that are believed to act at
spinal targets (as many analgesics do) may be delivered
intrathecally or epidurally. While not routine, where the
mechanism of action results in a long duration effect (as
with many of the targeted toxins and gene therapeutics
discussed above) there are increasing examples of
neuraxial delivery of therapeutics [326,327]. An important
issue characteristic for neuraxial delivery is the formula-
tion requirement. Typically neuraxial formulations are
water-based products with a pH between 5 and 7 and
osmolarity in the range of 300 mOsM with minimal
adjuvants (e.g. surfactants, antioxidants, or antimicrobial
constituents) (see [326,328]). An additional issue to
consider in developing a spinal agent is the need for
specific preclinical safety evaluations employing this route
of delivery (see [326]).

Cutaneous delivery
Application to the skin may be employed to achieve a
circulating analgesic dosage (as with agents such as
lipophilic opiates) [329], or to achieve a local effect as
with topical capsaicin [330,331] or lidocaine [332] in
the treatment of post-herpetic neuralgia and diabetic
peripheral neuropathic pain. Topical NSAIDs provide
significant pain relief in arthritis patients when applied
as patches, gels, or in solutions such as dimethyl
sulfoxide (DMSO), and have a lower incidence of
gastrointestinal effects (see [333]). There is a growing
appreciation that locally applied products, such as
Botulinum toxin, may undergo uptake in the sensory
afferents and fast axon transport to the DRG and central
terminals [334,335] and may, in fact, undergo a
transcytotic movement into adjacent neurons [336]
and glia [337,338], leading to a potent homotopic
analgesia [334]. These mechanisms may account for the
reported efficacy of peripheral Botulinum toxin in
migraine (a pain state believed to originate from
intracranial meningeal afferents) [103]. The develop-
ment of delivery enhancers for transdermal movement of
such large molecules may yield increased therapeutic
utility [339]. Transfer of drugs through the skin faces
diffusion barriers (stratum corneum), methods to
enhance such transfer have included microneedles to
enhance skin permeability [340]. Enhanced cutaneous
penetration has also been achieved through the use of
nanoparticle formulations constructed from a variety of
materials ranging from silica to titanium dioxide
[341,342], coated microneedles [343,344], as well as
electrically driven molecule movements [345–347].

Transmucosal delivery
Agents delivered orally undergo significant hepatic first
pass metabolism and degradation within the gastrointest-
inal tract. Delivery systems can involve sprays, wafers and
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sublingual tablets. A growing focus is on transmucosal
drug administration employing the nasal, rectal, and oral
(buccal or sublingual) cavities. To enhance local absorp-
tion, agents may be formulated in mucoadhesive systems
to enhance mucosal contact [348–350]. Buccal delivery of
fentanyl has been shown to be effective in producing acute
onset pain relief [351]. Inhalation and nasal absorption is
another route for drug delivery. The absorption is effected
through the nasal mucosa and lung [352]. This approach
represents a favorable route for delivery of a variety of low
and high molecular weight compounds, including pep-
tides [353]. Of particular note, the nanoparticle formula-
tion noted above lends itself to transmucosal absorption
[354]. Of particular interest, there is evidence that
delivering the agent by nasal mucosa may allow access
to the central nervous system along the olfactory pathway
[355,356]. Oxytocin has been shown to have a pain
modulatory component. Delivery by the nasal route has
been shown to have efficacy inmigraine [357] and onpain
sensitivity [358].

Predictive successes/failures of preclinical models
of nociception
Preclinical work with analgesic targets has resulted in
several notable successes.

COX-2 inhibitors
COX-2 inhibitors were developed to target the inducible
form of the cyclooxygenases. They were found to be
active in a variety of preclinical models that defined
both a central and peripheral action [160] and led to
trials showing clinical efficacy and subsequent approval
[359,360]. While well tolerated in the short-term, long-
term use of these agents was unexpectedly found to
have deleterious cardiovascular side effects that had not
been appropriately assessed in the relevant preclinical
models [361].

Anti-NGF therapeutics
Anti-NGF therapeutics arose from the appreciation that
NGF acting through a Trk receptor could initiate pain
states, and that NGF levels rose in a variety of models of
hyperpathia [362]. Development of humanized anti-
bodies revealed important clinical efficacy in joint
disease [363,364]. A caninised anti-NGF monoclonal
antibody has been developed for veterinary therapeutics
[365]. Osteonecrosis secondary to anti-NGF activity is an
important limiting concern [366].

