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Abstract

Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with acti-
norhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and
this division also corresponds to host specificity groups. The strains of cluster Il which form
symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range,
show suprisingly low genetic diversity and to date can not be cultured. The genome of the
first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont
of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different
housekeeping genes of Dg1 and three published Frankia genomes showed that cluster Il is
basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D.
glomerata, independent of the origin of the inoculum, contain several closely related cluster
Il Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the
nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common sym-
biotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules re-
sembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among
Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes
nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons
which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to
partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic
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analysis showed that Dg1 Nod proteins are positioned at the root of both a- and 3-rhizobial
NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobac-
teria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates
an Actinobacterial origin of rhizobial Nod factors.

Introduction

Actinorhizal root nodule symbioses are formed between nitrogen-fixing actinobacteria from
the genus Frankia and a diverse group of mostly woody dicotyledonous plants from 23 genera
and eight different families [1]. These families group in three orders, Fagales (Betulaceae,
Casuarinaceae and Myricaceae), Rosales (Elaeagnaceae, Rhamnaceae and Rosaceae) and
Cucurbitales (Coriariaceae and Datiscaceae). These plants, together with the legumes and
Parasponia (Cannabaceae) which establish root nodule symbioses with rhizobia, belong to a
clade of angiosperms known as the nitrogen-fixing clade (NFC; [2]). The scattered distribution
of nitrogen-fixing plants within this relatively small clade supports a common origin of the pre-
disposition to evolve root nodule symbioses assumed to have arisen ca. 100 million years ago
(mya; [3,4]). This presumed gain-of-function evolved only once; however, among the plants
with the predisposition, subsequently nitrogen-fixing root nodule symbioses evolved several
times independently, with common themes but differences in infection process, nodule struc-
ture, nodule physiology and microsymbiont specificity. Using a database of nearly 3500 species
within the NFC and the angiosperm phylogeny of Zanne et al. [5], Werner et al. [4] tested a se-
ries of models and came to the conclusion that the earliest root-nodule symbiosis arose in the
common ancestors of actinorhizal Cucurbitales, followed by those of legumes, followed by acti-
norhizal Casuarinaceae and Rosaceae, and then by the other groups of actinorhizal plants.

Based on 16S rDNA phylogeny, the genus Frankia has been divided into four clusters. The
basal group consists of so-called ‘atypical or ‘Frankia-like’ strains that have been isolated from
nodules but cannot induce nodule formation, also called Cluster IV. This group seems to be
closely related to rhizosphere strains previously detected only by direct amplification of 16S
rDNA [6], and forms a heterologous group of Frankia strains with the highest diversity [7].
Symbiotic Frankia strains make up the other three clusters, which also correspond in general
to host specificity groups. While cross inoculation may be possible within a cluster, generally
not all strains of a cluster can colonize all of the cluster’s host plants [7]. Cluster I is the largest
and most divergent one; its members are capable of colonizing species of the three actinorhizal
families of the order Fagales, Betulaceae, Casuarinaceae and Myricaceae. Cluster III strains
form nitrogen-fixing root nodule symbioses with the host-plant genus Gymnostoma (Casuari-
naceae, in Fagales), Elaeagnaceae (Rosales), and all actinorhizal genera of the Rhamnaceae
(Rosales) except Ceanothus. Cluster II strains nodulate members of the families Coriariaceae
and Datiscaceae (Cucurbitales); as well as all the actinorhizal members of the Rosaceae and Ce-
anothus. In contrast with strains of Clusters I and III, Cluster II strains could so far not be cul-
tured despite numerous attempts, leading to the suggestion that they might be obligate
symbionts or at least have lower saprotrophic capabilities than the strains from the other clus-
ters [8]. The relative phylogenetic positions of the three Frankia clusters within the genus has
fluctuated, in that different genes used for phylogenetic analysis led to different topologies
[7,9]. However a recent study using a concatenation of 54 proteins and other measures shows
that Cluster II is basal to the other two clusters [10].
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The genomes of three strains of Cluster I (Frankia alni ACN14a, QA3 and Frankia sp.
CcI3) and of four strain of Cluster III (Frankia sp. EAN1pec, EUN1f, BCU110501 and
BMGS5.12) have been published [11,12,13,14,15]). The large genome size variation between
9.3 Mb (EUNT1{) and 5.43 Mb (CcI3) has been suggested to reflect differences in saprotrophic
potential [11].

In spite of their large host range, Cluster II strains display a remarkably low level of genetic
diversity [16] which in an ancient lineage is evocative of a recent evolutionary bottleneck. Such
a bottleneck could be associated with previous abundance of certain host plants, followed by a
catastrophic event leading to loss or reduction of autonomy of the microsymbiont. Interesting-
ly, one of the host plant genera nodulated by Cluster II strains is Dryas (Rosaceae, Rosales),
shown to initiate colonization of gravel till following glacial retreat, due to its capacity for bio-
logical nitrogen fixation [17], and which once was so abundant that a stadial during an inter-
glacial age was named after it. This genus appears to be losing its symbiotic potential since one
of the three known species, the Eurasian D. octopetala is systematically found devoid of nodules
[18]. Two other Cluster IT host genera, Datisca and Coriaria (Cucurbitales), also have a disjunct
distribution evocative of taxa threatened by extinction [19,20]. In the case of Datisca, one spe-
cies (Datisca glomerata) is found in California and northern Baja California, Mexico, while the
other species (Datisca cannabina) is found in the east Mediterranean and in the foothills of the
Himalayas in Pakistan and northwestern India [21].

The genome of the first representative of Cluster II, Candidatus Frankia datiscae Dgl was
sequenced using bacteria isolated from the infected cells of nodules (Dgl; NC_015656.1 (chro-
mosome) and NC_015664.1 (plasmid); [21]). Consistent with the hypothesis that genome size
reflects saprotrophic, not symbiotic potential, the genome of Dgl has, at 5.32 Mb, one of the
smallest Frankia genome known thus far, suggesting a genomic reduction that could corre-
spond to a reduced saprotrophic lifestyle. At the same time, the difference in genome size be-
tween Dgl and the Cluster I strain CcI3, which can be cultured, is not large. In this study, the
Frankia genomes that were first published—ACN14a, CcI3 and EAN1pec [11] will be used
for comparisons.

The capability to form root nodule symbioses evolved in part by recruiting mechanisms
adapted from the evolutionarily older arbuscular mycorrhizal (AM) symbioses [22]. In le-
gume/rhizobia symbioses, flavonoids exuded by plant roots induce expression of bacterial nod-
ulation (nod) genes leading to the synthesis of lipo-chito-oligosaccharide (LCO) signal
molecules called Nod factors. These LCOs are perceived by plant kinases of the LysM-RLK
family and activate a signaling pathway, the common symbiotic pathway, that controls both le-
gume/rhizobia and AM symbioses. Also AM fungi produce LCO signal factors [23], although
in their case, there is no evidence to link these factors to host specificity. Results obtained using
the only non-legume nodulated by rhizobia, Parasponia sp., show that the establishment of an
AM symbiosis requires a LysM receptor kinase [24]. The common symbiotic pathway, the
known components of which include the receptor kinase SymRK and the calcium- and cal-
modulin dependent kinase CCaMK [25] is also used for microsymbiont signaling in actinorhi-
zal symbioses, as shown for SymRK in D. glomerata (Cucurbitales; [26]), for SymRK and
CCaMK in Casuarina glauca (Fagales; [27,28]) and supported by the presence of homologs of
the whole symbiotic cascade in Alnus glutinosa and C. glauca [29] as well as D. glomerata [30].
Since LCOs or, alternatively, short-chain chitin oligomers (COs) are thought to be involved in
signaling via the common symbiotic pathway in AM symbioses [23,31], the ancestral symbiosis
from which features were recruited for both legume and actinorhizal symbioses, it seems likely
that the symbiotic signals produced by Frankia strains were also LCO-like or CO-like com-
pounds that are perceived by LysM receptor kinases.
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However, no signaling substances with the chemical properties of LCOs have been detected
to date in Frankia culture supernatants [32]. At the genome level, synthesis of the acylated chi-
tin oligomer backbone of Nod factors requires the activity of three specific enzymes, encoded
by the so-called “canonical nod genes” nodABC (NodA—acyl transferase, NodB—chitin deace-
tylase, NodC—chitin synthase), which form a cluster present in all rhizobia characterized thus
far except for one subgroup that nodulates stems of plants of the genus Aeschynomene [33]. No
homologs of these canonical nod genes were found in the genomes of the Frankia strains from
Clusters [ and ITI [11], aside from genes encoding polysaccharide deacetylases (but with low
similarity to the NodB subfamily) and chitin synthases (but not of the NodC subfamily). As a
result of whole-genome sequencing, finishing, and annotation [21], we identified homologs of
the canonical nod genes in the genome of the Cluster II Frankia strain, Dgl (Fig 1) and thus set
out to assess their phylogeny and function.

Materials and Methods
Frankia sp. phylogeny based on 50 housekeeping genes

A set of 50 housekeeping genes was identified in Candidatus Frankia datiscae Dgl and then
used in a BLASTP search as the query. The corresponding BLAST searches were restricted to
Frankia alni ACN14a, Frankia sp. Ccl3, Frankia sp. EAN1pec, Acidothermus cellulolyticus 11B,
Geodermatophilus obscurus DSM 43160, Nakamurella multipartita DSM 44233, Stackebrand-
tia nassauensis DSM 44728 and Thermobifida fusca YX. All alignments were created using
MUSCLE (multiple sequence comparison by log- expectation; [34]) at the EMBL-EBI website.
Maximum parsimony analyses were performed using the software package PAUP* version
4.0b10 [35]. All characters were weighted equally and gaps in the alignment were treated as
missing. A heuristic search strategy with 10 random replicates, TBR branch-swapping and the
MULTREES optimization was used. MAXTREES parameter was set to 10,000 per replicate.
Support for branches was evaluated using bootstrap analysis [36] and random sequence addi-
tion for 100 replicates, using the same parameters.

