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Abstract

The National Database for Autism Research (NDAR) seeks to gather, curate, and make openly 

available neuroimaging data from NIH-funded studies of autism spectrum disorder (ASD). NDAR 

has recently made its database accessible through the LONI Pipeline processing environment to 

enable large-scale analyses of cortical architecture and function via local, cluster, or “cloud”-based 

computing resources. This presents a unique opportunity to overcome many of the customary 

limitations to fostering biomedical neuroimaging as a science of discovery. Providing open access 

to primary neuroimaging data, workflow methods, and high-performance computing will increase 

uniformity in data collection protocols, encourage greater reliability of published data, results 

replication, and broaden the range of researchers now able to perform larger studies than ever 

before. To illustrate the use of NDAR and LONI Pipeline for performing several commonly 

performed neuroimaging processing steps and analyses, this paper presents example workflows 

useful for ASD neuroimaging researchers seeking to begin using this valuable combination of 

online data and computational resources.

Introduction

As with many disorders linked to the human brain, autism spectrum disorders (ASDs) seem 

to arise from a multitude of contributing factors – from genes to neurotransmitters and 

structural abnormalities (Atkinson and Braddick 2011, McPartland, Coffman et al. 2011). It 

is this heterogeneity that has made understanding this assortment of linked disorders 
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particularly challenging. It has also led to varying treatments, the success of which appears 

inconsistent among different types of autism patients. The National Autism Center (NAC; 

http://www.mayinstitute.org/news/press_releases.html?year=2013&id=1394; (National 

Autism Center 2011)) reports that many varieties of biomedical and neuropsychological data 

are needed to properly assess an individual patient’s severity, as well as the contributing 

factors to the disorder before an effective treatment plan can be created. Such data types 

include, but are not limited to: genomic, biographical, co-morbid conditions, neuroimaging, 

phenotypic, gestational age, onset and latency of the disorder, onset and type of treatment, 

and many others.

Since 2007, the NIH has been committed to coordinating ASD research across the country 

by fostering collaboration between research centers in order to drive a coordinated effort 

towards greater understanding of the underlying biological mechanisms involved. As a 

result, the NIH has established a centralized national database known as the National 

Database for Autism Research (NDAR; http://ndar.nih.gov). NDAR is a secure research data 

repository specifically designed to promote scientific data sharing and collaboration among 

autism spectrum disorder investigators (Hall, Huerta et al. 2012). The database seeks to 

increase efficiency in the research of ASDs through data sharing and harmonization.

To encourage neuroimaging and genetics data deposition into NDAR, all NIH-funded 

investigators are required to share their brain imaging data as a condition of their research 

grant support. Additionally, the NIH has established the Autism Centers of Excellence 

(ACE) Program, which presently includes six research centers and five research networks, 

funded through P50, R01, and U01 grant mechanisms (http://www.nichd.nih.gov/research/

supported/Pages/ace.aspx). In each network, participating ACE institutions are expected to 

provide all of their raw collected data to a data coordinating center (DCC) affiliated with 

each program, which then 1) synthesizes, checks for quality and artifacts, and 2) ensures 

successful upload of that data to both local as well as the NDAR national repository. 

Currently, NDAR compiles phenotypic, genomic, neuroimaging, neuro-signal recordings 

and demographic data, and as of July 2014, the database contains data from over 77,000 

individuals. While a significant portion of this number represents clinical and gene 

sequencing data, this also includes 4,745 subjects some of whom have multimodal 

neuroimaging data. Data come largely from the NIH Autism Centers of Excellent (ACE) 

program with additional phenomic data coming from Simons Foundation Autism Research 

Initiative (SFARI; http://sfari.org), and the Interactive Autism Network (IAN; https://

www.ianresearch.org).

One unique facet of NDAR’s database is its use of a global unique identifier (GUID). This 

GUID is obtained by entering relevant personal identifiable information (PII) from a 

subject’s birth certificate into NDAR’s GUID Tool software, or by sending the PII to a data 

coordinating center for GUID generation. This information will assign the subject a unique 

GUID that stays with that subject’s NDAR record throughout their life. If the subject 

participates in a longitudinal study, or enrolls in a study at a different location at a later date, 

their GUID will be re-generated as the same number, so that all their data can be 

systematically aggregated. This GUID, however, cannot be used in reverse to obtain 

personal identifiable information, thereby preserving the anonymity and confidentiality of 
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the subject in line with HIPAA guidelines. Access to anonymized data may then be provided 

for free to qualified investigators - who are registered with the ERA commons (https://

commons.era.nih.gov) and also secure local institutional approval (see http://ndar.nih.gov/

ndarpublicweb/access.html for details on the access request process). Once approved by 

NIH officials (http://ndar.nih.gov/policies_data_access_committee.html), researchers are 

able to search NDAR contents, create data packages of useful de-identified data sets, and 

download them for further examination.

