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Abstract

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is a hereditary cancer syndrome in 

which affected individuals are at risk for development of cutaneous and uterine leiomyomas and 

an aggressive form of type II papillary kidney cancer. HLRCC is characterized by germline 

mutation of the tricarboxylic acid cycle (TCA) enzyme, fumarate hydratase (FH). FH-deficient 

kidney cancer is characterized by impaired oxidative phosphorylation and a metabolic shift to 

aerobic glycolysis, a form of metabolic reprogramming referred to as the Warburg effect. 

Increased glycolysis generates ATP needed for increased cell proliferation. In FH-deficient kidney 

cancer levels of AMPK, a cellular energy sensor, are decreased; resulting in diminished p53 

levels, decreased expression of the iron importer, DMT1, leading to low cellular iron levels, and to 

enhanced fatty acid synthesis by diminishing phosphorylation of acetyl CoA carboxylase, a rate 

limiting step for fatty acid synthesis. Increased fumarate and decreased iron levels in FH-deficient 

kidney cancer cells inactivate prolyl hydroxylases, leading to stabilization of HIF1α, and increased 

expression of genes such as vascular endothelial growth factor (VEGF) and GLUT1 to provide 

fuel needed for rapid growth demands. Several therapeutic approaches for targeting the metabolic 

basis of FH-deficient kidney cancer are under development or are being evaluated in clinical trials, 

including the use of agents such as metformin, which would reverse the inactivation of AMPK, 

approaches to inhibit glucose transport, LDH-A, the anti-oxidant response pathway, the heme 

oxygenase pathway and approaches to target the tumor vasculature and glucose transport with 

agents such as bevacizumab and erlotinib. These same types of metabolic shifts, to aerobic 

glycolysis with decreased oxidative phosphorylation, have been found in a wide variety of other 

cancer types. Targeting the metabolic basis of a rare cancer such as fumarate hydratase-deficient 

kidney cancer will hopefully provide insights into the development of effective forms of therapies 

for other, more common forms of cancer.
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Background

Hereditary Leiomyomatosis and Renal Cell Carcinoma

Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) is an autosomal dominant 

hereditary cancer syndrome in which affected individuals are at risk for the development of 

cutaneous and uterine leiomyomas and kidney cancer.(1, 2) Leiomyoma, which is a 

hallmark of HLRCC, is a benign smooth muscle neoplasm. We have detected HLRCC-

associated cutaneous leiomyomas, in over 75% of our affected patients, The number of 

cutaneous leiomyoma per patient ranged from zero to more than 100 lesions. (3) Cutaneous 

leiomyomas most often occur in the arrectores pilorum muscles, which are attached to the 

hair follicles,(4) The arrector pilori can be considered an energy sensing organ; when it is 

cold, the arrectores pilorum contract to trap air and provide insulation. These raised lesions 

are can be painful and are often sensitive to touch or cold. There is currently no effective 

systemic or topical treatment for HLRCC-associated cutaneous leiomyomas. The treatment 

is most often symptomatic, sometimes including surgical resection. Females affected with 

HLRCC are at risk for development of multiple, early onset uterine fibroids. Uterine fibroids 

are detected in over 90% of affected HLRCC females, 70 to 80% of whom will undergo 

either a myomectomy (surgical removal of the uterine leiomyoma) or hysterectomy 

(removal of the uterus).(3, 5)

HLRCC-associated kidney cancer

Patients affected with HLRCC are at risk for the development of early onset, bilateral and/or 

multifocal renal cysts and papillary kidney tumors. Papillary kidney cancer has been 

reported to occur in 60% of HLRCC families.(3, 5) Papillary kidney cancer can be classified 

as type 1 or type 2. Type 1 papillary kidney cancer is characterized by an indolent growth 

pattern and is the histologic subtype found in patients with Hereditary Papillary Renal 