Nod protein sequence phylogenies

NodA, NodB, NodC, NodI and Nod] protein sequences were obtained from GenBank (NCBI)
[37] by a multistep BLAST procedure using the protein sequence from Dgl NodA, NodB,
NodC, NodI and NodJ (GenBank accession numbers AEH09514, AEH10396, AEH10398 and
AEH10399, respectively) as query. A BLASTP search of the non-redundant protein sequence
(nr) database using default parameters (word size = 3, Expect threshold = 10, limiting to 100
target sequences, BLOSUM matrix, and an 11:1 gap cost/extension) generated 100 protein se-
quences of high similarity. To identify more distantly related potential homologs within the
Actinobacteria and Proteobacteria, five iterations of PSI-BLAST were conducted using default
parameters (word size = 3, Expect threshold = 10, limiting to 500 target sequences, BLOSUM
matrix, and an 11:1 gap cost/extension and a threshold for inclusion of 0.0001). Between 30
and 40 sequences were evaluated for analyses that maximized both sequence and taxonomic di-
versity. Some NodA sequences from diverse taxa in GenBank were eliminated due to short se-
quence length and/or origin in a nodule metagenome. For Dgl NodA (AEH09513) homologs
in actinobacteria, a BLASTP search for Actinobacterial sequences with similarity of 1e"'° or
better in the NCBI and additionally in the JGI databases. Nineteen sequences were found in
each database (not including Dgl). From these 38, sequences with query coverage of less than
75% were removed. Also, some of the remaining sequences were identical or a partial sequence
of another. In such cases, only the longest sequence was kept. This way, altogether 18 unique
actinobacterial sequences of NodA homologs were identified.
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Fig 1. Circular map of the Dg1 genome. The outer circle shows the GC content (above 50%), the next circle shows the positions of IS elements (for
detailed positions, see S2 Table). The next circle shows the results of mapping the transcriptome of a closely related cluster Il strain on the Dg1 genome: the
red peaks represent the genes expressed in the top 5% of expression levels, the grey peaks represent genes represented by at least one read per kb. The
next circle shows the operons of genes encoding enzymes involved in the biosynthesis of secondary metabolites (S4 Table): blue color denotes genes which
are represented in the symbiotic transcriptome, grey color operons that are not. The last circle shows the positions of the two operons of canonical nod genes
(nodA’B1A and nodB2C) and the nif gene operon. The nod operons of Dg1 are depicted in detail. The nodA’B1A operon is at position 2,490,158-2,489,200
of the genome, the nodB2C operon at position 3,662,361-3,664,562. The latter is followed by the n/tlJ genes at position 3,664,716-3,666,622.

doi:10.1371/journal.pone.0127630.g001

All alignments were created using MUSCLE [34] at the EMBL-EBI website, followed by
manual adjustment. Selection of the appropriate amino acid substitution model was deter-
mined using PROTTEST 2.4 [38] through the server housed at the University of Vigo (http://
darwin.uvigo.es/software/prottest2_server.html). Maximum Likelihood analyses for all align-
ments (NodA, NodB, NodC, Nodl, and NodJ) were performed using PhyML 3.0 [39] on the
ATGC bioinformatics server. The settings for the NodA run included the JTT model and rate
variation sampled from a gamma distribution (JTT+G). The settings for the NodB run includ-
ed the WAG model, estimated invariant sites, and rate variation sampled from a gamma distri-
bution (WAG+I+G). NodC settings included the LG model, estimated invariant sites, and rate
variation sampled from a gamma distribution (LG+I+G). NodI and Nod]J settings were LG+G.
Support for branches was evaluated using bootstrap analysis [40] and random sequence addi-
tion for 100 replicates, using the same parameters.
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Transcriptome analysis

Seedlings of Datisca glomerata (Presl.) Baill were grown in a greenhouse (UC Davis) and inoc-
ulated with rhizosphere soil from previously-nodulated Ceanothus spp. Nodules from two
batches of four plants each were snap-frozen in liquid nitrogen at 4 or 6 weeks after inocula-
tion, and pooled by weight. Total nodule RNA was extracted after grinding tissue in liquid ni-
trogen, using the Plant RNeasy kit (Qiagen, Valencia, CA, USA). Ribosomal RNA was twice
subtracted from total RNA with the RiboMinus Plant Kit for RNAseq (Invitrogen, Carlsbad,
CA, USA). A cDNA library template was constructed, fragmented, and gel-purified, and the re-
sulting 250 bp average fragments were amplified, according to Illumina (San Diego, CA, USA)
protocols. RNA quality and length were checked at each step with a Bioanalyzer (Agilent,
Santa Clara, CA, USA). Total RNA was sequenced in a single lane on an Illumina GAIIx system
producing ca. 27 million reads (40 bp single reads). A total of 3,712,391 reads mapped to the
complete genome of the Frankia strain Dgl (GenBank: CP002801- CP002803) using Bowtie
[41]. Ribosomal RNA (168, 23S and 5S) accounted for 96% of the total mapped reads
(3,566,390 reads). The remaining 146,001 reads were filtered for exact duplicate sequences
(likely PCR artifacts), sorted and converted to BAM files using the samtools package [42], leav-
ing a final 66,962 reads which were analyzed.

Data visualization and browsing were conducted with the Integrative Genomics Viewer
software [43]. Gene expression was calculated as the number of mapped reads per kilobase of
gene sequence (rpkb) using custom R scripts [44]. Standard database fields in NCBI were used
for gene annotation.

The rpkb data were fitted with a negative binomial distribution (S1 Fig) using the fitdistrplus
package in R [45]. Expression quantiles (99%, 95%, 90%, 80%, 70%, and 60%) were computed.
Expression of complete or nearly complete metabolic pathways was determined by importing
the genome and transcriptome into BioCyc [46], and using Pathway Tools [47]. Pathways, gene
and protein annotations, and functional gene clusters were cross-checked in the KEGG Pathway
Database supplemented with other sequence databases. A subset of total pathways was selected
for further analysis based on high relative expression values, and a minimum of three genes per
pathway. Statistically significant overrepresentation of key biosynthetic pathways in the active
transcriptome was assessed for genes in each of the quantile bins using a hypergeometric test.

Quantitative reverse transcription-PCR (gPCR) analysis

For analysis of nod gene expression in symbiosis, total RNA was isolated from D. glomerata
nodules after grinding in liquid nitrogen and five passages of 1 min each in a Tissuelyzer (Qia-
gen), using the RNeasy Plant Mini Kit with on-column DNase digestion (Qiagen). Reverse
transcription was performed on 1 ug total RNA from three biological replicates in a final vol-
ume of 20 pl, using the TATAA GrandScript cDNA Synthesis Kit (TATAA Biocenter, Gothen-
burg, Sweden) following the protocol provided by the manufacturer. All qPCR assays
contained 1x Maxima SYBR Green qPCR Master Mix (Fermentas, Vilnius, Lithuania), 300 nM
of each primer, 2 ul of 10x diluted cDNA in a total reaction volume of 10 ul. gPCR was con-
ducted under the following conditions: 10 min of initial denaturation at 95°C, 40 cycles of 15 s
at 95°C, 30 s at 60°C and 30 s at 72°C, followed by steps for dissociation curve generation (15 s
at 95°C, 15 s at 60°C and 15 s at 95°C). Primer sequences are given in S1 Table. Assay perfor-
mance was evaluated with a standard curve. The Eco Real-Time PCR system (Illumina, San
Diego, CA, USA) was used for data collection and standard curve generation. PCR products
were validated by dissociation curve analysis and agarose gel electrophoresis. Assays were ana-
lyzed in triplicate with the standard curve method [48]. PCR efficiency was calculated with the
Eco software with data obtained from the exponential phase of each amplification plot. Primers
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were designed using Beacon Designer software (PREMIER Biosoft, Palo Alto, USA; S1 Table).
Gene expression data was normalized against expression of the translation initiation factor
gene IF-3. Data analysis including data pre-processing and normalization was performed with
GenEx (version 5.4.1, MultiD Analyses, Gothenburg, Sweden).

For qPCR analysis of nitrogen assimilation genes, reverse transcription was performed on
1 pg total RNA from three biological replicates in a final volume of 25 pl, using the MMLV-RT
Promega M170A kit following the protocol provided by the manufacturer [49]. All qPCR as-
says contained 1x Maxima SYBR Green qPCR Master Mix (Applied Biosystems), 5 uM of each
primer, 1 pl of 10x diluted cDNA in a total reaction volume of 20 pl. qPCR was conducted
under the following conditions: 10 min of initial denaturation at 95°C, 40 cycles of 15 s at 95°C,
30 s at 58°C in a Termociclador ABI Prism 7500. Primer sequences for: asl, 5-GAACACCGG
CTCCTTGTCCTC-3’ and 5’- CGTCGAGCTGGGTTTCGACTC-3’; for gogatFD, 5 GATGG
TGGCGGTGTACTTCT-3 and 5- TGCTGAAGGTCATGTCCAAG-5’; for ginl, 5-TTCG
CTTCTGTGACCTTCCT-3" and 5- GTCGTAGCGTACGTCGTCAA-3’; for ginll, 5-CAGG
CCTACGAGAAGTACGC-3" and 5°- CCTGGTGGAGAAGTTGGTGT-3’; for arg], 5-G
TTCGTCCAGACCGTCAGTT-3’ and 5- GGTGCAACCTGCTCAAGTG-3’. Primers for the
reference gene, 16S rRNA, were 5-GGGGTCCGTAAGGGTC-3" and 5'-CCGGGTTTCCCC
ATTCGG-3".