Database compilation of primary data in a manner such as this appears to be an emerging 

trend in the future of NIH-funded neuroimaging research. A 2004 paper by the directors of 

six neuroscience institutes at the NIH posits that three areas in neuroscience research in 

particular could be greatly improved and accelerated by large-scale database sharing: 

genetics, imaging technology, and clinical research (Insel, Volkow et al. 2004). The inability 

to superimpose data from one modality to another, they claim, prevents the analysis of 

important existing relationships in brain function. When tackling problems that require large 

amounts of information, such as co-morbid disorders or genetics, one resource alone will not 

be sufficient to capture the whole picture of what factors are at play. Research funding is 

much more efficiently used if its effects are not limited to the individual research center that 

is awarded the grant. Or, as Insel et al. (2004) note, “large scale science is only worth the 

investment if it enables progress from a broad community of scientists.” Creation of freely 

available databases containing primary data spreads the cost of neuroscience research across 

a broader portion of the research community. Modern concepts for sound research require 

that the research be reproducible by anyone who uses the same data and follows the same 

methods of the original study. However, in the world of competitive, grant-funded research, 

financial and temporal constraints make it infeasible to actually reproduce let alone replicate 

another author’s results. Data-sharing removes the burden of collecting analogous data and 

recreating the method of analysis (Breeze, Poline et al. 2012, Poline, Breeze et al. 2012).

With that in mind, making data openly available is merely the first step toward advancing 

greater data reuse, re-purposing, and the performing of neuroimaging “mega-analyses” by 

members of the broader community. What are also needed are means to feed the data 

available from resources such as NDAR directly into software designed for highly efficient 

processing and analysis. Moreover, since many potential investigators lack access to the 

scale of computing resources that would allow for efficient data analyses, those analyses 

should be directed to remote computing environments ideally suited for large-scale 

processing, scalable from individual subjects, to hundreds, and eventually thousands of 

individuals. Combinations of such resources with direct access to primary data represent a 

critical component in the future of neuroscience research (Van Horn, Dobson et al. 2006) 

and will help advance and improve the way in which that research is conducted and reported 

(Breeze, Poline et al. 2012).

In what follows, we seek to illustrate how access to primary neuroimaging data, leading-

edge scientific workflow technology, and large-scale computing systems can be performed 

by any interested researcher to perform a variety of common neuroimaging processing tasks 

and analyses. We discuss 1) accessing the NDAR data archive, 2) getting data processing 

workflow software, and 3) how to leverage these to create processing “Pipelines”. Using the 
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software in question, these workflows can be easily edited, combined, and organized to 

provide complete end-to-end neuroimaging data processing solutions. Through these basic 

exemplars, potential users should be able to become familiar with NDAR, workflow design, 

and their use on remotely accessible high-performance “cloud” computing systems.

Accessing the NDAR Database

In order to access the neuroimaging data stored in NDAR’s repository, one must first 

acquire a username and password by completing the NDAR access application process. This 

requires completing their user application form, obtaining authorization from an NIH-

approved signing official at one’s local institution, and submitting the information for formal 

review by the NIH. The complete details for how to obtain an NDAR account can be found 

on the NDAR website (http://ndar.nih.gov/ndarpublicweb/access.html).

Upon acquiring an account and logging into the NDAR website, one can begin by using the 

available “Query” tool in order to filter the collection of data by data types, ages, gender, or 

number of subjects, etc. Once the results have become sufficiently refined, clicking the 

“Download Data” button will allow the user to select the types of data they wish to 

download for their cohort. These data must then be used to create a package, using the 

“Create Package” button on the right-hand side. Once clicked, it will ask the user to specify 

name for the package. The NDAR system generates a package ID which is used to identify 

and refer to that collection of data. The NDAR Download Manager is a program written in 

Java which will download the collection to one’s local hard disk. This method enables users 

to have data delivered to the computer they are presently using to view the NDAR contents. 