Carcinoma, which is associated with germline MET gene mutation.(6, 7) Type 2 papillary 

kidney cancer, however, is a lethal disease associated with rapidly aggressive growth and 

early metastasis. HLRCC tumors are classified as type 2 papillary kidney cancer and are 

characterized histologically by orangophilic nucleoli and prominent perinucleolar halo 

formation.(8) Because HLRCC renal tumors may occur in young individuals and have a 

propensity to spread when the tumors are very small, affected individuals have a life-long 

need to undergo annual abdominal imaging starting at age 10.(9) Patients affected with other 

familial kidney cancer syndromes, such as von Hippel-Lindau (germline VHL gene 

mutation), hereditary papillary renal cell carcinoma (germline MET gene mutation), or Birt-

Hogg-Dubé syndrome (germline FLCN gene mutation) are managed with active surveillance 

until the largest renal tumor reaches the 3 cm threshold, at which time renal parenchyma-

sparing surgical resection is recommended.(10, 11) However, due to the aggressive nature of 

HLRCC renal tumors, active surveillance is not recommended for the management of even 

small HLRCC-associated renal tumors; wide surgical excision is recommended when an 

HLRCC-associated renal tumor is detected.(9)

Fumarate hydratase: the HLRCC gene

Hereditary leiomyomatosis and renal cell carcinoma is characterized by germline mutation 

of the TCA (Krebs) cycle enzyme gene, fumarate hydratase (FH).(12) (Figure 1) Fumarate 
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hydratase, which exists in both a mitochondrial as well as a cytosolic form, is a 

homotetramer which catalyzes the hydration of fumarate to malate. Mutations of the FH 

gene, which may be missense, frameshift or complete or partial deletion, are detected in 

90% of HLRCC families.(3, 5) Fumarate hydratase, localized to chromosome 1q42.2, is 

subject to a two-hit, loss of function in HLRCC tumors; loss of the somatic allele usually 

represents the second hit that is found in HLRCC-associated kidney tumors and uterine 

leiomyomas.(13-15)

Shift to aerobic glycolysis in fumarate hydratase-deficient kidney cancer: the Warburg 
effect

Fumarate hydratase-deficient kidney cancer undergoes a metabolic shift to aerobic 

glycolysis. The FH-deficient kidney cancer cell line UOK262, which is tumorigenic in a 

nude mouse model, is characterized by impaired oxidative phosphorylation and increased 

levels of glycolysis, as assessed by decreased oxygen consumption rate (OCR) and increased 

extracellular acidification (ECAR). Both the glycolytic and tumorigenic features of the FH-

deficient cell line can be reversed by restoration of FH activity. In contrast to the cell line 

model derived from other forms of kidney cancer, such as VHL-deficient clear cell kidney 

cancer, FH-deficient kidney cancer cells are uniformly dependent on glucose and glycolysis 

for ATP production needed for rapid proliferation.(16-18) This is demonstrated in patients 

by the observation that, in contrast with other genetically defined types of kidney cancer, 

metastatic HLRCC-associated kidney cancer exhibits consistently high fluorodeoxyglucose 

uptake on PET scan imaging.(14) (Figure 1)

Inhibition of HIF prolyl hydroxylase results in stabilization of HIF1α

Hypoxia inducible factor 1α (HIF1α) and hypoxia inducible factor 2α (HIF2α) are 

transcription factors whose stability is regulated by HIF prolyl hydroxylase (PHD). In 

normoxic conditions, PHD (in the presence of α-ketoglutarate and iron) hydroxylate two 

HIF prolines, allowing the VHL complex to bind and facilitate ubiquitin-mediated 

degradation. In hypoxia (or with an inactivating mutation in VHL), HIF degradation is 

impaired and HIF1α and HIF2α accumulate.(19) HIF1α and HIF2α are transcription factors 

that increase the transcription of a number of genes critical to a cancer dependent on aerobic 

glycolysis, such as the glucose transporter, GLUT1, and vascular endothelial growth factor 

(VEGF), which would increase glucose transport and tumor vascularity. FH-deficient 

kidney cancer has an increased need for both vascularity and as well as glucose transport to 

provide increased nutrients for rapid growth and proliferation and for ATP production to 

compensate for a decrease in oxidative phosphorylation associated with a TCA cycle gene 

mutation. In FH deficient cells increased levels of fumarate inhibit the HIF prolyl 

hydroxylases and thus the activity of the VHL ubiquitination complex, leading to 

stabilization of HIF1α and increased transcription of its targets such as VEGF and GLUT1.

