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Abstract

Background—Cocaine dependence is associated with cognitive control deficits. Here, we apply 

a Bayesian model of stop-signal task (SST) performance to further characterize these deficits in a 

theory-driven framework.

Methods—A “sequential effect” is commonly observed in SST: encounters with a stop trial tend 

to prolong reaction time (RT) on subsequent go trials. The Bayesian model accounts for this by 

assuming that each stop/go trial increases/decreases the subject’s belief about the likelihood of 

encountering a subsequent stop trial, P(stop), and that P(stop) strategically modulates RT 

accordingly. Parameters of the model were individually fit, and compared between cocaine-

dependent (CD, n=51) and healthy control (HC, n=57) groups, matched in age and gender and 

both demonstrating a significant sequential effect (p<0.05). Model-free measures of sequential 

effect, post-error slowing (PES) and post-stop slowing (PSS), were also compared across groups.

Results—By comparing individually fit Bayesian model parameters, CD were found to utilize a 

smaller time window of past experiences to anticipate P(stop) (p<0.003), as well as showing less 

behavioral adjustment in response to P(stop) (p<0.015). PES (p=0.19) and PSS (p=0.14) did not 

show group differences and were less correlated with the Bayesian account of sequential effect in 

CD than in HC.
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Conclusions—Cocaine dependence is associated with the utilization of less contextual 

information to anticipate future events and decreased behavioral adaptation in response to changes 

in such anticipation. These findings constitute a novel contribution by providing a computationally 

more refined and statistically more sensitive account of altered cognitive control in cocaine 

addiction.
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1. INTRODUCTION

Cognitive control, the ability to withhold or modify actions in response to a dynamically 

changing environment, is a critical executive function. Using a variety of laboratory 

paradigms, numerous studies characterized deficits in cognitive control in chronic cocaine 

users (de Wit, 2009; Everitt et al., 2008; Garavan and Hester, 2007; Li and Sinha, 2008; 

Porrino et al., 2007). For instance, in the stop signal task, altered error processing predicted 

relapse and time to relapse in cocaine dependent individuals (Li et al., 2008b; Luo et al., 

2013). A core process of cognitive control is to adjust behavior by learning from the 

changing contextual information. In the stop signal task, participants respond to a prepotent 

go signal, and withhold the response when they encounter an infrequent stop signal. 

Participants typically slow down in go trial reaction time (RT) following a stop error as 

compared to go trial – a phenomenon that has been called posterror slowing (Li et al., 

2008b; Rabbitt, 1966). Acute administration of psychoactive substances such as 

amphetamine and alcohol diminishes post-error slowing (Bombeke et al., 2013; Wardle et 

al., 2012). Compared to healthy people, cocaine dependent individuals also demonstrated 

diminished post-error slowing (Li et al., 2006b), as in many other clinical populations that 

implicate deficits in cognitive control (Liu et al., 2013; Shiels et al., 2012).

In this behavioral study, we aimed to use a computational model to further characterize 

altered cognitive control in chronic cocaine users. We previously proposed a Bayes-optimal 

decision-making model for the stop-signal task (Shenoy et al., 2011; Shenoy and Yu, 2011), 

positing that participants choose to go or stop based on accumulating sensory evidence 

within a trial, as well as prior belief about the likelihood of a stop trial prior to stimulus 

onset. We showed (Shenoy et al., 2011; Shenoy and Yu, 2011) that this rational strategy 

explains classic stopping behavior, such as the increase in stop error rate with increasing 

stop-signal delay and faster stop error responses than correct go responses (Logan et al., 

1984), as well as more subtle contextual effects such as the decrease in stop error rate and 

stop-signal reaction time when stop errors are penalized more (Leotti and Wager, 2009), and 

the decrease in stop error rate and increase in go RT when more stop trials are more 

expected (Emeric et al., 2007). In particular, by augmenting this decision-making model 

with trial-by-trial learning, we were able to account for the “sequential effect” in the stop-

signal task (Ide et al., 2013; Shenoy et al., 2011): go RT slowing down after a run of stop 

trials and speeding up after a preponderance of go trials (Emeric et al., 2007; Li et al., 

2008b).

Ide et al. Page 2

Drug Alcohol Depend. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We hypothesize that a core cognitive control deficit in cocaine addiction is impairment in 

learning from and adapting to changes in contextual information. That is, in the stop signal 

task, cocaine dependent participants may have an impaired ability to use contextual 

information to anticipate stop trials and/or to modulate within-trial processing as a function 

of prior anticipation; consequently, they would demonstrate a diminished sequential effect. 

Thus, our goal is to quantify and compare the sequential effect in a sample of cocaine 

dependent and healthy control individuals, and to identify the source of group difference by 

examining the Bayesian model parameters. We hope that, by addressing these issues, the 

current study will provide insights to the psychological processes that hinder behavioral 

adjustment in cocaine addicts.