Rather, users may prefer to reference these NDAR package IDs directly within data 

processing workflow tools in order to avoid having data directed to remote processing 

operations located on remote computing systems, clusters, or “in the cloud” using NDAR’s 

“Mini-NDAR” or “miNDAR” capabilities (http://ndar.nih.gov/cloud_get_started.html). 

Below, we illustrate this process.

Accessing the LONI Pipeline

Scientific workflow methodologies serve to enable the creation of heterogeneous processing 

chains which then can be run on parallel computing systems. Several such workflow 

systems exist and have been used successfully in neuroimaging applications (Stef-Praun, 

Clifford et al. 2007, Gorgolewski, Burns et al. 2011). In particular, the LONI Pipeline 

workflow environment is a graphical framework for constructing workflows and executing 

complex high-throughput analysis (Dinov, Van Horn et al. 2009, Dinov, Lozev et al. 2010). 

This program, now in version 5.x, is freely available (http://pipeline.loni.ucla.edu) and 

provides processing modules from well-known neuroimaging software programs, as well as 

complete end-to-end protocols for performing numerous image processing tasks. The use of 

LONI Pipeline can be employed to help standardize processing methodologies within a 

laboratory or between research groups supporting the accurate recording of data processing 

provenance (MacKenzie-Graham, Payan et al. 2008, Mackenzie-Graham, Van Horn et al. 

2008), a feature that has been notoriously lacking in the neuroimaging community (Kennedy 

2012). LONI Pipeline is also available through the Neuroimaging Tools and Resource 
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Clearinghouse (NITRC; http://www.nitrc.org) (Luo, Kennedy et al. 2009) – a service 

enabling researchers to locate, install, and compare resources for functional and structural 

neuroimaging analyses, as well as collects and points to standardized information about 

tools for performing such analyses. Users interact with the LONI Pipeline client on PC, 

Mac, or Linux to design and execute workflows which are actually run through connection 

to a Pipeline-enabled computer cluster. LONI, itself, maintains a large-scale cluster having 

3,500 compute nodes dedicated to supporting thousands of simultaneous Pipeline workflow 

submissions. Pipeline is also available as an Amazon-EC2 service (http://

pipeline.loni.usc.edu/products-services/pipeline-server-on-ec2/) and is also available for use 

via the NITRC Compute Environment (NITRC-CE) (http://www.nitrc.org/projects/nitrc_es).

Access to these LONI Pipeline–NDAR Example Workflows

With access to LONI Pipeline and a connection to a Pipeline-enabled server, users can easily 

locate the complete set of example NDAR data processing workflows described here 

contained within the LONI Pipeline’s built-in server library. The workflows are available as 

supplemental information from this article and are also available for download to a user’s 

local machine via the LONI Pipeline’s entry on the NITRC website (http://www.nitrc.org/

docman/view.php/32/1294/NDAR%20Workflows%2014Oct2013.zip). We intend that, very 

soon, users will be able to access these LONI Pipeline workflows directly from within 

NDAR itself.

NDAR Package ID Access from within LONI Pipeline

Within the Pipeline program there exists the means for a direct login to the NDAR cloud 

storage and one’s previously defined data package IDs (see “Accessing to the NDAR 

Database,” above). Once an NDAR data package is specified in the NDAR login (accessible 

through the database and cloud storage login interface), a three-component set of modules is 

automatically generated as a new LONI Pipeline workflow. These modules serve to 

download the compressed data package, unzip its contents, and convert them to any one of 

three commonly utilized neuroimaging file formats: Analyze, NIfTI, or MINC. Depending 

on the user’s needs, any of these file types may be selected. With these modules in place, 

new workflows can then be constructed by connecting them to other processing modules 

drawn from Pipeline’s library of available processing modules and workflows. Processing 

operations are available from a large selection of commonly used neuroimaging data 

processing packages including FSL, FreeSurfer, BrainSuite, and Diffusion Toolkit. 

Additionally, modules defined for user-built processing executables can also be inserted to 

generate unique workflows via custom data processing toolkits.

Example Pipeline Workflows for NDAR

Here, we seek to illustrate several LONI Pipeline workflows which focus on NDAR data. 