Genome analyses

The Dg1 genome consisted of a chromosome (CP002801) and two plasmids, pPFSYMDGO01
(CP002802) and pFSYMDGO2 (CP002803). Since pFSYMDGOL is represented in the transcrip-
tome while pPFSYMDGO02 is not, and pFSYMDGO02 shows 100% homology with yeast transpo-
sons (see e.g., AP012213.1), we can conclude that pFSYMDGO2 represents a contamination.

The analysis of the genome sequences with regard to biochemical pathways in Dgl was per-
formed using Pathway tools [40], MAGE, and IMG/ER. Secondary metabolism (of ACN14a,
CcI3 EAN1pec, Ccl3, and Dgl) was analyzed using antiSMASH (http://antismash.
secondarymetabolites.org; [50]). The core genome between four sequenced Frankia strains
(ACN14a, EAN1pec, CcI3, and Dgl) was determined using EDGAR (http://edgar.cebitec.uni-
bielefeld.de; [51]). The Phyloprofile function of the MAGE platform [52] was used to extract
those genes present in the ACN14a, CcI3 and EAN1pec but absent in Dg1 at a sequence simi-
larity of 30% over a length of 80% of the shortest sequence. Palindromic Repeats were analyzed
with the palindrome tool from EMBOSS (http://bips.u-strasbg.fr/EMBOSS/) with no mis-
matches and the following parameters: 1. Repeat units between 8 and 11 bases with up to a 3
base gap. 2. Repeat units between 12 and 19 bases with up to a 7 base gap. 3. Repeat units be-
tween 20 and 90 bases with up to a 20 base gap. 4. Repeat units of less than 12 bases must occur
at least 10 times in the genome. 5. Repeat units of less than 20 bases must occur twice in the ge-
nome. Tandem repeats was analyzed with the MUMmer 3.13 package (http://www.tigr.org/
software/mummer/) with the following parameters: Minimum match length = 20 bases. 2. It is
assumed that one copy of a tandem repeat in a genome is not very significant unless it is long.
Therefore, a genome-wide screen for the repeat used was added. The total number of bases in-
corporated into repeats for a particular repeat unit must total 50 or more bases.

Pseudogene counts were based on analysis by the IMG (Integrated Microbial Genomes)
platform of JGI.

Finding and identifying repeats

To identify ISs in the investigated organisms, a database of potential ISs was assembled from
two sources: First, the program RepeatScout [53] was used to identify all repeated nucleotide
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sequences with >500 nt length in the investigated organisms. Repeats associated to non-mobile
repeated genes, e.g. rRNA, photosynthesis genes and other regular genes present in multiple
copies in the genome, were removed. This yielded 173 putative IS elements.

Second, 4512 likely ISs identified in a previous investigation [54] were added to the data-
base. This database included 3377 repeats from the ISfinder site [55], a web repository of
known ISs, as well as 1135 repeats from cyanobacteria, Frankia genomes available in 2012 and
other known symbiotic bacteria. The repeats found by RepeatScout were named with an abbre-
viation of the name of the originating organism, the letter ‘R’ and a number, e.g. ‘Npun_R 21’
is a repeat from the organism N. punctiforme, the twenty-first found by RepeatScout. The ISs
from ISfinder retained their original names, all starting with ‘IS’. ISfinder and RepeatScout se-
quences were collected into a single Fasta file. Redundancies, generated when ISfinder se-
quences were also detected by RepeatScout, were removed, with the ISfinder name taking
precedence. Each of the collected nucleotide sequences was used as queries in a BlastN search
against each of the genomes, one at a time. All areas of the genome that received hits with a
BlastN expect value < le® were collected. Often several queries scored hits on the same region
of a genome, together making up a “footprint” in the genome.

In the next step, each footprint was analysed to determine what repeats it consisted of. This
was performed by using the footprints as queries against the database of repeats. The repeat se-
quence that received the highest score with the footprint as query was chosen as the most likely
IS to occupy the footprint. In some cases, the best scoring repeat didn’t cover the entire foot-
print. The search was then repeated with the remaining footprint as query. The process was re-
peated until all parts of the footprints had been identified. The whole process yielded a
GenBank file for each of the investigated genomes, where the verified and putative ISs are de-
scribed with position, kind and quality of identification (S2 Table).

Analysis of nodule occupancy

Seedlings of Datisca glomerata were grown and nodulated under controlled conditions in two
locations: at the Department of Plant Ecology, Stockholm University (SU) and the Department
of Plant Sciences, University of California, Davis (UCD). The inoculum source for the SU
plants was a ground nodule suspension containing Frankia originally from Pakistan [56]; the
inoculum source for the UCD plants was soil from the rhizosphere of nodulated Ceanothus gri-
seus in California. DNA was extracted from several nodules from a combination of at least four
plants, using the QTAGEN DNeasy plant mini kit following the manufacturer’s instructions.
Two replicates from each source were amplified by PCR using universal primers 27F (5'-
AGAGTTTGATCCTGGCTCAG-3") and 338R (5'-TGCTGCCTCCCGTAGGAGT-3') and se-
quenced on a GS FLX + Sequencing System (454 Life Science/Roche), Kansas State University.

92,880 sequencing reads from the 454 were initially generated from the four DNA samples,
and after filtering for barcodes, adapters, length, and quality, 54,361 remained. Sequences were
trimmed and denoised [57] to avoid artificial inflation of rare diversity from homopolymer
read errors, and processed in QIIME 1.5.0 [58] to assign operational taxonomic units (OTUs)
using a 97% identity threshold, assign taxonomy to OTUs (identifications of >80% confi-
dence), and calculate abundances of OTUs in samples. Finally, using BLAST [59] and QIIME,
reads were curated to remove sequences from mitochondria or chloroplast, and to merge
OTUs not reaching 0.2% abundance in any sample into a single category. Finally, 2,833 and
4,209 bacterial reads from the two SU nodule samples (with mean 3521 and standard deviation
973), and 1,994 and 4,822 bacterial reads from the two UCD nodule samples (with a mean of
3408 and a standard deviation of 2000) were included in analysis.

PLOS ONE | DOI:10.1371/journal.pone.0127630 May 28, 2015 8/33



@’PLOS ‘ ONE

A Frankia Strain with nodABC Genes Expressed in Nodules

Phylogenetic analysis was conducted on five v1-2 region of 16S rDNA sequences (S3 Table)
of Frankia OTUs together with seven v1-2 region sequences and two v2 region sequences (Cn
endophyte; Dc endophyte) of Cluster II Frankia strains and three v1-2 region sequences of
Cluster I or III Frankia strains available in GenBank [37]; S3 Table). Among the added Cluster
II Frankia sequences, three originated in Pakistan (Dgl, Cn endophyte, Dc endophyte), one
originated in New Zealand (FE37), and all others originated in North America. Sequence align-
ment was done using MAFFT [60]; the length of the aligned sequences was 321bp. A neighbor-
joining tree was constructed based on a pairwise distance matrix of percent nucleotide differ-
ence with 1000 boot strap replicates using PAUP* version 4.0b10 [61]. All positions were
weighted equally and all gaps were treated as missing data.

Rhizobium leguminosarum nodC complementation

As a positive control, a cluster comprising nodD, nodA, nodB and nodC genes was amplified
using DNA from Rhizobium leguminosarum strain A34 [62], Pfu (Promega, Charbonniére-
Les-Bains, France) polymerase and primers F7800 5°-GTGCTGCATGCGTGCCGCTTACG
ACGTACAACTT-3 and F7799 5-TATAGGAATTCCTGCAGTGACGCGTTCATCACT-3".
PCR conditions were: 2 min at 95°C followed by 35 cycles at 95°C 1 min; 63°C 30 s; 72°C 7
min, followed by 72°C for 5 min. The PCR fragment was cloned into a pGEM-T easy vector
(Promega) and the DNA insert verified by sequencing. The plasmid containing a PCR insert
was then digested using restrictions enzymes Sphl and EcoR1 and ligated into a Sphl /EcoRI di-
gested pBBR1 MCS5 vector [63]. It was then introduced first into E. coli DH10B (Invitrogen)
and then into R. leguminosarum A56 (nodC128::Tn5) [62] by electroporation [64].

The nodC gene from Dgl (nodC_DglI) was amplified using primers F7308 5°-ACCAGG
ATCCTCACGATGACAGCGGGG-3’ and F7350 5~-AAACCCATATGTCGACCGCGGTG
AG-3’ and Taq (Invitrogen, Villebon sur Yvette, France) in 1 x Taq buffer containing 5%
DMSO (vol/vol). PCR conditions were: 5 min at 95°C followed by 40 cycles at 94°C, 45 s; 59°C,
45's; 72°C, 45 s, followed by 72°C for 10 min. The PCR fragment was cloned into the pGEM
vector, which was transformed into E coli DH10B and confirmed by sequencing. Plasmids con-
taining the nodC_Dgl gene were used as DNA template for further amplification and cloning.