(20) (Figure 1)
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Diminished AMPK, a negative regulator of the Warburg effect in FH-deficient kidney 
cancer, facilitates increased fatty acid and protein biosynthesis needed for rapid tumor 
growth

The AMP-activated protein kinase (AMPK) is a cellular energy sensor which reflects 

cellular energy status by undergoing phophorylation and increasing activity when AMP 

levels increase and ATP levels decrease, indicative of energy deficiency.(21) Whereas 

HLRCC tumor cells might be expected to show AMPK activation because of their 

dependence on less efficient glycolysis and their rapid consumption of ATP during growth, 

unexpectedly, the reverse was observed, with markedly reduced phopho-AMPK levels, but 

also reduced levels of AMPK subunits AMPKα and AMPKβ1 at both transcriptional and 

protein levels. The reason for diminished AMPK levels is not known, but it was shown to 

result in reduced phosphorylation of acetyl CoA carboxylase (pACC), a state that normally 

renders the enzyme inactive, that would be expected to increase the synthesis of a key fatty 

acid biosynthetic intermediate, malonyl-CoA. In addition, the phospho-S6 ribosomal 

protein, an mTOR downstream effector, was also found to be activated. These results 

suggest that enhanced fatty acid and protein biosynthesis in FH-deficient kidney cancer 

results from decreased AMPK activity that promotes anabolic growth associated with cell 

growth and proliferation in tumors.(17)

Decreased AMPK leads to decreased iron and increased HIF1α levels

The glycolytic shift in FH-deficient kidney cancer is associated with low AMPK levels, 

which decreases p53 (14) and the iron transporter, DMT1, which appears to require p53 for 

expression (14). In the FH-deficient kidney cancer cell line, UOK262, the iron responsive 

proteins, IRP1 and IRP2, as well as the IRP target, transferrin receptor protein 1 (TFRC) are 

elevated, indicating that cytosolic iron concentrations decrease secondary to decreased 

DMT1 activity (14). Changes in cytosolic iron levels and corresponding IRP activities 

potentially have opposite effects on HIF1α and HIF2α. Because prolyl hydroxylases require 

iron for their catalytic activity, decreased cellular iron would be expected to stabilize both 

HIF1α and HIF2α.(22) However, while both FH-deficient kidney cancer cell line models 

UOK262 and UOK268 have increased HIF1α levels, both also have decreased HIF2α 

levels. Decreased HIF2α levels are consistent with increased IRP1 levels, as IRP1 is known 

to target the iron responsive element in the HIF2α 5′UTR and inhibit to HIF2α translation 

when cytosolic iron is low, in vitro (23) and in vivo.(24)

Activation of AMPK reduces the invasive potential of FH-deficient kidney cancer

As noted above, AMPK is decreased in UOK262 cells, resulting in activation of phospho-S6 

ribosomal protein and a decrease in pACC (which would lead to an increase in fatty acid 

synthesis). In order to evaluate the potential role of activation of AMPK in FH-deficient 

kidney cancer, UOK262 cells were treated with either metformin or AICAR (5-

aminoimidazole-4-carboxamide-1-β-D-ribofuranoside). Both metformin and AICAR were 

found to significantly impair the invasiveness of FH-deficient kidney cancer cells (14).
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Silencing of HIF1α reduces the tumorigenic potential of FH-deficient kidney cancer

Some studies have suggested that increased HIF2α levels are essential for tumorigenesis in 