Our intent here is to provide the context for how the interested user can use these workflows 

to begin a process of using NDAR data, performing basic processing operations on them, 

and to set the stage for more all-encompassing analyses using greater numbers of subjects, 

variables of interest, etc. All workflows have been developed to be straightforward; they use 

the commonly available and widely used tools mentioned above, depend on only a few 
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instances where custom tools have been included, and are color-coded in such a way that a 

user can understand the purpose of the workflow at a glance and easily alter the input data to 

their own NDAR data package, augment the available processing parameters, and otherwise 

have a description of what each workflow is designed to do.

Several of the workflows utilize the automatically generated NDAR cloud database retrieval 

modules discussed above. Once logged-in, users can specify the ID of the NDAR package 

they have created online, follow annotated instructions on the Pipeline workflows for 

adjusting a few basic settings, and then click on the LONI Pipeline’s green “Start” button to 

launch the processing job. However, depending on their intentions, the user may find it 

desirable to download the package of data directly via the NDAR Download Manager, for 

data inspection and subsequent processing of cases individually, in batches, or based on data 

type. Note, however, that due to constraints from the NDAR download server, one limitation 

is that NDAR package numbers cannot be accessed by multiple active workflows 

simultaneously without using the miNDAR option. Regardless of the means for NDAR data 

download, upon completion of the full workflow, the resulting files from processing or 

statistical analysis will be written to the user’s specified output directory.

Basic NDAR File Download using Pipeline

The first workflow in the NDAR workflow library is the basic NDAR file acquisition 

protocol. It features a data source (gray disk), a data sink (inverted triangle), and two 

modules in between (the purple circles). A complete description of LONI Pipeline 

iconography, its intentions and functions can be found in the online LONI Pipeline User 

Handbook (http://pipeline.loni.usc.edu/learn/handbook/). The data source is where the user 

specifies the ID of a package they have created. The first module, “NDARGet”, simply 

connects to the NDAR webserver to access the package and downloads its files as a .zip file 

archive. Subsequently, the following module converts the data to the desired user-specified 

format. The default file type is the NIfTI (.nii) file format (http://nifti.nimh.nih.gov/), though 

other formats can be selected by the user. Finally, the user needs to specify a location for the 

data to be deposited in the data sink module. This may be in a local directory on the user’s 

personal computer or on the remote server to which they are connected and where they may 

access it at a later time.

Brain Extraction

Building on the above workflow, the second workflow performs a very typical data 

processing “first step” – that of removing the brain from the skull and surrounding non-brain 

tissues. Following download and .nii conversion, the workflow utilizes FSL’s Brain 

Extraction Toolkit (BET) workflow module which performs the familiar skullstripping of 

the image volumes. By right-clicking on the BET module, the user can also set the module 

parameters to estimate the external skull surface, use alternative image thresholding, and 

adjust the aspect ratio of the volume bounding box. These images are then written to the 

output directory specified in the data sink, as previously described. Any number of subjects 

may be entered as inputs to be skull-stripped simultaneously.
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FreeSurfer Surface Generator

Researchers frequently wish to create cortical surface models of the subjects in their samples 

to use for further analysis of brain surface morphometry or for use in the display of 

functional results. Cortical surface analyses have been of particular interest to ASD 

researchers (Shokouhi, Williams et al. 2012, Doyle-Thomas, Kushki et al. 2013, Wallace, 

Robustelli et al. 2013). This workflow allows the user to utilize a LONI Pipeline-enabled 

FreeSurfer “ReconAll” module to generate two surface object files (.obj) delineating the left 

and right hemispheres for a single subject or multiple subjects. It utilizes the basic NDAR 

File Acquisition procedure, passing .nii converted files to the FreeSurfer module, before 

performing octahedral resampling, and writing separate files for each hemisphere. The user 

needs to specify an output directory for Pipeline to create prior to running the workflow into 

which Pipeline will write its results files. This can be a directory on one’s local machine or a 

directory on the filesystem of the Pipeline server being utilized. Modifications to the 

FreeSurfer module will allow for the creation of a greater number of surface models, as well 

as detailed labelmaps.

