
Scalable Brain Network Construction on White Matter Fibers

Moo K. Chung1,3,6,*, Nagesh Adluru3, Kim M. Dalton3, Andrew L. Alexander2,3,5, and 
Richard J. Davidson3,4,5

1Department of Biostatistics and Medical Informatics

2Department of Medical Physics

3Waisman Laboratory for Brain Imaging and Behavior

4Department of Psychology

5Department of Psychiatry, University of Wisconsin, Madison

6Department of Brain and Cognitive Sciences, Seoul National University, Korea

Abstract

DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-

invasively by tracing white matter fiber tracts. Whole brain tractography studies routinely generate 

up to half million tracts per brain, which serves as edges in an extremely large 3D graph with up to 

half million edges. Currently there is no agreed-upon method for constructing the brain structural 

network graphs out of large number of white matter tracts. In this paper, we present a scalable 

iterative framework called the ε-neighbor method for building a network graph and apply it to 

testing abnormal connectivity in autism.

1. Introduction

Structural brain connectivity has been usually modeled as a network graph using white 

matter fiber tracts in DTI. The whole gray matter has been traditionally parcellated into n 

disjoint regions. White matter fibers provide information of how one gray matter region is 

connected to another via a n × n connectivity matrix. The connectivity matrix is then 

thresholded to produce a binarized adjacency matrix, which is further used in constructing a 

graph with n nodes6,8,9,18 However, there is no gold standard for gray matter parcellation 

which makes the identification of node depend on the choice of parcellation. Depending on 

the scale of parcellation, the parameters of graph, which characterize graph topology, vary 

considerably up to 95%.6,18 Another problem of the parcellation is the arbitrariness of 

thresholding connectivity matrix. The topological parameters such as sparsity and clustering 

coefficients change substantially depending on the level of threshold.8

The problems of parcellation and the subsequent arbitrary thresholding can be avoided if we 

do not use any parcellation in building the network. So the question is whether if it is 
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possible to themselves serve as the edges connecting nodes.construct a network graph 

without the usual parcellation scheme. This paper presents a novel network graph modeling 

technique called the ε-neighbor construction that avoids parcellation and the subsequent 

thresholding of the connectivity matrix. Instead of using the pre-specified parcellation, we 

propose to use the two end points of fibers as network nodes while the fibers themselves 

serve as the edges connecting nodes.

The ε-neighbor construction is motivated by the Rips complex of point cloud data,7 which 

has been used to characterize the topology of the point cloud data. The Rips complex is a 

graph constructed by connecting two data points if they are within specific distance ε. The 

problem of the Rips complex is that given n data points, it exactly produces a graph with n 

nodes so the resulting graph becomes very complicated when n becomes large. Unlike the 

Rips complex, the ε-neighbor method does not use all data points in constructing a graph so 

it significantly reduces the complexity of data. Further, while the point cloud data does not 

have any hidden topological constraint, the two end points of white matter fibers are 

connected so we are actually dealing with paired point cloud data. So the ε-neighbor 

construction is different from building the Rips complex and offers substantial 

computational advantage.

2. DTI Acquisition and Preprocessing

The DTI data from 31 subjects were used in this study: (i) 17 subjects with high functioning 

autism spectrum disorders (ii) 14 control subjects matched for age, handedness, IQ, and 

head size. The Autism Diagnostic Interview-Revised15 was used for diagnoses by trained 

researchers.3 Diffusion weighted images were acquired in 12 non-collinear diffusion 

encoding directions with diffusion weighting factor of b=1000 s/mm2 in addition to a single 

(b=0) reference image. Eddy current related distortion and head motion of each data set were 

corrected using AIR17 and distortions from field inhomogeneities were corrected using 

custom software algorithms based on.11 The six tensor elements were calculated using non-

linear fitting methods1

We have used nonlinear tensor image registration algorithm given in19 for spatial 

normalization. This approach combines full tensor co-registration and high-dimensional 

diffeomorphic spatial normalization. The registration is based on an iterative strategy12,19 

where the initial template was computed as the average of original DTI. After DTI were 

alined to a template space, we perform streamline based tractography using the TENsor 

Deflection (TEND) algorithm,2,13 Figure 1 shows the subsampled tractography result for a 

single subject.