VHL-deficient clear cell kidney cancer cells (25, 26) and a recent genetic and functional 

study has concluded that HIF1α actually functions as a tumor suppressor gene in clear cell 

kidney cancer.(27) However, in UOK262 FH-deficient kidney cancer cells HIF1α is 

increased, whereas HIF2α is decreased, so HLRCC cancer does not conform to this new 

model. It could be that the role of HIF1α in suppressing or enabling cancer development is 

disease-specific. HIF1α promotes glucose uptake, increases glycolysis and activates 

pyruvate dehydrogenase kinase 1 (PDK1), which inactivates the TCA cycle enzyme, 

pyruvate dehydrogenase (PDH), inhibiting the flow of glucose into the TCA cycle via the 

conversion of pyruvate to acetyl-CoA.(28) Blocking the conversion of pyruvate to acetyl-

CoA would increase lactate production and could block utilization of glucose to provide 

carbon backbones in the anabolic synthesis of lipids.(29, 30) In a cancer that is dependent on 

oxidative metabolism of glucose for lipid production, such as a VHL-deficient kidney cancer 

that has an intact TCA cycle, HIF1α could potentially have a suppressive effect on cell 

growth by reducing energy production. However, in a cancer cell with a remodeled 

metabolic pathway that is 1) extremely dependent on efficient use of glucose for glycolysis 

for generation of ATP and is 2) dependent on carbons from glutamine, rather than from 

glucose, for lipid production and for carbon backbones of amino acid precursors such as 

oxaloacetate, increased HIF1α appears to be supportive of tumorigenesis. To evaluate the 

anti-tumor effectiveness of targeting the HIF1α pathway in FH-deficient kidney cancer, 

silencing of HIF1α by siRNA was performed in UOK262 cells. Silencing of HIF1α was 

found to significantly impair UOK262 invasiveness, suggesting that HIF1α is a critical 

oncoprotein in fumarate hydratase deficient kidney cancer.(17)

Fumarate hydratase-deficient kidney cancer is characterized by a metabolic shift to a 
reductive carboxylation, glutamine-dependent pathway

13C metabolite analysis was utilized to further characterize the metabolic shift in fumarate 

hydratase-deficient kidney cancer. Even thought FH-deficient kidney cancer has a 

significant decrease in the flux of glucose-derived pyruvate to the mitochondria, it is still 

critically dependent on mitochondrial metabolic flux for critical biosynthetic reactions. 

Unlike other cancers that perform oxidative metabolism of both glucose and glutamine, FH-

deficient kidney cancer is characterized by glutamine-dependent reductive carboxylation 

(see red arrows, figure 1), rather than the normal procession of the TCA cycle for citrate 

formation for the citrate/acetyl-CoA/lipid synthesis pathway. FH-deficient kidney cancer 

cells require glutamine to proliferate and glutamine was found to be the major carbon source 

for the increased fatty acid synthesis required for rapid cellular proliferation of this most 

aggressive form of kidney cancer.(31)

Clinical-Translational Advances

KEAP1 succination and Nrf2 signaling: antioxidant response in FH-deficient kidney cancer

In complementary studies, utilizing different approaches, Ooi et al. and Adam et al. 

delineated the role of the KEAP1 succination and Nrf2 signaling in fumarate hydratase-

deficient kidney cancer and the role of fumarate as an oncometabolite.(32, 33) Nrf2 (nuclear 
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factor E2-related factor 2) is a transcription factor that that induces expression of a number 

of genes involved in antioxidant response, such as to counteract the effect of reactive oxygen 

species and that facilitate heme synthesis. KEAP1 (Kelch-like ECH-associated protein 1) is 

an electrophile that combines with CUL3 to facilitate degradation of Nrf2.(34) KEAP1 

mutations have been found in a wide variety of cancers, including 34% of squamous lung 

cancers, and Nrf2 has been found to be elevated in a number of cancers, including head and 

neck, gallbladder, lung and pancreatic cancer.(35, 36) In a study of HLRCC (as well as 

sporadic) type 2 papillary kidney cancer, Ooi et al. found a gene expression pattern 

consistent with up-regulation of antioxidant response elements (ARE), including the aldo-

keto reductase family member B10 gene (AKR1B10) as well as other ARE driven genes, 