The R. leguminosarum nodC gene replacement by Candidatus Frankia datiscae Dgl
nodC_DgI gene was done in three PCR steps. nodDnodAB genes from R. leguminosarum A56
were amplified using primers F8029 5-CATGGTTTCTCGTTTGTCCAGTGTTTC-3’ and
F7800 5°-GTGCTGCATGC GTGCCGCTTACGACGTACAACTT-3’ using Pfu polymerase.
PCR conditions were: 2 min at 95°C followed by 35 cycles at 95°C, 1 min; 60°C, 30's; 72°C, 5
min, followed by 72°C for 10 min. The nodC_DgI gene from Frankia Dgl was amplified using
primers F8030 3’-GAAACACTGGACAAACGAGAAACCATGTCGACCGCGGTGAG-3
and F8210 5-ACCAGGAATTCTCACGATGACAGCGGGG-3’ and Taq polymerase (Invitro-
gen). One pL of each PCR product were mixed and amplified using primers F7800, F8210 and
Taq polymerase (Invitrogen). PCR conditions were: 4 min at 95°C followed by 35 cycles at
95°C, 1 min; 51°C, 30 s; 72°C, 7 min, followed by 72°C for 10 min. A 3.7 kb DNA fragment
containing fusion nodDABC_Dgl was eluted from the agarose gel using a micro elute column
(Qiagen, Courtaboeuf, France), ligated into the pGEM-T easy vector (Promega, Madison, W1,
USA) and transformed into E. coli DH10B by electroporation. Plasmid DNA isolation were
done from several colonies. The correct gene fusion was confirmed by sequencing. The DNA
insert was then cloned in the EcoRI and Sphl sites of the pPBBR1 MCS5 vector and transformed
into E. coli DH5a. Transfer to the R. leguminosarum A56 nodC mutant strain was performed
by tripartite conjugation using E. coli containing the pRK2013 plasmid. The construct in R.
leguminosarum A56 with the Frankia Dgl nodC_Dgl gene was verified after conjugation by
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amplification of nodC-Dgl gene and of the 16S rDNA and confirmed by sequencing, plasmid
DNA preparation and enzyme restriction analysis.

Seeds of Pisum sativum (Wisconsin perfection) were obtained from INRA Dijon (France),
surface sterilized with ethanol 70% (vol/vol) for 1 minute, rinsed and treated for 12 minutes in
NaClO 10% (w/vol), rinsed and then germinated on agar. The seedlings were then transferred
into 500 ml glass flasks containing 250 ml of nitrogen-free FP medium solution [65] gelified
with 0.5% agar and capped with cotton wool. When the seedlings were 2 weeks old, they were
inoculated with wild-type R. leguminosarum A34 (WT), R. leguminosarum A56 (nodC128::Tn5)
with recombinant nodDnodABC, or with R. leguminosarum A56 with recombinant nodDno-
dABC_Dgl with nodC from Dgl, or not inoculated, grown for 72 h at 30°C on TY agar with
0.6 mM Calcium Chloride [66] and resuspended in distilled water. The plants were grown in
the greenhouse at a 21°C/16°C day/night cycle. The effects of the rhizobia on the plant roots was
followed under a stereomicroscope. After infection, the roots were observed twice per week over
a period of two months, looking for root hair deformation and nodule formation, on two sepa-
rate sets of sextuplicates for all genetic constructs. After 31 days, photographs were taken of de-
formed root hairs. First, plants were observed under a Leica MZ8 stereomicroscope using lateral
illumination to avoid light reflections. For photography, a Zeiss Axioskop was used with an
Axiocam MRC5 camera, and the root systems with agar were removed from the glass flasks.

Results

Does the genome of Dg1 show auxotrophies or symptoms of reduction
typical of obligate symbionts?

The genome of Dg1 has a coding density of 78% which is slightly lower than those of the other
sequenced Frankia strains. The core genome (at a threshold level of 30% amino acid identity
over 80% of the length of the shortest sequence) of the four studied genomes of Frankia strains
consisted of 1616 coding sequences (CDSs; S2 Fig). The CcI3 genome displayed the highest
similarity to the core genome, with only 30% (1351 CDSs) of its CDSs not shared with the
other Frankia strains. In contrast, 39% (1598 CDSs) of the CDSs of Dgl, 45% (3051 CDSs) of
ACN14a and 50% (3606 CDSs) of EAN1pec were not shared with any other Frankia strain.

A comparison of the metabolic pathways encoded in the genomes of the sequenced Frankia
strains using MicroCyc (http://www.genoscope.cns.fr/agc/microscope/metabolism/microcyc.
php) and Phyloprofile (https://www.genoscope.cns.fr/agc/website/spip.php?article600) showed
several putative auxotrophies in Dgl that could impede saprotrophic growth. However, since
similar auxotrophies were found in the genomes of cultured Frankia strains, the only safe con-
clusion to be drawn is that not all actinobacterial versions of common metabolic enzymes are
characterized yet. For this reason, it is also difficult to compare the saprotrophic potential—i.e.,
capability of growing on different nutrient sources—of different Frankia strains based on their
genome sequences.

In comparison with CcI3, EAN1pec and ACN14a which have a high capacity for the pro-
duction of secondary metabolites [67], Dgl had a lower potential for the biosynthesis of poly-
ketides, non-ribosomal peptide synthases and terpenoids (S4 Table). Several operons for
lantibiotic biosynthesis that are present in CcI3, EAN1pec and ACN14a are absent in Dgl, and
genes for bacteriocins present in ACN14a and EAN1pec are not present in Dgl (S4 Table). The
gvp operon, responsible for the synthesis of gas vesicle proteins that are supposed to maintain
bacteria at the top of the water table in the soil [68], which is present partly in CcI3, and
completely in ACN14a and EAN1pec, is missing in Dgl. These features indicate that Dgl pos-
sesses a comparatively low potential for the biosynthesis of siderophores for iron scavenging,
and of compounds used against competitors in the soil habitat.
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In bacterial symbionts, proliferation of the mobilome is a key feature of early stages of ge-
nome reduction [69,70,71]. The mobilome encompasses mobile genetic elements—genetic
units that can move within a genome or from cell to cell. Intracellular mobile genetic elements
include transposons and insertion sequenes (ISs). The latter are defined as genomic sequences
of mobile DNA, typically 800-1300 bp in length, that encode the enzyme transposase. E.g.,
clusters of ISs have been shown to correlate with areas of gene loss and genomic recombination
in Frankia strains [72]. In this context, it is interesting that a larger number of transposases
was observed in Dgl compared with the other studied Frankia genomes (S5 Table). To further
our understanding on genome reduction in Frankia strains, we examined the identity and dis-
tribution, as well as length distribution, of IS elements in the Frankia genomes published to
date. We defined a particular DNA sequence encoding a transposase as an IS when it was pres-
ent in multiple copies in a genome, taking into account that IS elements may have accumulated
mutations leading to differences in sequence and length. The results showed that Dgl clearly
contains the highest relative amount of IS elements, followed by the Elaeagnus-infective strain
EANIpec and the Casuarina-infective strain CcI3 (S3A Fig). The latter, like Dgl, has a small
genome which has been attributed to IS-mediated reductive evolution [11].

A study of the length distribution of the IS elements in each strain showed that only in Dgl,
full length IS elements dominated, while in all other strains examined, full length IS elements
represented a minority among the IS elements (in CcI3 and EAN1pec, they made up less than
30%; S3B Fig). The distribution of IS elements in the genome is depicted in Fig 1 and S2 Table.

Many degrading genomes display an elevated level of pseudogenes [73]. The genome of Dgl
contains 325 pseudogenes, 7.01% of the total number of genes. In comparison, CcI3 has 50
pseudogenes (1%), ACN14a 12 (0.18%), and EAN1pec has 128 (1.78%; S5 Table). As an ex-
treme, 31.2% of the CDSs in the obligate symbiont Nostoc azollae are pseudogenes [74].

Evolution of symbiotic Frankia strains: which Cluster is basal?

In the framework of a re-examination of the phylogeny of actinobacteria using 54 house-keep-
ing genes from 100 sequenced genomes, Sen et al. [10] determined Frankia Cluster II (repre-
sented by Dgl) as basal Frankia clade, followed by the non-symbiotic Cluster IV, and then the
symbiotic Cluster III and finally Cluster I as the most derived. This is consistent with the evolu-
tion of nitrogen-fixing symbioses as examined by Werner et al. [4] in that the oldest symbioses
—of Cucurbitales, since the evolution of the symbiotic capabilities must have preceded specia-
tion of Coriaria sp. [20]—are those involving Cluster II strains. However, given the wide range
of the analysis, a new, more focussed analysis seemed in order to confirm the basal position of
Cluster IT among the symbiotic Frankia strains.

The phylogenies of 50 different housekeeping genes were analyzed for the first four pub-
lished Frankia genomes, using Geodermatophilus obscurus G20 (NC_013757 [75]), Acidother-
mus cellulolyticus 11B (NC_008578 [76]), Stackebrandtia nassauensis (NC_013947 [77]) and
Nakamurella multipartita Y-104 (NC_013235 [78]) as outgroups. The results are depicted in
$4 Fig and summarized in Table 1. For 42 out of 50 genes, Dgl was basal to the other Frankia
strains, while EAN1pec (Cluster IIT) and ACN14a/CcI3 (Cluster I) formed derived sister
groups. Eight genes (dapB, dihydrodipicolinate reductase; dnaA, chromosomal replication ini-
tiation protein; folC, dihydrofolate synthase; glpX, fructose 1,6-bisphosphatase II; idi, isopente-
nyldiphosphate isomerase; ispA, intracellular septation protein; murC, UDP-N-
acetylmuramate-L-alanine ligase; rplA, ribosomal protein L1) showed different phylogenies;
for four of them (dnaA, folC, glpX, idi) Dgl/EAN1pec (Clusters II/IIT) and ACN14a/CcI3
(Cluster I) appeared as sister groups, and for two of them (murC, rplA), EAN1pec (Cluster III)
was basal. In summary, the results predominantly show that Cluster II is the basal group of
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Table 1. Frankia phylogeny was analysed using 50 housekeeping genes and the four published genomes of strains ACN14a and Ccl3 (Cluster I),
Dg1 (Cluster Il) and EAN1pec (Cluster lll).

Gene DNA or Length of Score of best tree # of most pars. Frankia Dg1 first Frankia mono-
Protein Alignment found Trees branching? phyletic?