Basic DTI Preprocessing

Recent work with diffusion imaging has indicated that white matter abnormalities may play 

a role in differentiating ASD phenotypes (Billeci, Calderoni et al. 2012, Delmonte, 

Gallagher et al. 2013). One particularly useful DTI imaging analysis package is the 

Diffusion Toolkit (DTK) (http://trackvis.org/dtk/), which provides software designed to 

reconstruct white matter fiber pathways from DTI image gradient images. The workflow 

begins, once again, with the basic NDAR File Acquisition procedure for one or more 

subjects, directing the converted .nii files through DTK reconstruction to output many 

computational water-molecule diffusion variables such as average diffusion coefficient 

(ADC), fractional anisotropy (FA), mean diffusivity (MD), and a b0 image which can be 

used as a structural reference volume during tractography analysis. Next, it runs the 

reconstructed fibers through the DTK tracking algorithm. DTI gradient information is 

provided as an external ASCII text file, which provides users a degree of flexibility for easy 

modification or alteration, if they see fit (e.g. to compare “raw” gradient information against 

motion corrected versions). The fiber tracking algorithm employs the default FACT 

algorithm but may be easily modified by the user by choosing an alternative method 

delineated by the module. Lastly, the fibers are smoothed by the DTK spline filter module 

before being saved as .trk files to the desired destination. The resulting .trk files can then be 

viewed and analyzed exclusively in the freely available TrackVis program (http://

trackvis.org).

Basic Task-Based fMRI Preprocessing

One key point of interest for understanding cognitive processing in patients diagnosed with 

an ASD has been the application of task-based functional imaging (Cody, Pelphrey et al. 

2002, Pelphrey, Morris et al. 2005, Pelphrey, Morris et al. 2007). In the analysis of fMRI 

data, the basic preprocessing workflow for a first-level analysis of activation data is 

typically performed one subject at a time. We demonstrate this process here using an 

example subject from NDAR. Through Pipeline, the user must first download the desired 
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data from NDAR using either the Basic NDAR File Acquisition workflow or through 

the .jar file obtained using the NDAR Download Manager. To illustrate that a range of file 

formats can be accommodated, downloaded Analyze (e.g. *.img and accompanying *.hdr 

file) data can then be referenced in the input module of this fMRI preprocessing workflow. 

A separate file must be listed for each time point the user wishes to analyze for the subject. 

In addition, an FSL “.fsf” file must first be created through the FSL FEAT interface. An 

example template .fsf file is also included in the workflow which can be edited in lieu of 

creating a new .fsf file. A skullstripped structural T1-weighted image is required as well, 

which, in this example was pre-computed and the resulting stripped image provided using a 

Pipeline input module. This workflow takes these inputs, merges the many time points, 

registers them to the MNI 2mm standard atlas space, and updates the .fsf file. Next, it passes 

this .fsf file to an FSL FEAT module for analysis, outputting the first level statistical 

analysis of the data in the familiar HTML format into the specified output directory.

FSL Melodic fMRI Workflow

Alterations of resting-state connectivity may underlie aspects of the social interaction 

deficits observed in certain forms of ASD (Assaf, Jagannathan et al. 2010, von dem Hagen, 

Stoyanova et al. 2013). As such, independent component analysis (ICA) is commonly used 

to identify patterns of correlated voxels which reflect “default mode” and other functional 

networks that may be affected in ASD. Probabilistic independent components analysis 

(PICA) (Beckmann, DeLuca et al. 2005) can be performed on fMRI data with the FSL 

Melodic fMRI Workflow. The entire list of time point images in the resting state scan is 

provided by the user, along with the subject’s T1 anatomical image volume, and a reference 

spatial brain atlas (the default is the MNI Atlas). The workflow performs the steps of a linear 

registration of the data, calculates an average resting state image, and runs the FSL Melodic 

analysis.

ROI Extraction Workflow

As an alternative to the use of FreeSurfer, regions-of-interest (ROIs) can also be easily 

created for anatomical volumes using an example of the ROI Extraction Workflow 

presented here. This workflow uses the Brain Parser algorithm (Tu and Toga 2007, Tu, 

Zheng et al. 2007) which applies a Boost learning algorithm to fit predetermined atlas-based 

regional parcellations to an individual’s T1-weighted anatomical volume. Images are first 

reoriented, bias field corrected, and skullstripped in accordance with the ICBM Atlas space 

conventions (Mazziotta, Toga et al. 2001, Shattuck, Mirza et al. 2007) using a series of AIR 

modules (Woods, Grafton et al. 1998, Woods, Grafton et al. 1998). FSL FLIRT is employed 

for linear registration in advance of performing 3-D spline filtering. Prepared data are then 

processed using the Brain Parser module. Regional metrics are them computed by 

leveraging FreeSurfer which are then compiled into an ASCII text file table for later export 

and offline analyses.