3. ε-Neighbor Construction

Suppose a whole brain tractography result yields k number of tracts. The i-th tract consists 

of two end points ei1 and ei2. In constructing the network graph, we only need to worry 

about the two end points of of a tract since all other points along the tract are connected to 

these two end points. The end points of tracts are considered as nodes of a graph while the 

tracts are considered as edges of the graph. The TEND algorithm can generate upward of 

half million tracts but it is not practical to construct a massive graph with half million edges. 
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So we have developed a scalable iterative network graph construction technique called the ε-

neighbor construction.

Let k = { k, ℰk}be a 3D graph with vertex set k and edge set ℰk at the k-th iteration. We 

define the distance d(p, k) of a point p to the graph k to be the shortest Euclidean distance 

between p and all points in k

We say point p is the ε-neighbor of graph k if d(p, k) ≤ ε. The threshold ε will be called 

the resolution of graph and it determines the scale at which we construct the graph. Larger 

the value of ε, cruder the constructed graph becomes with less number of nodes. Consider a 

tract with two end points e11 and e12. The algorithm then starts with the graph 1= { 1, 

ℰ1}with 1 = {e11, e12}, ℰ1 = {e11 e12}. For the edge set ℰ1, we simply denote the edge 

connecting two nodes e11 and e12 as e11 e12. In the next iteration, we add the second tract 

with two end points e21, e22 to the existing graph 1. There are four possibilities:

e21 and e22 are all ε-neighbors of 1Since the end points e21 and e22 are close to the 

already existing graph 1we do not change the vertex set. i.e. 2 = 1. Now check if the 

edge e21 e22 is in the edge set ℰ1 and add them if it is not found in the edge set. In this 

case we have ℰ2 = ℰ1 ∪ {e21 e22}.

Only e21 is an ε-neighbor. We only to add e22 to 1 and let 2 = 1 ∪ {e21}, ℰ2 = ℰ1 ∪ 

{e21 e22}.

Only e22 is an ε-neighbor. We add e21 to 1 and let 2 = 1 ∪ {e22}, ℰ2 = ℰ1 ∪ {e21 

e22}.

e21 and e22 are not ε-neighbors. We add the end points to the vertex set and add the 

edge to the edge set. In this case, e21 e22 forms a disjoint edge and we have 2 = 1 ∪ 

{e21, e22}, ℰ2 = ℰ 1 ∪ {e21 e22}.

The procedure is iteratively performed to every tracts until we exhaust all the tracts. The 

MATLAB code for performing ε-neighbor construction is given in 

brainimaging.waisman.wisc.edu/∼chung/graph.

4. Connected Components

The constructed 3D networks graph can be uniquely parameterized by transforming the 

graph into adjacent matrices. The adjacency matrix  = (aij) of a graph is constructed on the 

fly at each iteration by checking if we are adding a new edge to the existing edge set. If 

nodes i and j are connected, we let aij = 1 and aij = 0 otherwise. The adjacency matrix is 

symmetric. The adjacency matrix contains sufficient information to reconstruct the graph. 

For the subsequent analysis on connected components, 6mm-neighbor graph was used. This 

particular resolution is chosen since it is the largest integer resolution that produces the node 

numbers below 1000.
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As an illustration of ε-neighbor method, we characterize the abnormal brain network in 

autism using the connected components of a graph. The number of connected components of 

a graph is a topological invariant that measures the number of structurally independent or 

disjoint subnetworks. It can be interpreted as the zeroth Betti number β0 in algebraic 

topology.5 The connected components can be identified using the Dulmage-Mendelsohn 

decomposition,16 which has been widely used for decomposing sparse matrices into block 

triangular forms in speeding up matrix operations. Figure 3 shows connected components in 

4 brain networks. All nodes in the same connected component are colored identically. Most 

of nodes belong to the largest connected component indicating the brain network is highly 

connected. There are only 4% of nodes that are not connected to the largest connected 

component while the remaining 96% are all connected in average. We have plotted those 4% 

of nodes that are not part of the largest connected component for all subjects (Figure 4). 

Figure 4 shows the clustering pattern between the groups differs. Although these nodes are 

scattered in most parts of brain, high concentration of clustering occurs on the right parietal 

lobe for the control subjects. We tested if the size of the largest connected components differ 

between the groups. At 6mm resolution, control subjects have 642.86±68.60 nodes in the 

largest component while autistic subjects have 607.12 ± 39.39 nodes. Note that we do not 

need to account for brain size difference since networks constructed in the normalized space. 

The cluster size difference is significant (p-value = 0.079). We expect a larger sample size 

would increase the statistical significance.