NAD(P)H dehydrogenase (encoded by quinone 1 also known as NQO1) and thioredoxin 

reductase 1 (TXNRD1).(33) Nrf2, which is known to bind the ARE enhancer and the 

electrophile sensor, KEAP1, forms a complex with the cullin 3 (CUL3) ubiquitin ligase to 

initiate ubiquitin-imediated degradation.(37) An exposed KEAP1 residue, Cys-151, reacts 

with fumarate, which has been shown to be elevated in FH-deficient HLRCC uterine 

fibroids (38) as well in FH-deficient kidney cancer cells,(33) resulting in a conformational 

change which inhibits KEAP1 from binding to NRF2, resulting in NRF2 accumulation and 

increases expression of antioxidant response genes.(33, 39, 40) The findings of Ooi et al. 

demonstrate that increased levels of fumarate induce succination of KEAP1 resulting in 

stabilization of NRF2 and increased expression of AKR1B10. Alderson, et al. showed that S-

(2-Succinyl) cysteine (2SC) is formed by increased levels of fumarate, which inactivates the 

sulfhydryl enzyme, glycetaldehyde-3-phosphate dehydrogenase. These findings identify 

fumarate as an endogenous electrophile and indicate a role for fumarate as an oncoprotein in 

metabolic regulation.(41) Nagai et al. subsequently showed that increase in 2SC is the result 

of mitochondrial stress and that increased levels of fumarate modify cysteine residues in 

many proteins, a process called succination.(42) Bardella et al. showed that 2SC 

accumulates to high levels in FH-deficient cells and tumors and that 2SC staining could be a 

useful marker for detection of this disease.(43)

In a parallel study, Adam et al. showed that fumarate hydratase-deficient murine renal cyst 

formation is Hif and Phd independent and is associated with a pronounced up regulation of 

antioxidant pathways. In the Fh1-deficient mouse, activation of the NRF2 antioxidant 

pathway was found to arise as a direct consequence of FH inactivation. Critical residues of 

KEAP1 were found to be succinated in this model, indicating that NRF2 activation results 

from succination of KEAP1. Impairment of KEAP1 function by succination diminishes 

NRF2 proteosomal degradation and thereby increases NRF2 stability and activity.(32) 

(Figure 1)

Dysregulation of NRF2 degradation, a critical adaptive response that appears to occur early 

in hyperplastic cystic and tumor formation, could provide the foundation for the 

development of novel approaches for therapy of FH-deficient kidney cancer. Decreased 

KEAP1 function increases NRF2 activity, which would reduce oxidative stress and could 

provide a growth advantage to aggressive type 2 papillary kidney cancer cells. Thus, 

potential therapeutic approaches to target the oxidative response pathway could include 

inhibition of AKR1B10 or thioredoxin reductase 1.(33)
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FH-deficiency induces HIF1α stabilization by generation of reactive oxygen species

Another potential therapeutic approach to target FH-deficient kidney cancer involves 

targeting the activated antioxidant pathway by increasing reactive oxygen. Sudarshan, et al. 

showed that inactivating mutations of FH-deficient kidney cancer cells results in glucose-

mediated generation of cellular reactive oxygen species (ROS) and ROS-dependent HIF1α 

stabilization and that the metabolic shift to aerobic glycolysis is critical to HIF stabilization.

(44) In order to evaluate a potential therapeutic approach for HLRCC-associated kidney 

cancer, Sourbier, et al. investigated the cytotoxic effects of increasing ROS levels using the 

proteosome inhibitor, bortezamib, which inhibits NFκB, in combination with cisplatin in 

FH-deficient cancer cells. Bortezamib was found to induce apoptosis in vitro and inhibited 

growth in vivo. Cellular ROS levels correlated with bortezomib-associated cytotoxicity. 