BrainSuite and FreeSurfer Comparison

It is often of interest to compare processing methodologies against one another to examine 

algorithmic efficiency, accuracy, and other performance factors as well as conduct direct 

comparisons of processing output. This workflow presents just such a scenario.
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As in the other examples discussed here, this workflow begins with the Basic NDAR File 

Acquisition procedure for one or more subjects, which, in this instance, obtains the files in 

Analyze format. The converted Analyze images downloaded from NDAR are distributed 

across three separate workflow modules. The first of these modules, the BrainSuite Cortical 

Surface Extraction grouped module (Shattuck and Leahy 2002), bias corrects, skull strips, 

and then performs all of the extraction steps involved in Brain Suite processing, using an 

ICBM Atlas and BrainSuite labeling conventions.

The second module which employs the converted files from the NDAR package is the Brain 

Parser (described above) “grouped” module which reorients, bias corrects, skull strips, 

creates parcellations, runs FSL FLIRT, and applies an affine transform using an ICBM atlas 

and the Brain Parser directory of pre-determined models.

The hemispheric surface outputs of these two module groups are then automatically 

translated to the file formats read by the ShapeToolsIO library (http://www.nitrc.org/

projects/shapetools/). The module used for this translation is essentially a wrapper for the 

various ShapePreparer classes provided by the ShapeToolsIO library file format writers. The 

volume voxel values of these images are then mapped onto the vertices of a surface mesh so 

that 3-D models of the left and right hemispheres are created. These can be viewed and 

analyzed in the BrainSuite program (http://www.nitrc.org/projects/brainsuite).

The third and final module that employs the converted files from the NDAR package is the 

FreeSurfer reconstruction module, just as was performed using the FreeSurfer Surface 

Generator workflow, above. This utilizes the FreeSurfer ReconAll reconstruction algorithm 

to generate two pial surfaces for octahedral resampling. These outputs are then subjected to 

the same translation and surface-mapping modules as the BrainSuite outputs. The resulting 

images and mesh surfaces from each sub-workflow can be examined, compared, and 

contrasted to explore overall program performance, or serve as a prelude to the combination 

of results via a surface modeling meta-workflows (Rex 2004, Leung, Parker et al. 2008).

In general, each of the workflows included within LONI Pipeline in the NDAR library has a 

specific application each of which forms a typical neuroimaging processing operation that a 

neuroimaging researcher might be interested in applying. These individual workflows could 

be combined in a number of different ways to perform end-to-end processing of NDAR data 

or used to compare the speed, reliability, or accuracy of competing processing steps – for 

instance, to examine the bias-variance trade-offs associated with different image processing 

philosophies (Strother, Anderson et al. 2002, LaConte, Anderson et al. 2003).

Discussion

Despite discussions over the years of its many advantages (Van Horn and Gazzaniga 2002), 

neuroimaging data sharing remains relatively uncommon (Kennedy 2012), the shared data is 

often only subject to the analysis of its collectors (Van Horn and Gazzaniga 2012). Many 

researchers feel that the effort to prepare data for sharing conflicts with the time they have to 

actually perform research, or fear that others may achieve more recognition for results 

derived from data over which they feel ownership. Others feel that the specific protocols 
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they use are superior to the formalized standards data sharing requires (Van Horn and Ball 

2008). Some worry that the intricacies of their data will not be understood by those who may 

wish to use it (Teeters, Harris et al. 2008). Since the collection of neuroimaging data is not 

always orderly, retrospectively preparing data to be archived or shared can compound errors 

due to the passage of time (Kennedy 2012).

Yet, through data repository models, such as NDAR, OpenfMRI, the LONI IDA, and other 

approaches, a number of these worries are being addressed. Sharing data that has been 

carefully collected with distribution in mind should take next to no time if it is uploaded as 

the data is collected, and if time-consuming processes such as quality checking and 

anonymizing are performed by a data coordinating center. Under NDAR, for instance, raw 

data is initially quarantined, and only made available to the community after the collection 

site has had an opportunity to publish their results. Post processed data are released at 

publication. Preprocessed data – which includes structural images – is not quarantined 

although raw/preprocessed data is expected ongoing and analyzed data at time of 

publication. Thus, fears that contributing authors will be “scooped” by others who download 