5. ε-Filtration

The analysis in the previous section characterizes networks at the last iteration of the ε-

neighbor construction. In this section, we present the idea of quantifying the network over 

all iterations via ε -filtration, which is motivated by the Rips filtration in persistent 

homology.

For each given ε, we have Rips complex ε. By increasing the ε value, we have the Rips 

filtration, a sequence of larger Rips complexes:

for ε1 ≤ ε2 ≤ ε3 ≤ ….4,7,10 During the Rips filtration, the topological features such as the 

Betti numbers change. The topological change over the filtration can be visualized by using 

the barcode. In the barcode, we plot the zeroth Betti number β0 over the changing ε value. 

The resulting bar code is a decreasing function of ε and its decreasing pattern can be used to 

discriminate groups.14 Although the Rips filtration completely characterizes the topological 

change of a network, it is difficult to biologically interpret what it really means to have 

changing network over scale ε.

Similar to the Rips filtration, the ε-filtration is a sequence of networks obtained from the ε-

neighbor method. At the k-th iteration, we have a network k. As the number of iteration 

increases, we are generating a sequence of larger networks
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which we will call the ε-filtration. On the other hand, the ε-filtration is much easier to 

interpret since it shows the actual process of network construction.

We computed the size of the largest component in each iteration in the ε-filtration (Figure 

5). It is always an increasing function and at about 6000 iterations, we begin to see the 

significant group difference in the increasing pattern. For instance, at 6000, 7000 and 8000 

iterations, we have the p-values of 0.058, 0.038, 0.04 respectively. The control network 

(blue) is integrating into the largest component much faster than the autistic network (red). 

The growth of the size of the largest component is higher in controls. A schematic 

understanding of the underlying process is given in Figure 6. The control subjects are 

expected to have hub nodes that speed up the integration of disjoint components into the 

largest component.

6. Conclusion

We have presented a novel data-driven connectivity graph construction method for DTI. The 

proposed ε-neighbor network construction can avoid the problem of parcellation and 

arbitrary connectivity matrix thresholding. The method is applied in showing abnormal 

connectivity pattern in autistic subjects in the ε-filtration. The autistic network shows slower 

integration rate than the control network in the filtration demonstrating reduced network 

integration capability and efficiency.
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Figure 1. 
White matter fiber bundles obtained using TEND algorithm.13 The end points of tracts are 

identified and colored as red. The surface is the isosurface of the template FA map so most 

of tracts are expected to end outside of the surface. The ε-neighbor method uses the 

proximity of the end points in constructing the network graph.
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Figure 2. 
Example of constructing 3D network graph by adding one tract at a time to the existing 

graph. There are four possible cases of connecting the two end points (indexed 5 and 6) of 

the tract to the existing graph with nodes {1,2,3,4}. Depending on the proximity of {5, 6}to 

nodes {1, 2,3,4}, we either do nothing, or add connect one node (either 5 or 6) or add two 

nodes (both 5 and 6) to the graph.
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Figure 3. 
All nodes in the same connected component are colored identically. DTI-based brain 

network is characterized by one dominant component that connects almost all regions of 

brain.
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Figure 4. 
Superimposition of all 4% of nodes that do not belong the largest cluster for all 30 subjects. 

Nodes from the control are colored as blue circle while nodes from the autistic subjects are 

colored as solid red circle. The control subjects show high clustering on the right parietal 

lobe.
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Figure 5. 
The size of largest connected component (vertical) over the number of iterations in the ε-

filtration showing group difference (control = blue, autism= red). At about 10000 iterations, 

we have 642.86 ± 68.60 and 607.12 ± 39.39 nodes in the control and autistic subjects 

respectively. Sudden jumps in the plot is caused by the introduction of hub nodes that 

connect all the disjointed components.
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Figure 6. 
An example of how the size of connected component changes in the ε-filtration. Originally a 

network consists of three disjoint components {1,2,3}, {4,5}, {6, 7, 8}. The size of the 

largest components is 3. In the next iteration, we connect the nodes 2 and 4 and obtain two 

components {1,2, 3,4,5}, {6, 7, 8}. The size of the largest component is 5. In the 2nd 

iteration, we connect the nodes 2 and 7 and eventually obtain a giant component of size 8. 

The node 2 is more than a hub and connects all disjoint components together. By removing 

the node 2, the giant components disintegrate into three disjoint components. The sudden 

jumps in Figure 5 are showing the introduction of such nodes in the network.
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