16S DNA 4944 4505 1 Y Y
23S

aceE Protein 500 988 1 Y Y
aroK Protein 256 513 5 Y Y
atpA Protein 556 705 1 Y Y
bioA Protein 486 1138 1 Y Y
bioB Protein 458 966 1 Y Y
clpP Protein 237 366 1 Y Y
dapA Protein 356 627 1 Y Y
dapB Protein 278 449 1 N Y
dnaA Protein 466 574 1 n Y
dnaB Protein 547 629 1 Y Y
axr Protein 460 686 1 Y Y
axs Protein 660 965 1 Y Y
eno Protein 465 491 3 Y Y
folC Protein 525 1153 1 n Y
ftsZ Protein 590 784 1 Y Y
fusA Protein 705 735 1 Y Y
gimuU Protein 540 1126 1 Y Y
glpX Protein 375 517 4 n Y
gltA Protein 489 1009 1 Y Y
gyrA Protein 850 970 1 Y Y
htpX Protein 338 604 1 Y Y
idl Protein 236 572 1 n n
iSpA Protein 359 678 1 Y Y
ksgA Protein 339 591 2 Y Y
lipA Protein 360 447 2 Y n
IytB Protein 355 472 2 Y Y
metK Protein 418 380 1 Y Y
mfd Protein 780 1014 1 Y Y
mraY Protein 368 611 2 Y Y
murA Protein 516 1004 1 Y Y
murC Protein 668 1320 1 n Y
murG Protein 396 767 1 n Y
nth Protein 289 476 2 Y Y
pgk Protein 420 639 1 Y Y
recA Protein 355 261 3 Y Y
ribA Protein 480 627 1 Y Y
ribE Protein 175 288 1 Y Y
ribF Protein 355 758 1 Y Y
ribH Protein 175 289 1 Y Y
mplA Protein 260 262 1 n Y
mplB Protein 279 184 3 Y Y
rplC Protein 245 291 1 Y Y
rplD Protein 306 458 1 Y Y
rolE Protein 206 205 3 Y Y

(Continued)
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Table 1. (Continued)

Gene DNA or

Protein
plF Protein
rpoB Protein
shc Protein
tpiA Protein

trpE Protein
uppS Protein

Length of
Alignment
179

1209

751

288

450

293

Score of best tree # of most pars. Frankia Dg1 first Frankia mono-
found Trees branching? phyletic?

227 6 Y n

948 1 Y Y

923 1 Y n

469 1 Y Y

1367 1 Y Y

585 2 Y Y

A. cellulolyticus 11B, S. nassauensis DSM 44728, G. obscurus DSM 43160, N. multipartita DSM 44233, and T. fusca YX were used as outgroups. The
statistical evaluation is given in S4 Fig.

doi:10.1371/journal.pone.0127630.t001

symbiotic Frankia strains. Those genes that yielded a topology with Dgl at a derived position
were shorter (with a mean length of 464 aa, 1392 bp) than those (with a mean length of 521 aa,
1563 bp) that yielded a topology with Dgl at the base of the Frankia radiation. The smaller
length is correlated with an a priori smaller phylogenetic weight.

Dg1 contains two operons of canonical nod genes

Two operons of homologs of the canonical nod genes were found in the Dgl genome: 1) an op-
eron containing nodA’BIA, coding for: NodA’, GenBank accession number AEH09515 (a trun-
cated NodA, only 36 amino acids); NodB1, AEH09514; and a full-length NodA, AEH09513;
and 2) a nodB2CIJ operon, coding for NodB2, AEH10396; and NodC, AEH10397 (Fig 1). The
proteins encoded by these genes display very high amino acid sequence similarity to the canon-
ical nodABC genes (Figs 2, 3 and 4; S5 Fig; S6 Table), and their arrangement in the Dgl chro-
mosome suggests that they are expressed as operons, similar to their counterparts in rhizobia.
Based on these findings of amino acid sequence similarity and synteny, they are referred to as
nod genes throughout this manuscript. The structure of the nodA’B1A operon indicates that it
is the result of at least two transposition events, though it is not clear whether nodA inserted
into a functional nodAB1C operon from which nodC and the largest part of the original nodA
gene were subsequently lost, or whether the operon was truncated before the insertion.

The NodA proteins belong to a family of acyl transferases previously only described in rhi-
zobia; however, several NodA homologs are also present in a diverse group of Actinobacteria
that includes Dgl (Fig 2; S6 Table), phylogenetically distant from the rhizobia. While these
actinobacterial genera with NodA homologs span across the whole phylum [10], only the
nodulating taxa within the Proteobacteria have NodA homologs. Furthermore, as shown by
the longer branch lengths (Fig 2), the NodA sequences in actinobacteria are more diverse than
those of a- or B-Proteobacteria.

In order to ensure that all potential gene familes were represented in the NodA tree, a set of
more dissimilar potential NodA sequences with lower e-values in BLAST (two sequences per
genus within all proteobacteria) was analyzed by maximum likelihood. In this analysis, even
the sequences with low similarities still were nested within the rhizobial clade (data not
shown). Thus, no NodA paralogs were found in rhizobia.

In the NodB protein phylogeny (Fig 3), the Dgl NodBl is at the base of the rhizobial NodB
clade with Dgl NodB2 at a slightly more derived position, following the insertion of a pair of
sequences from Azorhizobium caulinodans ORS571 [79]. In the NodC protein phylogeny,
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Fig 2. Maximum Likelihood trees of NodA proteins. All rhizobial sequences are given in green, all sequences from Dg1 are given in red, sequences from
Streptomyces bottropensis are given in purple. The Dg1 NodA sequence is indicated in blue. All sequences used for the phylogenetic analysis are given in

S6 Table.
doi:10.1371/journal.pone.0127630.g002

NodC is basal to all the rhizobial NodC proteins with strong support. However, sister to this
clade is the clade of Sphingomonas and Parvibaculum, non-nodulating Proteobacteria (Fig 4).

Particularly notable across all the trees are the positions of the Nod ABC homologs from
Streptomyces bottropensis. Sequences of S. bottropensis were found as sister to Dgl sequences in
the NodA, NodB, and NodC trees (Figs 2, 3 and 4). Moreover, although S. bottropensis so far
has not been known to induce nodules, it is the only actinobacterial taxon beside Dg1 that has
homologs of all three canonical nod genes nodABC. Intriguingly, the nodA-nodB-nodC genes
of S. bottropensis are present in a single operon. This positioning could suggest that the com-
mon ancestor of Dgl and S. bottropensis specifically among the actinobacteria was the source
of the rhizobial canonical nod genes.

Directly downstream from the nodB2C operon an ABC transporter operon with significant
amino acid sequence similarity (>45%) to rhizobial nodlIJ is found (encoding AEH10398 and
AEH10399). NodJ represents an ABC transporter and Nodl its ATPase subunit. It is interesting
to note that the position of this operon with respect to nodB2C is identical to the position of
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Fig 3. Maximum Likelihood trees NodB proteins. All rhizobial sequences are given in green, all
sequences from Dg1 are given in red, sequences from Streptomyces bottropensis are given in purple. Dg1
NodB1 and NodB2 sequences are indicated in blue. All sequences used for the phylogenetic analysis are
givenin S6 Table.

doi:10.1371/journal.pone.0127630.g003

the nodI]J genes in the canonical nod gene operon of rhizobia (nodABCIJ; [80]). However, the
Dgl genes with homology to nodIJ located near nodB2C are expressed in symbiosis at very low
levels, if at all (see below, transcriptome); therefore, we have termed the genes nltI] for “nod-
linked transporters I and J”. Intriguingly, in S. bottropensis the homologs of the rhizobial ca-
nonical nod genes are present in a nodBCnltIJnodA operon, and the NItI/NIt] protein encoded
in this operon show high amino acid similarity with Dgl NItI/NItJ. Our phylogenetic analysis
showed that the actinobacterial NItI and Nlt] proteins encoded by nodBC-linked genes—as op-
posed to other ABC transporter/ATPase pairs in the same genomes—have very low amino acid
similarity with rhizobial NodI/NodJ proteins, obviously coming from a different ABC trans-
porter/ATPase lineage (S6 Fig).

The Dgl genome has an overall GC content of 70.04%, and the GC contents of the nod
genes, most strikingly nodA, are clearly below that (nodA, 58.4%; nodB1, 65.2%; nodB2, 66.8%;
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Streptomyces bottropensis are given in purple. The Dg1 NodC sequence is indicated in blue. All sequences used for the phylogenetic analysis are given in
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doi:10.1371/journal.pone.0127630.g004

nodC; 64.5%). This pattern is also true for the ABC transporter operon linked to nodB2C (nitI,
65.4%; nlt], 62.4%). Rapid gene evolution is known to be accompanied by AT enrichment, so
this may be one explanation for the lower %GC in this gene region [81]. A similar pattern of
low %GC of the nod genes relative to the genome is found in rhizobia [82], and in the nodA ho-
molog of S. bottropensis (S6 Table). By contrast, the %GC of the more distant nodA homologs
within the actinobacteria is higher than the %GC of the respective genomes (56 Table), imply-
ing a relatively slow rate of gene evolution [83]. Alternately, another explanation for the lower
GC% of the nod operons could be their position at the replication terminus, as has been shown
to occur in several bacterial genomes [83].

Both Dg1 nod operons are expressed in symbiosis

The expression of the two nod operons in Dgl in nodules of D. glomerata was examined by
quantitative RT-PCR, using the Dgl translation initiation factor gene IF-3 (GenBank accession

PLOS ONE | DOI:10.1371/journal.pone.0127630 May 28, 2015

16/33



o
@ : PLOS | ONE A Frankia Strain with nodABC Genes Expressed in Nodules

Table 2. Expression of the Dg1 genes nodA, nodB1, nodB2, and nodC in D. glomerata nodules given
in relative units.

Gene Expression
nodA 64.72 + 23.29
nodB1 2.23+1.55
nodB2 1.69 + 0.45
nodC 5.62 +2.20

The expression values represent means + SD (n = 3). The expression of nodA is significantly higher than
those of nodB1, nodB2 or nodC. (One-Way ANOVA with Tukey's multiple comparison test, p < 0.05)

doi:10.1371/journal.pone.0127630.t002

number AEH10595) as constitutive control (see [84]). Transcription of nodA, nodB1, nodB2
and nodC in nodules (Table 2) was confirmed through transcriptome analysis (see below).