N-type calcium channel antagonist
Components of marine snail venom were found to block
voltage-gated calcium flux and were the ligand(s) by
which the N-type calcium channel was characterized
[367]. Binding sites for ziconotide were found to be

present in high concentrations in the spinal dorsal horn
[368]. Initial preclinical work showed its efficacy in
models of hyperpathic states [369,370]. Subsequent
work led to the development of and clinical approval for
Prialt for spinal drug delivery [371]. Recent efforts to
develop a systemically active N-type calcium channel
blocker failed tomeet efficacy standards in Phase II clinical
studies for activity in lumbosacral radiculopathy
(NCT01655849), and in post-herpetic neuralgia
(NCT017578) (see [372]).

Gabapentinoids
The anti-convulsant gabapentin was identified as an
analgesic by off-label clinical use, prior to work showing
its anti-hyperpathic activity in animal models. However,
the preclinical work was essential in identifying the a2∂
auxiliary subunit of the CaV2.2 as its target [21,373].
Subsequent work with it and the drug pregabalin has led to
its approval for use in post-herpetic neuralgia and painful
diabetic neuropathy [15], as well as fibromyalgia.

T-type calcium channels
T-type calcium channels are thought to regulate the
excitability of nociceptive afferents [374] and alter
nociceptive processing. When used in humans, an orally
active compound was found to reduce nociceptive-evoked
potentials (see [372]).

NaV 1.7
As noted, small afferents express NaV 1.7 channels. In the
human population, gain and loss of functionmutations in
the NaV 1.7 sodium channel lead, respectively, to
enhanced and diminished pain states [135], providing a
promising support for developing blockers for such
targets. Original work with novel targeted sodium channel
blockers was negative [375], but more recent work has
born positive fruit inmodels of postherpetic neuralgia and
primary erythromelalgia [376] (https://clinicaltrials.gov/
ct2/results?term=Xen+402&Search=Search).

Toxin based local anesthetics
Toxin-based sodium channel blockers, such as neosax-
itoxin and tetrodotoxin, have been shown to produce
long-lasting nerve blocks (in a variety of preclinical
models (see [377,378]). Human clinical trials have
shown a corresponding long duration of action and
efficacy [378,379] (NCT01786655, NCT01655823).

Angiotensin 2 receptor antagonist
As noted, evidence suggests that angiotensin may be
present in primary afferents and can activate a variety of
facilitatory cascades mediated through AT1 and AT2
receptors [380,381]. In Phase II clinical trials, an AT2
antagonist was found to be tolerated and it met its
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primary analgesic efficacy endpoint in post-herpetic
neuralgia patients [382].

Monoamine uptake inhibitors
As reviewed, preclinical work has shown that a
noradrenergic bulbospinal projection into the spinal
cord regulates dorsal horn nociceptive processing
through alpha2 adrenergic receptors with efficacy
shown in modulating hyperpathia in a variety of tissue
and nerve injury models [383]. In addition, forebrain
projections of serotonin and norepinephrine play an
important role in the regulation of affect. Such
preclinical work has led to approval of agents such as
duloxetine to treat chronic musculoskeletal pain (fibro-
myalgia), neuropathic pain associated with diabetes,
including discomfort from osteoarthritis, and chronic
lower back pain [384–386], and may contribute to
preventing a transition from an acute to a chronic pain
state [387].

Clinical trial target failures
Conversely, a number of targets have not been confirmed
in clinical trials. These include a lack of apparent clinical
activity in trials with neurokinin-1 receptor antagonists
([388], but see [389]), NMDA-glycine-site antagonists
[390], glial inhibitors (minocycline) [391] and CB2
agonists [392].

The apparent false-positive results of the preclinical
models have been discussed elsewhere (see, for example,
[26,393]). A number of variables may alone or jointly
contribute to the lack of predictive validity: (a) lack of
adequate target site engagement (e.g. pharmacokinetics,
lack of blood barrier penetration); (b) difference
between target properties in the model and in humans
(e.g. species differences in binding sites or enzyme active
sites); (c) dose-limiting side effects (or off-target site
actions) that were not addressed in the preclinical model;
and (d) preclinical results that could not be reproduced;
or (e) marginal (but statistically significant) evidence of
efficacy in the preclinical model. In the case of
demonstrated efficacy, robust assessments must present
results based on appropriate and achievable drug target
levels in models where active standards can be shown to
have robust actions. In the last case, there is increasing
use of multiple laboratories to confirm in-house results
along with the use of an adequate blinding protocol
(see a provocative discussion of these issues in [394]).
Finally, absence of an adequate therapeutic effect in the
human may equally reflect upon the complexity of the
human state and that, for some pain phenotypes, a
particular target may engage only a component of that
phenotype. It is important to note that clinical pain
therapies often employ agents with multiple targets and

combination therapies often display an improved
therapeutic benefit versus higher doses of either agent
alone [20,395].