and use their data are, therefore, greatly reduced. Existing and new publications can then be 

linked to the data online, so that future researchers can understand the full extent of the data 

collection protocol. Only raw data is expected to be initially shared, so no intellectual 

property is being given up in this process. Furthermore, NDAR and similar archives are 

working to establish protocols for citing the use of its data so that researchers get credit for 

their efforts even when another researcher builds off of their work (http://ndar.nih.gov/

data_from_papers.html). Effective use of data sharing has, in fact, increased the visibility of 

research. For example, contributors to the fMRI Data Center (fMRIDC), saw their work 

cited widely which garnered new opportunities for collaboration on the basis of their shared 

data sets (Van Horn and Ishai 2007). The shared NDAR data repository and the LONI 

Pipeline interactivity can also foster such cooperation in analyzing and drawing conclusions 

from large amounts of data. Other projects such as the 1000 Functional Connectomes 

(Milham 2012) and the OpenfMRI Project (Poldrack, Barch et al. 2013) seek to also support 

and encourage a greater appreciation for what can be scientifically accomplished through the 

greater availability of shared neuroimaging data. Any data obtained through these resources 

would be amenable to processing and analysis using tools such as the LONI Pipeline to 

create useful end-to-end workflows. Thus, sharing data and having it used by others can be 

advantageous since recent work suggests that data re-use helps to improves researcher 

citation rates (Piwowar, Day et al. 2007).

Analyzing data collected by others can traditionally be difficult for a number of reasons. 

Beyond the differences in imaging conventions that vary according to the commercial 

vendor of the equipment, there is little agreement within the neuroimaging research 

community on how to collect, organize, and analyze such diverse data (Poline, Breeze et al. 

2012). If researchers hope to compare data from different collection sites, every aspect of 

the data collection protocol must be standardized. This standardization leads to much finer 

detail in the protocol documentation, which means there is much less difficulty for end users 

who wish to carefully select comparable data. The uniformity of LONI Pipeline processing 

is a first step toward standardized data analysis (Mackenzie-Graham, Van Horn et al. 2008).
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Allowing researchers to process the same data in the same manner permits more accurate 

characterization of the relevance of a publication to the current literature and eliminates 

many common confounding variables. It also makes replicating the results from another site 

simple and financially feasible for perhaps the first time. Furthermore, it allows a wider 

variety of researchers to analyze multimodal data; for example, if an investigator who is 

relatively unfamiliar with DTI, but frequently works with fMRI, he or she may decide that 

they would rather spend their time analyzing more fMRI data as opposed to learning how to 

reconstruct and analyze DTI data. With Pipeline, the researcher would be able to string 

together software modules, without having to learn to run each of these programs from a 

command line. This, in turn, makes it possible for specialists to include other imaging 

modalities in their research. Making use of multi-scaled analyses may prove vital in solving 

complex questions, such as whether structural correlates exist for functional relationships.

LONI Pipeline’s interactivity with the NDAR database and availability via NITRC provides 

an opportunity to many researchers who would otherwise be unable to conduct ASD 

research on this scale by allowing large amounts of expensive data or longitudinal data to be 

freely accessed and processed in a timely fashion. What is more, NITRC has recently begun 

to provide enhanced services such as virtual computing and data storage (http://tinyurl.com/

q2nv3js). It is also in the process of broadening its data domains to include MEG/EEG, 

optical imaging, digital atlasing, genetic imaging, clinical neuroinformatics, computational 

neuroscience, electrophysiology, computational neuroscience, and neuroimaging genomics 

and genetics. Examining disorders such as ASDs across the numerous modalities of data 

offered by NDAR using Pipeline workflows and NITRC compute resources would enable a 

broader community of researchers the ability to obtain a more complete picture of the 

factors at play in the complicated neurological questions.

NDAR also utilizes link-out capability within PubMed and is now issuing Digital Object 

Identifiers for shared studies, so that a simple search can lead researchers to the actual data 

used in their references. This has vast potential for comparative research, or for following up 

on the future areas of research that an author suggests in their discussion. In this way, 

NDAR interactivity with LONI Pipeline can help serve as a hypothesis generator and fill 

knowledge gaps in our understanding of ASD. Conversely, within the NDAR website, one 

can search for data by the lab that the study is associated with and be linked directly to all of 

the publications associated with a specific cohort. In this way, inquisitive researchers with 

an interest in autism can see how the data has been used in the past, which may help them 

shape hypotheses for future study and analysis using Pipeline.