Combining other ROS inducers with bortezomib enchanced cytotoxicity, while combining a 

ROS scavenger with bortezomib inhibited its cytotoxic effect. When HLRCC murine 

xenografts were treated with cisplatin, a ROS inducer, and bortezomib dependent tumor 

regression resulted.(45)

Heme oxygenase is synthetically lethal in FH-deficient cells

Frezza, et al. described a glutamine to bilirubin pathway in FH-deficient cells which 

involves the biosynthesis and degradation of heme, which enables partial mitochondrial 

NADH production and ends with bilirubin excretion from the FH-deficient cells. They 

demonstrated that inhibition of heme oxygenase is synthetically lethal with FH-deficient 

cells, meaning that the FH- cells cannot survive without intact heme oxygenase. Thus, 

inhibition of heme oxygenase may cause specific death of tumor cells in HLRCC-associated 

kidney cancer, while sparing cells that are not FH deficient.(46)

Targeting glycolysis and LDH-A as a therapeutic strategy for FH-deficient kidney cancer

FH-deficient kidney cancer has undergone a metabolic shift to aerobic glycolysis and is 

dependent on high levels of glycolysis for ATP production needed for the rapid proliferation 

of this aggressive form of cancer.(17, 18) There are a number of different approaches for 

targeting glucose metabolism in a Warburg cancer, including targeting critical glycolytic 

enzymes such as HKII, PKM2 or LDH-A (reviewed in Hamanaka and Chandel).(47) In 

order to evaluate whether FH-deficient cells would be sensitive to LDH-A blockade, Xie et 

al. showed that LDH-A is over expressed in HLRCC kidney cancer, that LDH-A inhibition 

increased apoptosis in FH-deficient cells, that this effect is reactive oxygen species mediated 

and that LDH-A knockdown in FH-deficient cells resulted in a significant decrease in 

xenograft tumor growth.(48) Efforts are currently underway to identify an effective LDH-A 

inhibitor for evaluation in pre-clinical and clinical trials.

Englerin A: limiting the cell's access to glucose

Englerin A, a sesquiterpen isolated from the root bark and stem bark of Phyllanthus engleri 

Pax,(49) has been shown to have selective inhibition against renal cell carcinoma growth.

(50, 51) Sourbier, et al. showed that englerin A binds to and activates protein kinase C-θ, 

inducing an insulin-resistant phenotype while limiting the cell's access to glucose. 

Simultaneously, englerin A induces PKCθ activation of the transcription factor, HSF1, 
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which induces glucose dependence. By starving the cells of glucose while simultaneously 

inducing glucose-dependence, englerin A is lethal to a number of types of kidney cancer, 

including FH-deficient RCC. FH-deficient RCC cells are very sensitive to treatment with 

englerin A, while cells with FH replaced are resistant.(52) Studies to further assess the effect 

of englerin A in FH-deficient as well as other forms of kidney cancer are in progress.

Bevacizumab and erlotinib: targeting FH-deficient kidney cancer tumor vasculature with 
anti-VEGF reagents in patients with metastatic HLRCC-associated kidney cancer

FH-deficient kidney cancer is characterized by impaired oxidative phosphorylation a shift to 

aerobic glycolysis and a dependence on glucose for ATP generation and oxidative stress. 

Increased oxidative stress and/or increased levels of fumarate inhibit HIF prolyl 

hydroxylase, resulting in HIF1α stabilization, leading to increased transcription of a number 

of hypoxia-induced pathway genes, such as vascular endothelial growth factor (VEGF) and 

GLUT1. HLRCC-associated kidney cancer, which is readily detected by [18] fluoro-

deoxyglucose-based PET scanning, is a fast growing tumor that has a propensity to 

metastasize when the primary tumors are as small 1/2 centimeter in size.(9) In our 

experience managing HLRCC patients since 1989, we have not found this disease to be 

responsive to chemotherapy, immunotherapy or the conventional targeted therapeutic 

approaches in use for patients with other forms of advanced kidney cancer. Based in the 

knowledge that these cancer cells are critically dependent on tumor vasculature to ensure a 

high level of glucose transport needed for the increased glycolytic demand of this rapidly 

growing cancer, a clinical trial evaluating the effect of bevacizumab and erlotinib in patients 

with advanced HLRCC-kidney cancer is currently underway.(53)