Selection of targets for development
The above overview of the biology underlying nocicep-
tive processing emphasizes the complexity and diversity
of drug targets. Rational selection of a target for
development in humans is aided by a number of
convergent observations. Consider these points in the
context of the development of specific NaV channels
blockers. Firstly, the selection of a drug target that has an
identified action in humans. NaV 1.7 gain-of-function
and loss-of-function mutations are associated with
hyperpathia and analgesia in humans [132]. There is
an increasing appreciation that genetic screening of pain
patient populations will likely reveal not only differences
between patient populations with pain phenotypes, but
also confirm or reveal the role of novel targets [396,397].
Secondly, confirmation of a class action with an existing
drug. Systemic lidocaine at concentrations that do not
block sensory axon conduction will reduce neuropathic
pain states in humans [398]. Thirdly, mechanistic
convergence. NaV 1.7 protein shows increased expres-
sion after nerve injury in animal models and the
increased expression correlates with the development
of ectopic activity [399]. Fourthly, covariance of phar-
macodynamic and pharmacokinetics of drug action.
Parallels between pharmacokinetics and pharmacody-
namics as regards behavioral effects versus time course
and concentrations in plasma and brain provides an
indication that the drug as formulated and delivered has
a predictable target engagement (see, for example
[80,81]. A similar analysis may be considered as having
been useful in the development of other novel targets
such as GTP cyclohydrolase 1 (GCH1) [187], and opioid
receptor splice variants [400].

Development of veterinary analgesics
The above commentary has focused on the development of
human pharmaceutics through preclinicalmodels. Though
not often considered, numbers obtained from the veter-
inary community emphasize a similar impact in compa-
nion animal populationswith the treatment costs borne by
owners approaching those in the human arthritic patient
[30,401,402]. Not surprisingly, the increasing demand for
efficacious veterinary analgesics other than NSAIDs and
opiates has spurred a growth in interest in veterinary
products, with many large pharma having veterinary
divisions or spinoffs. Noted above, a caninised anti-NGF
product for osteoarthritis in dogs has been developed
[365]. Spinal actions of IL-10 have been shown to display
efficacy in regulating hyperpathic states [403]. Increasing
IL-10 release by delivery of intrathecal transfection
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methodologies is reported to have salutary effects in canine
models of persistent pain and development of a canine
therapeutic would be important (http://xaludthera.com/
products/). The intrathecal toxins sP-saporin and resnifer-
otoxin were shown to have efficacy in canine models of
osteoarthritis and osteosarcoma (see [301]). Suchwork has
enabled their development for human use for pain in
advanced cancer and they are now in clinical trials
(NCT02036281; NCT00804154). These studies also pro-
vide a corresponding link to furthering their development
for approval in the veterinary patient. Novel delivery of
formulations, such as transmucosal delivery of buprenor-
phine and dexmedetommidine, have been developed for
the feline patients [404]. Pathways for drug development
for veterinary use resemble those required for human
approval and are in the tract of development that would be
employed for human application (see: http://www.fda.
gov/AnimalVeterinary). It is important to note that the
veterinary patient suffering from osteosarcoma and
osteoarthritis displays complex behavioral patterns con-
sistent with the pain states. Considerable effort has been
expended by members of the veterinary community to
develop validated behavioral inventories to define the
gravity of the pain state in these patients [405–407]. It has
not been lost on those interested in analgesic drug
development that these clinical patients with these
inventories can provide an important clinical validation
in the larger animal models of analgesic efficacy and side-
effect profiles [408].

Closing comments
While there are evident limitations and pitfalls in the
translation of mechanisms defined in one species to
another, it is clear that the insights provided by the
merging of molecular and physiological studies with the
role of the characterized systems in pain behavior
provides a rational tool for developing analgesic targets
and drugs to engage these targets. This brief review
emphasizes the complexity of a system that has evolved
over the millennia to encode the events that started with
the task of recognizing fundamental threats to viability
and, as such, is intimately embedded in every aspect of
our biological system. It is thus not surprising that
modifying the function of these systems will be fraught
with the likelihood that to alter one component is to have
far-reaching effects onmany aspects of system function. It
is important to note that many of the agents with defined
efficacy have a prominent effect upon afferent processing
at the spinal level where alterations in the message
initiated by tissue and nerve injury are encoded.
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