Dg1 nodC can partially complement a Rhizobium leguminosarum nodC
mutant strain

The R. leguminosarum A34 (wt), the A56 nodC mutant (nodC128::Tn5; [62]) can be comple-
mented by the homologous nodC_Dgl gene. When the rhizobial nodC gene in the nodABC op-
eron was replaced by Frankia Dgl (nodC_Dgl), the ability of the strain to induce root hair
deformation on pea was restored, but the ability to nodulate was not (Fig 5). While the restora-
tion of root hair deformation shows that Dgl NodC_Dgl does complement R. leguminosarum
A56 nodC mutant, the lack of restoration of nodulation indicates that the either activity of
NodC_Dgl in R. leguminosarum A56 is too low to provide enough Nod factors for this process
or that there is incompatibility with the other Nod proteins, formation of an oligomer of a
length different from the optimal, etc. Nevertheless, this result shows that Dgl NodC can fulfill
the function of a chitin synthase in Nod factor biosynthesis.

B

Fig 5. Analysis of the ability of Frankia Dg1 nodC (nodC_Dg1) to complement a rhizobial nodC mutant. Roots of P. sativum show root hair deformation
31 days after inoculation with (A) R. leguminosarum A56 nodC::Tn5 mutant complemented by Frankia Dg1 nodC_Dg1 and after inoculation with (B) wild type
R. leguminosarum A34. (C) Roots inoculated with the original R. leguminosarum A56 nodC::Tn5 mutant do not show root hair deformation. Root hair
deformation was more pronounced after the infection with wild type rhizobium (B) or with the nodC::Tn5 mutant complemented by the homologous
nodDnodABC operon (data not shown), than with the strain complemented by Frankia Dg1 nodC_Dg1 (A). Size bars indicate 10 pm.

doi:10.1371/journal.pone.0127630.9005
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Transcriptome analysis

The total transcriptome of Frankia in young nodules of D. glomerata encompasses genes ex-
pressed in an indeterminate developmental pattern that would correspond to and encompass
the infection and nitrogen fixation zones described by Pawlowski and Demchenko [85]. Thus,
the calibration of relative transcript abundance for specialized processes such as Nod factor
biosynthesis or nitrogen assimilation depends on a spatio-temporally heterogeneous source,
and intact biosynthetic pathways are a stronger metric for interpreting metabolic expression
patterns than single-gene scores.

All the biosynthetic pathways listed in Table 3 were statistically overrepresented (p < 0.05)
in the 80th quantile (top 20% most abundant) of rpkb-ranked transcriptome data. Genes cod-
ing for the pathway for nitrogenase biosynthesis (nifHDK, nifV, nif ENXWZBS) were the most
highly expressed, with significant overrepresentation in the top 1% (99" quantile (p = 1.2¢™).
The TCA pathway, iron-sulfur cluster biosynthesis (SUF pathway), and NADH quinone oxido-
reductase synthesis were significantly enriched in the top 5% (p < 0.02). In the top 10% (90™
quantile), gene clusters coding for cytochrome c oxidase biosynthesis, isoprene biosynthesis,
and branched-chain amino acids pathway (ILV pathway) were enriched significantly (p< 0.05).
Nod factor biosynthesis (n0dA "BI1A and nodB2C operons) and the arginine biosynthesis com-
plete pathway were significant in the 80" quantile (p<0.03). The ABC transporter operon down-
stream to the nodB2C operon (nitl]) was expressed at low confidence, in the 70th and 60th
quantile, respectively (not shown in table).The expression of the genes for enzymes involved in
nitrogen assimilation and amino acid biosynthesis was confirmed by qPCR (Table 4).

Nodule occupancy

Since the microsymbionts of D. glomerata cannot be cultured, it cannot easily be ascertained
how many strains occupy an individual nodule, whether nodules house Frankia exclusively or
in combination with other bacteria. In addition, it was important to detect any major contribu-
tion to nodule occupancy by a non-Frankia taxon that could carry accessory nodulation genes
(e.g. nodABC). To shed light on these questions, D. glomerata nodules induced by Frankia
inoculant originating in Pakistan [21] and grown at Stockholm University (SU), and D. glomer-
ata nodules induced by a California source of Frankia, and grown at the University of Califor-
nia in Davis (UCD), respectively, were used for DNA isolation and analysis of operational
taxonomic units (OTUs) via PCR amplification with universal 16S rDNA primers 27F and
388R and 454 sequencing (SRA BioProject PRJNA258479).

Most reads were identified as one of five OTUs of Frankia, which represented the majority
of bacterial reads (68% of the bacterial reads from SU nodules and 84% of the bacterial reads
from UCD nodules; see Table 5; S7 Table). Two Frankia OTUs contributed most of the Fran-
kia reads: OTU 51 from SU nodules (Pakistan inoculant) and OTU 770 from UCD nodules
(California inoculant), representing 96-98% and 99-99.6% of Frankia reads within each sam-
ple, respectively. As shown in the neighbor-joining tree (Fig 6), all the Frankia OTUs formed a
clade within Cluster II. OTU 51 and OTU 770 belonged to two subclades that were weakly-sup-
ported statistically; however these sequences differed by 12 base-pairs (>3.7%; Fig 6). The
other Frankia OTUs belonged to a clade either with OTU 51 or with OTU 770.

While Frankia dominated the nodule bacterial component, other taxa were minor compo-
nents (less than 2% of bacterial reads from any individual sample; Table 5). Of the taxa besides
Frankia that were detected in nodules, only Mycobacterium, Cytophaga, and an OTU in the
Myxococcales exceeded 0.2% of the total reads in any sample (Table 5). Mycobacterium and
Cytophaga are known plant endophytes [86,87]. Some low-abundance OTUs (<0.2% of total
reads) were also assigned to genera that include known plant endophytes or rhizosphere

PLOS ONE | DOI:10.1371/journal.pone.0127630 May 28, 2015 18/33
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Table 4. Expression of asl, gogatFD, ginll, ginl and argJ in D. glomerata nodules using relative quantitation of the Comparative CT Method (ABI

Prism user bulletin #2).

asl
average 1.26
SD 0.17

gogatFD

4.41

0.11

ginil

24
0.15

ginl

1.33
0.18

argJ
0.5
0.19

The expression level of gogatFD is significantly higher than those of as/, ginl, ginll and argJ, but all the genes encoding N-assimilatory enzymes are
expressed. The reference gene used was 16S rRNA.

doi:10.1371/journal.pone.0127630.1004

bacteria, e.g. Streptomyces, Dyadobacter, Caulobacter, Novosphingobium, Sphingobium, and
Methylophilus [88,89,90,91,92]. Identification to the order level only for the OTU in the Myxo-
coccales is too broad to infer any ecological characters, however this clade does include species
commonly found in soil. None of the OTUs in the nodule samples were assigned to genera re-
ported to possess nodABC genes.

Discussion
Is Candidatus Frankia datiscae Dg1 an obligate symbiont?

The first genome sequence of a representative of the non-cultured Cluster II Frankia strains

was expected to answer the question of whether these strains were obligate symbionts or just

Table 5. Processed bacterial sequences and taxonomy assignments by sample source.

Taxonomy Dg_UCD® Dg_SU° #OTUs®
Phylum Class Order Family Genus Mean SDY Mean  SDY
Actinobacteria Actinobacteria Frankiales Frankiaceae Frankia 85.96% 3.99% 68.29% 1.27% 9
Mycobacteriales Mycobacteriaceae Mycobacterium 0.01% 0.01% 1.34% 0.39% 2
Streptomycetales  Streptomycetaceae Streptomyces 0.26% 0.19% 0.03% 0.01% 1
Bacteroidetes Sphingobacteria Sphingobacteriales Flexibacteraceae Cytophaga 0.06% 0.06% 1.81% 0.18% 2
Dyadobacter 0.32% 0.33% 0.15% 0.06% 1
Proteobacteria Alpha- Caulobacterales Caulobacteraceae Caulobacter 0.11% 0.06% 0.46% 0.05% 1
proteobacteria
Rhizobiales Bradyrhizobiaceae Afipia 0.32% 0.11% 0.05% 0.03% 1
Sphingomonadales Sphingomonadaceae Novosphingobium 0.28%  0.31% 0.28% 0.14% 1
Sphingobium 0.23% 0.17% 0.04% 0.01% 1
Beta- Burkholderiales 0.21% 0.20% 0.48% 0.01% 1
proteobacteria
Methylophilales Methylophilaceae Methylophilus 025% 0.21% 0.23% 0.18% 1
Delta- Myxococcales 0.04% 0.02% 0.65% 0.18% 1
proteobacteria
T™7 TM7-3 EWO055 0.0% 0.0% 0.39% 0.15% 1
Unassigned? 569% 0.15% 6.87% 1.37% 5
Low abundance?® 6.27% 2.49% 18.94% 0.05% 789
Total bacteria 3424 2006 3535 974 817
reads and OTUs
8Low abundance OTUs (less than 0.1% of bacterial sequences), and OTUs not assignable to any taxonomy are summed across OTUs.
®Dg_UCD are D. glomerata nodule samples from University of California Davis, inoculated with a Californian source.
°Dg_SU are D. glomerata nodule samples from Stockholm University, inoculated with a Pakistani source.
dStandard deviations are based on n = 2.
®# OTUs refers to the number of OTUs at 97% identity in each taxonomic category.
doi:10.1371/journal.pone.0127630.t005
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Fig 6. Neighbor-joining tree of Frankia OTUs observed in Datisca glomerata plants inoculated with
material from either Pakistan or California combined with other Cluster Il Frankia strains. Cluster | and
Il Frankia strains are used as outgroups. Branches with bootstrap values of 50 or higher are indicated in the
figure. *: Cn endophyte sequence only contains v2 region. Relative abundances of each Frankia OTU are
shown in colored bars to the right; blue indicates each OTU's percent of Frankia reads in nodules of plants
inoculated with material from California (CA), red indicates percent in nodules of plants inoculated with
material from Pakistan (PK).