Conclusions

Fumarate hydratase-deficient HLRCC-associated type II papillary kidney cancer, the most 

aggressive form of kidney cancer, may have an Achilles heel which can be successfully 

exploited for therapy. This early onset cancer, which has a high propensity for metastasis, 

has “precisely the properties expected of a Warburg tumor”.(54) In FH-deficient kidney 

cancer oxidative phosphorylation is impaired because the TCA cycle is blocked by FH 

deficiency; FH- cells undergo a metabolic shift to aerobic glycolysis to provide the ATP 

needed for maintenance of highly proliferating cells. Increased levels of fumarate and 

decreased levels of iron in FH-deficient RCC (14) inhibit HIF prolyl hydroxylase, resulting 

in stabilization of HIF1α levels (20, 55), which would drive vascularization and glucose 

transport. FH-deficient kidney cancer is characterized by a shift to a reductive glutamine-

dependent pathway that provides citrate, which generates the acetyl CoA needed for lipid 

production in rapidly growing cells.(31) A number of potential therapeutic approaches to 

target this most aggressive form of kidney cancer, such as activation of AMPK, inhibition of 

LDH-A, repressing the anti-oxidant response and the heme oxygenase pathway have been 

developed. These approaches as well as the clinical trial underway targeting the vasculature 

and glucose transport in HLRCC-associated kidney cancer with bevacizumab and erlotinib 

will hopefully provide the foundation for the development of an effective form of therapy 

for patients affected with this most aggressive form of Krebs cycle mutation cancer and 

could provide insight into the management of patients with other forms of cancer 
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characterized by a metabolic shift to aerobic glycolysis and impaired oxidative 

phosphorylation.
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Figure 1. 
AMPK is a negative regulator of the Warburg effect in Fumarate hydratase-deficient kidney 

cancer. Fumarate hydratase (FH)-deficient kidney cancer, characterized by impaired 

oxidative phosphorylation, and undergoes a metabolic shift to aerobic glycolysis to generate 

ATP required for the increased energetic demands of rapidly proliferating cells. The 

increased glycolysis suppresses expression and activation of AMPK which results in 

increased S6 and ACC activity, promoting anabolic growth and proliferation. Decreased 

AMPK results in decreased p53 and the iron transporter, DMT1. The iron responsive 

proteins, IRP1 and IRP2, as well as the IRP target, transferrin receptor protein 1 (TFRC) are 

elevated, indicating that cytosolic iron concentrations decrease secondary to decreased 

DMT1 activity. Prolyl hydroxylase, which is sensitive to iron levels, would be inhibited by 

decreased cytosolic iron levels, stabilizing HIF1α. Fumarate, which increases in FH-

deficient cells, has been shown to inhibit prolyl hydroxylase, which would lead to further 

stabilization of HIF1α, increasing transcription of factors such as vascular endothelial 

growth factor (VEGF) and the glucose transporter, GLUT1. Increased fumarate has been 

shown to succinate KEAP1, thus altering it's conformation and disrupting its ability to 

induce degradation of Nrf2. Nrf2 transcription is increased activating anti-oxidant response 

and protecting against oxidative stress. Increased HIF1α would stimulate LDHA, increasing 

lactate production, and would stimulate PDK1, which inhibits PDH and would decrease 

entry of pyruvate into the TCA cycle. FH-deficient kidney cancer use a glutamine-

dependent reductive carboxylation rather than rather than oxidative metabolism for citrate 

formation (red arrows). Glutamine is the major source for the increased fatty acid synthesis 

required for rapid proliferation in these cells with disabled normal oxidative 
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phosphorylation. Potential approaches for treatment of this aggressive form of kidney cancer 

include agents that stimulate AMPK, agents that target the tumor vasculature and glucose 

transport, agents that inhibit LDHA and agents that target the critical glutamine-dependent 

reductive fatty acid/lipid synthetic pathway.
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