Indeed, large-scale analysis performed using and contrasting true populations of subjects, 

from multiple sites, and regions of the ASD spectrum are within reach. The example 

workflows featured here have been constructed to illustrate the processing of data from 

single individuals. This was done to ensure that they can be run and finish in a reasonable 

amount of time for the purposes of demonstration when run by interested readers. However, 

where possible, most can be easily extended to accommodate neuroimaging data from 

multiple, in some instances hundreds of, cases. Indeed, the total number of subjects which 

can be processed is limited only by the available data, available computing capacity, and the 

imagination of the researcher.
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Collaborators who have written their own programs, particularly programs created for 

command line execution, can easily create LONI Pipeline modules to call these programs 

and thereby can process large swaths of subjects in the same amount of time that it 

previously took them to process a single subject. Additionally, other researchers may be able 

to use these new modules to process data available through NDAR to get a better 

understanding of aspects of autism for which they may not have collected data, but which 

coincides with their current research. Such workflows can easily be included as 

supplemental information in publications, or e-mailed to collaborators to standardize 

procedures of analysis.

Conclusion

Overall, newly developed interactivity between the NDAR database and LONI Pipeline 

combine the well-documented benefits of data sharing with efficient and streamlined image 

processing workflows. This opens up data and processing methods from the field of ASD 

research to many other research centers which would previously have been unable to 

participate in the community, due to budgetary restrictions, lack of experience, lack of 

access to large cohorts, or computational resources. Comparative and longitudinal studies 

will be able to be performed instantly using accumulated data collected, leading to the 

generation of new, testable hypotheses, and, therefore, new data collection and research 

innovations. Furthermore, the secondary validation of data, and ease of replication will 

increase the reliability of the literature base as a whole. Through this linkage of ASD 

neuroimaging data and leading-edge workflow technologies, we anticipate enriching the 

study of brain biomarkers by the broadest possible set of interested researchers.
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Figure 1. 
The Basic NDAR File Acquisition workflow includes annotations that will help the user get 

acquainted with how they ought to interact with input and output modules and how they can 

retrieve data from NDAR via the LONI Pipeline environment. The inset picture shows a 

sample NDAR download file structure for data to be saved to one’s local server for further 

use. Each Pipeline workflow includes the color-coded key, shown at the top right corner of 

this figure, which allows users to quickly discern which parts of the workflow will require 

adjustment before processing can begin.
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Figure 2. 
The Brain Extraction Toolkit workflow outputs a NIfTI volume file, in which non-brain 

matter has been removed which can then be used in a myriad of other neuroimaging 

applications or external software packages.
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Figure 3. 
The FreeSurfer Surface Generator workflow creates object files that contain 3D images of 

the regions in a FreeSurfer labelmap. In this workflow, only the two grey matter 

hemispheres are generated, but by editing the ReconAll module in Pipeline, users can 

generate models of any region present in a labelmap.
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Figure 4. 
Tractography files can be quickly generated using the Basic DTI Processing workflow. 

These .trk files can be viewed, analyzed, and edited in TrackVis, or can be further converted 

to .vtk files for use in other neuroimaging software such as 3D Slicer (www.slicer.org).
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Figure 5. 
FSL FEAT, serves as the major processing module in the Basic fMRI Preprocessing 

workflow, takes as input a pre-defined .fsf file, and then generates a directory containing 

HTML output, image, and log files of a first level fMRI analysis. The workflow also outputs 

MATLAB for use in further statistical analysis performed outside of Pipeline if desired.
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Figure 6. 
The FSL Melodic fMRI Workflow generates mean resting state and standardized anatomy 

image files, as well as a directory with HTML files containing the FSL Melodic report.
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Figure 7. 
ROI Extraction parses an anatomical volume into labels and produces a table to help the user 

identify the names of the regions that the Brain Parser program uses. Models of each label 

look similar to the inset image in Figure 3.

Torgerson et al. Page 21

Brain Imaging Behav. Author manuscript; available in PMC 2015 May 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Brain Suite and FreeSurfer are the most popular neuroimaging software programs for 

creating 3D models of labelmaps obtained from parsing an anatomical image. The 

BrainSuite and FreeSurfer Modeling Workflow outputs left and right hemisphere object files 

in the formats preferred by each of these programs for comparison and examination.
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