doi:10.1371/journal.pone.0127630.9g006

had (an) auxotrophy/auxotrophies that made attempts at isolation very difficult. The data ob-
tained in this study do not point to any obvious auxotrophy, however the comparatively low
capacity for the synthesis of secondary metabolites (S4 Table) and the loss of the gas vesicle
protein (gvp) genes indicate a reduced ability to thrive in the highly competitive soil biotope.
The genome sizes of Frankia strains have been suggested to indicate the strains’ sapro-
trophic capacities [11]. The genome size of Dgl, which is smaller than, but close to that of the
Casuarina-infective strain Ccl3, suggests a low saprotrophic potential but does not make as de-
finitive a case for genome reduction as might be expected in comparison with animal symbi-
onts [71,93]. However, when comparing the reduction of the mitochondrial genomes (14-42
kB vs. 184-2400 kB; [94]), animal symbionts seem to be more impacted with regard to genome
reduction than plant symbionts. Similarly, genome reduction in evolutionary younger plant
symbionts seems to be much less dramatic than in animal symbionts; e.g., the obligate endo-
phyte Rhizophagus irregularis, the symbiosis of which goes back at least 460 My [95] still has a
genome size of more than 140 Mb [96]. The fact that Glomalean fungi, while obligate endo-
phytes, are not transmitted vertically, but have a pre-symbiotic growth phase in the soil, might
explain the comparable lack of genome reduction. In this context, it should be pointed out that
Cluster II Frankia strains are not transmitted vertically either. The fact that soil from under-
neath plants containing nodules induced by Cluster II Frankia strains can be used to infect
new plants indicates that Cluster II Frankia strains, like Glomalean fungi, have a pre-symbiotic
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growth phase in soil. Furthermore, the identification of a Cluster II Frankia strain in soil de-
void of any compatible host plant species [97] points at some saprotrophic capability. Also the
fact that the Dgl genome contains several operons for the biosynthesis of siderophores and
other secondary metabolites that are not expressed in nodules (S4 Table), one of them contain-
ing a gene encoding protein of 6077 amino acids (WP_013873316.1) indicates some selection
pressure to maintain these operons, and thus, (a) non-symbiotic growth phase(s).

Host plants of Cluster II strains are distributed in the Americas, the Mediterranean, Asia,
Oceania and New Zealand. The low genetic diversity of Cluster II strains, indicating the likeli-
hood of an evolutionary bottleneck, was first suggested by Vanden Heuvel et al. [16]. Our find-
ings add further support to this interpretation. The transcriptome of the Cluster II strain from
California presented here (represented by OTU 770) mapped with relatively few polymor-
phisms to the genome of Dgl, which originated in Pakistan (represented by OTU 51), despite
the disjunct geographic distribution of the host plant genera of Cluster II strains, most striking-
ly of Coriaria.

Yokoyama et al. [20] came to the conclusion that the disjunct distribution pattern of Cor-
iaria spp. was the result of several geographical migrations and separations in the Cenozoic.
Since Frankia propagules can be distributed by birds [98], by waterways [99], and potentially
by other vectors, a compatible microsymbiont might have been distributed along with the host
plant seeds. Thus, Cluster II strains might have been spread together with their host plants
(Datiscaceae and Coriariaceae), while the stability of their ecological niche prevented further
genome diversification.

Why is the basal clade of symbiotic Frankia strains saprotrophically
challenged?

The result that Cluster II is the basal clade of symbiotic Frankia strains is consistent with plant
phylogenetic results implying that the oldest actinorhizal symbioses are those of Cucurbitales
[4].

Non-symbiotic, non-nitrogen fixing so-called Frankia-like strains or atypical Frankia
strains (Cluster IV) were considered to be basal to symbiotic Frankia strains [7,56,100]; howev-
er, this is contradicted by more recent analysis by Sen et al. [10] who find that cluster II, as rep-
resented by Dgl, is basal to all other Frankia strains including the atypical ones. So far, most
atypical strains were isolated from nodules induced by Cluster II strains. Since these strains are
unable to induce nodules on their own, they may have represented contaminations from the
nodule periderm. The fact that like Cluster I and Cluster III Frankia strains, these Cluster IV
Frankia strains could be cultured suggests that their saprotrophic capabilities are broader than
those of Cluster II strains. The genome sequence of one of these strains, CN3 [101] comprises
10 MB and represents the largest Frankia genome known to date, while being still in the range
of the genome sizes of cluster III strains.

Small genomes (5.27-5.6 MB) also are found among the Casuarina-infective subgroup of
Cluster I [11,102] which have a narrow host range of plants with a narrow native distribution,
and the small genome size of the Casuarina-infective strains are assumed to be due to genome
shrinkage [11]. This phytogeographic context does not represent the situation of Cluster II
strains which have a broad host range, and a broader geographic distribution. Dgl has more
than 800 genes not present in any other Frankia genome available in the JGI database. Most
strikingly, only Dgl among sequenced Frankia genomes contains a copy
(AEH09479-AEH09484) of the mammalian cell entry (mce) gene cluster from Mycobacterium
tuberculosis, assumed to be involved in the uptake of sterols, which in Streptomyces coelicolor is
required for plant root colonization [103]. So we speculate that the ancestors of all Frankia
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strain were rhizosphere bacteria with large genomes and broad saprotrophic potential when
one subgroup—the progenitors of Cluster [I—acquired the gene set for nitrogen fixation and
evolved symbiotic capabilities. Symbiosis led to genome reduction in this subgroup. In due
time, two other subgroups (the progenitors of Clusters I and III, respectively) developed symbi-
otic capabilities; later, a subgroup of Cluster I—the Casuarina-infective strains—underwent
genome shrinkage.

Interestingly, several of the Dgl operons involved in the synthesis of secondary metabolites
contain genes that are expressed in nodules of D. glomerata (S4 Table), so even though second-
ary metabolism loci are reduced overall, the corresponding functions do seem to play a role in
symbiosis and are not only relevant during saprotrophic growth.

Nodule occupancy

Cluster II Frankia were the predominant bacteria detected in root nodules of D. glomerata in-
oculated with sources from two geographically distinct locations, Pakistan and California, in
separate experiments. Other bacterial taxa occurred at extremely low levels, indicating that
there are no major co-symbionts in the root nodules.

The topology of the neighbor-joining tree for the nodule Frankia OTUs is broadly consis-
tent with the findings of Vanden Heuvel et al. [16]. Two distinct strains of Cluster II Frankia
(represented by OTU 51 (Dgl) and OTU 770) were detected in nodules induced by the Paki-
stan and the California source, respectively. Interestingly, OTU 51 (Pakistan) clusters strongly
with FE138, which was detected in field nodules in California [16]; and OTU 770 groups phylo-
genetically with Cn endophyte, a strain detected in soil beneath Coriaria nepalensis from Paki-
stan [104], and with strains detected in western North America [16] (Fig 6). These findings
indicate a phylogenetic overlap in the composition of the respective communities of Cluster II
Frankia strains.

Transcriptome analysis

Taken together, the analysis of the most abundantly-expressed Frankia biosynthetic pathways
in young root nodules indicate that nitrogen fixation and associated processes comprise the
predominant nodule activity of Frankia. At the same time, the data suggest that Nod factor bio-
synthesis occurs in these young nodules. It has been shown that rhizobia express their nod
genes inside the nodule until bacteroid differentiation [105], and components of the common
symbiotic signal transduction pathway are expressed in the apices of nitrogen-fixing nodules
[106].

Genes for enzymes involved in nitrogen assimilation and amino acid biosynthesis, including
GS-GOGAT, branched-chain amino acid biosynthesis, and the complete arginine biosynthesis
pathway, were expressed in Dgl in symbiosis. These findings provide further evidence for a
model of novel partitioning of nitrogen assimilation in D. glomerata nodules in which the ex-
pression of plant glutamine synthetase in the uninfected cells surrounding the infected cells,
not in the infected cells themselves, indicated that the microsymbiont likely exports amino
acids, not ammonium [107,108]. Physiological studies had suggested that the nitrogen export
form was arginine [107]. The high expression of the arginine biosynthetic pathway confirms
an important role for arginine biosynthesis as a major intermediate nitrogen storage pathway
in cucurbitoid nodule N assimilation [107]. The abundance of transcripts encoding enzymes
from the branched chain amino acid pathway was surprising since it has been shown that at
least in pea and bean nodules, synthesis of branched chain amino acids is downregulated in
symbiosis and they are provided by the host plant [109], although this is not the case for all rhi-
zobial symbioses [110]. The expression of these complex amino acid biosynthetic pathways is a
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likely further example of a degree of metabolic independence of Frankia Dgl in this symbiosis,
compared with legume-rhizobia symbioses or other Frankia symbioses [85].

Active expression of the isoprene biosynthetic pathway, with mRNAs in the 90% quantile,
was expected as it is responsible for the synthesis of hopanoids, bacterial steroid lipids that are
part of the envelope of nitrogen-fixing Frankia vesicles [111], and menaquinone, required for
electron transport.

Which bacterial group “invented” lipochitooligosaccharide (LCO) Nod
factors?

The host receptors for microsymbiont signaling molecules that use the common symbiotic sig-
naling pathway [112] evidently evolved from chitin receptors [113]. While arbuscular mycor-
rhizal fungi use LCOs and short-chain chitin oligomer (COs) for signaling to their plant hosts
[23,31], rhizobia, with a few exceptions [33], seem to use only LCOs. It is unknown thus far
which signal factors are used by Frankia strains in Clusters I and III.

Rhizobia, the microsymbionts of legumes and Parasponia, are polyphyletic. Most rhizobia
belong to the o-proteobacteria, but several legumes are nodulated primarily by B-proteobac-
teria (Burkholderia spp., Cupriavidus spp.; [114]). It has been assumed that the nodulation
genes originated in a-rhizobia and that B-rhizobia gained them through multiple lateral nod
gene transfers [115], but our phylogenetic analyses now indicate that nodA and nodB are likely
to have been transferred originally from actinobacteria to rhizobia; the relationships among the
nodC genes are less certain.

The Dgl protein sequences of NodA and NodC are basal to the rhizobial orthologs, and the
two Dgl NodB proteins also have basal positions in the NodB phylogeny (Fig 3). The function-
al role of the NodA protein in symbiosis is to transfer an acyl chain to the backbone of Nod fac-
tor precursor chito-oligosaccharides, assembled by NodC and deacetylated at the non-reducing
end by NodB. This NodA-mediated acyl group transfer is key to Nod factor signaling function,
rendering the LCO amphiphilic, and presumably permitting it to reach the host membrane-lo-
calized LysM receptor kinase [116]. The nodB and nodC genes are members of multigene fami-
lies, coding for polysaccharide deacetylases and glycosyl transferases, respectively, with
homologs occurring throughout the eubacteria. In contrast, nodA genes are not part of a ubiq-
uitous gene family with duplications, a difference reflected in the phylogenetic trees (Figs 2, 3
and 4). Thus, the existence of a series of NodA-like acyl transferases across the phylum Actino-
bacteria but otherwise only in the nodulating members of the Proteobacteria supports an acti-
nobacterial origin of nodA genes, and thus of LCO Nod factors. The detailed phylogeny
suggests that the common ancestor of Dgl and S. bottropensis specifically among the actino-
bacteria was the source of the rhizobial nodulation protein. The fact that a- and B-Proteobac-
teria lack NodA paralogs further supports the integrity of the overall topology of the tree.

Thus, the phylogenetic evidence suggests that NodA-type acyl-transferases first evolved in
Actinobacteria and then laterally transferred to rhizobia. The positioning of nodA genes in the
non-Frankia actinobacterial genomes tentatively suggests a link with cell wall biosynthesis, and
it is plausible that an acyltransferase is involved in the biosynthesis of actinobacterial cell walls
as many of them (though not those of Frankia sp.) contain mycolic acids which are linked to
the peptidoglycan [117]. An origin of nodA (or nodABC) outside the Proteobacteria would be
analogous to the situation of nodIJ, which evolved in B-Proteobacteria and were subsequently
acquired by o-Proteobacteria via lateral gene transfer [80]. Interestingly, also in Dgl the
nodB2C operon was found to be linked to a nodIJ-like operon. However, phylogenetic analysis
of NodI and Nod] homologs (S6 Fig) showed that the linkage between nodBC and nodI] type
genes is unlikely to be based on lateral gene transfer from Actinobacteria, but seems to have
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evolved independently in Actinobacteria and B-Proteobacteria (and later in a-Proteobacteria
(80]).

The relatively low GC content of the nod genes in Dgl relative to the whole genome, and
similar patterns in the corresponding rhizobial genes, suggest a comparatively rapid evolution
of these genes, related to the functional specialization of symbiosis. It is conceivable that multi-
ple lateral gene transfer between the two phyla could explain the relatively low GC content of
the nod genes relative to genomic GC content. However, this is not a scenario that is plausible
based on any of the strongly-supported lines of phylogenetic evidence.

No close homologs of the canonical nod genes could be identified in the sequenced genomes
of any Frankia strain of Cluster I or Cluster III, as can be seen in the phylogenetic trees. Thus
in Frankia, the nod gene orthologs seem to be exclusive to Cluster II. Nod gene expression in
nodules was observed not only in Dg1 in symbiosis with D. glomerata as described here; ex-
pression has also been detected in Ceanothus velutinus nodules collected in California (T. Pers-
son, A.M. Berry and K. Pawlowski, unpublished observations). It is all the more striking that
this strain—or group of strains—that has one of the smallest genomes and the largest number
of pseudogenes of Frankia strains analyzed so far, and the most reduced number of gene clus-
ters for the synthesis of secondary metabolites (S4 Table), nevertheless retains canonical nod
genes. Assuming that the Dgl nod genes expressed in symbiosis catalyze the production of
LCOs for signaling to host plants, and given the well-demonstrated basal position of Cluster II
genes relative to other Frankia, shown both here and in studies of a wide range of genes (e.g.,
[10]), it seems most likely that the common ancestor of all the symbiotic Frankia strains con-
tained the canonical nod genes which were transmitted to the rhizobia, but subsequently lost in
the progenitor of Frankia Clusters I and III. At any rate, the fact that Dgl cannot be cultured
so far has prevented any isolation of LCO Nod factors formed by this strain, as nodules proved
to be too complex a source to isolate LCOs present at very low concentrations.

Conclusions

In summary, the results of the analysis of the first genome of a Cluster II Frankia strain, Dgl,
supports the hypothesis that symbioses between Cluster II Frankia strains and actinorhizal
Cucurbitales are likely to represent the oldest actinorhizal symbioses. Comparative analysis of
Frankia genomes revealed more than 800 unique genes in Dgl. Among those are rhizobial-
type canonical nod genes, which are expressed in symbiosis and, based on detailed phylogenetic
analysis, are likely to have originated in Actinobacteria. Transcriptome analysis supported the
hypothesis that Cluster II strains in nodules export an assimilated form of nitrogen, rather
than ammonium, most likely arginine. Analyses of D. glomerata nodule occupancy via 454
OTU sequencing showed that (a) more than one strain was found in a nodule lobe, and (b)
seemingly the same, or at least very similar strains were present in a Californian inoculant and
in an inoculant originating in Pakistan, though two different strains were dominating in both
inoculants. Transcriptome analysis underlined the low genetic diversity between the genomes
of these different strains.

Supporting Information

S1 Fig. Comparison of theoretical and empirical CDF function for rpkb normalized tran-
scriptome fit to a negative binomial distribution. The cumulative distribution function
(CDF) for the rpkb data is illustrated as black circular data points. The CDF generated from
the fit of a negative binomial function to the empirical data is illustrated as a solid red line.
(DOCX)
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S2 Fig. Venn diagram showing the core genome of Frankia strains ACN14a, CcI3, EAN1-
pec and Dgl as well as genes specific to individual strains or groups of strains. The core ge-
nome between the four sequenced Frankia strains (ACN14a, CcI3, EAN1pec, CcI3, and Dgl)
was calculated using EDGAR (http://edgar.cebitec.uni-bielefeld.de; [59]).
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S3 Fig. IS elements in the genomes of different Frankia strains. (A) Fraction of the genome
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Elaeagnus-infective strains, EUN1f and EAN1pec, and one Discaria-infective strain,
BCU110501) showed that three genomes among those analysed—those of CcI3, Dgl and
EAN1pec—show an increase in relative amounts of IS elements, and that among these three,
the Dgl genome contains the highest relative amount of IS elements. (B) Distribution of size of
IS elements in Frankia strains.
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S4 Fig. Frankia phylogeny using the four published genomes of strains ACN14a (Fa) and
CcI3 (Fc, Cluster I), Dgl (Fd, Cluster II) and EAN1pec (Fe, Cluster III). Acidothermus cellu-
lolyticus 11B (Acido), Stackebrandtia nassauensis DSM 44728 (Stack), Geodermatophilus
obscurus DSM 43160 (Go), Nakamurella multipartita DSM 44233 (Naka), and Thermobifida
fusca YX (Thermo) were used as outgroups. Forty housekeeping genes were analyzed. Each
gene sequence was identified in Candidatus Frankia datiscae Dgl. After identification, the gene
was used in a Blast search as the query. The corresponding Blast was restricted to Frankia alni
ACN14a, Frankia sp. Ccl3, Frankia sp. EaN1pec, A. cellulolyticus 11B, G. obscurus DSM 43160,
S. nassauensis DSM 44728, N. multipartita DSM 44233 and T. fusca YX. All alignments were
created using MUSCLE (multiple sequence comparison by log- expectation; Edgar 2004) at the
EMBL-EBI website. Maximum parsimony analyses were performed using the software package
PAUP* version 4.0b10 (Swofford 1999). All characters were weighted equally and gaps in the
alignment were treated as missing. A heuristic search strategy with 10 random replicates, TBR
branch-swapping and the MULTREES optimization was used. MAXTREES parameter was set
to 10,000. Support for branches was evaluated using bootstrap analysis (Felsenstein 1985) and
random sequence addition for 100 replicates, using the same parameters.
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S5 Fig. Alignment of amino acid sequences used for phylogenies. Identical amino acids in
highly conserved positions are highlighted in blue, identical amino acids in less conserved posi-
tions are highlighted in grey. Results are depicted in the order NodA, NodB, NodC, Nod],
Nod]J.
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$6 Fig. Maximum Likelihood trees of (A) NodI and (B) NodJ proteins. All sequences from
Dgl are given in red. Sequences from B-proteobacteria where the rhizobial nodIJ genes evolved
are given in green, sequences from o.-proteobacteria are given in turquoise. Names of actino-
bacterial NItI/NIt] sequences the genes of which are part of a nodBCnltI] operon are indicated
in blue. The sequences from Streptomyces bottropensis are given in purple. All sequences used
for the phylogenetic analysis are given in S6 Table.
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$4 Table. Secondary metabolites pathways present in Frankia strains from Cluster I
(ACN14a, CcI3), Cluster III (EAN1pec) and Cluster II (Dgl). The analysis of the genome se-
quences with regard to biochemical pathways in Dgl was performed using Pathway tools [47],
MAGE, IMG/ER and based on Udwary et al. [67].

(XLSX)
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the MUMmer 3.13 package (http://www.tigr.org/software/mummer/) with the following pa-
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