2. MATERIAL AND METHODS

2.1 Subjects, Informed Consent, and Assessment

Fifty-one patients (37 men) with cocaine dependence (CD) and fifty-seven age and gender 

matched healthy control (HC) subjects (32 men) participated in this study (Table 1). CD 

participants were recruited from the local greater New Haven area via newspapers and flyers 

as part of a prospective study (Luo et al., 2013) and met criteria for current cocaine 

dependence, as diagnosed by the Structured Clinical Interview for DSM-IV (First et al., 

1995). Of the 97 treatment-seeking CD participants recruited in the study of Luo et al. 

(2013), 51 demonstrated a significant sequential effect (please see Section 2.4 and 

Discussion) and were studied for the current work. Thus, the subjects represented a 

convenience sample as no power calculation was performed to predetermine the sample size. 

Recent cocaine use was confirmed by urine toxicology screens upon admission. They were 

drug-free while staying in an inpatient treatment unit at the Connecticut Mental Health 

Center during the study period. All subjects were physically healthy with no major medical 

illnesses or current use of prescription medications. None of them reported having a history 

of head injury or neurological illness. Other exclusion criteria included dependence on other 

psychoactive substances (except nicotine) and current or past history of psychotic disorders. 

Individuals with current depressive or anxiety symptoms requiring treatment or currently 

being treated for these symptoms were excluded as well. Treatment in the inpatient unit 

comprised individual counseling, cognitive behavioral and group therapy, as well as social 

service to facilitate their transition at discharge. The Human Investigation committee at Yale 

University School of Medicine approved the study, and all subjects signed an informed 

consent prior to participation.

All CD participants were assessed with the Beck Depression Inventory (Beck et al., 1961) 

and the State-Trait Anxiety Inventory (Speilberger et al., 1970) at admission, both with 

scores within the range reported previously for individuals with cocaine dependence (Falck 

et al., 2002; Karlsgodt et al., 2003; Lopez and Becona, 2007; Rubin et al., 2007) (Table 1). 

Cocaine craving was assessed with the Cocaine Craving Questionnaire, brief version (CCQ-

Brief), for all participants on the same day of the behavioral test (Sussner et al., 2006). The 

CCQ-Brief is a 10-item questionnaire, abbreviated from the CCQ-Now (Tiffany et al., 

1993). It is highly correlated with the CCQ-Now and other cocaine craving measures 
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(Sussner et al., 2006). Each item was rated on a scale from 1 to 7, with a higher total score 

(ranging from 10 to 70) indicating greater craving (Table 1).

Healthy control participants (HC) were drawn from the local community, underwent a 

thorough interview by a psychiatrist (C.-S. R. Li) to rule out a DSM-IV diagnosis including 

abuse of or dependence on a substance other than nicotine, and all tested negative for illicit 

substances in urine toxicology on the day of behavioral test. Smoking status and use of 

alcohol was documented. Previous use of marijuana for longer than one year or use of any 

other illicit substances were exclusion criteria. As none of the HC reported depression or 

anxiety symptoms that were deemed of clinical significance, an exclusion criterion, HC 

were not assessed with the BDI or STAI. None of the HC were under any psychotropic 

medications during the year prior to or at the time of behavioral test.

2.2 Behavioral task

We employed a simple reaction time task in this stop-signal paradigm (Hu et al., 2014; Li et 

al., 2006a; Li et al., 2005a; Logan et al., 1984). There are two trial types: “go” and “stop,” 

presented with an inter-trial interval of 2s, and occurring on each trial with 0.75 probability 

of being a go trial (0.25 probability stop trial). A small dot appears on the screen to engage 

attention at the beginning of a go trial. After a randomized time interval (fore-period) 

between 1 and 5 s, drawn from a uniform distribution, the dot turns into a circle (the “go” 

signal), prompting the subjects to quickly press a button. The circle vanishes at a button 

press or after 1 s has elapsed, whichever coming first, and the trial terminates. A premature 

button press prior to the appearance of the circle also terminates the trial. On a stop trial, an 

additional “X,” the “stop” signal, appears after and replaces the go signal, and instructs 

participants to withhold their response. Similar to go trials, a stop trial terminates at button 

press or 1 s after the appearance of the stop signal. Failure to withhold the go response for 

the 1 s constitutes a stop error. The stop signal delay (SSD) – the time interval between go 

and stop signals – starts at 200 ms and is adjusted according to a staircase procedure, 

increasing and decreasing by 67 ms each for a successful and failed stop (Levitt, 1971). 

Subjects were instructed to respond to the go signal quickly while keeping in mind that a 

stop signal could come up occasionally. The staircase procedure ensures that subjects would 

succeed in withholding their response in approximately half of the stop trials.

2.3 Analyses of behavioral performance in the stop signal task

We computed a critical SSD that represents the time delay between go and stop signals that 

a subject would need to succeed in 50% of the stop trials (Levitt, 1971). Specifically, SSDs 

across trials were grouped into runs, with each run defined as a monotonically increasing or 

decreasing series. We derived a mid-run estimate by taking the middle SSD (or average of 

the two middle SSDs when there was an even number of SSDs) of every second run. The 

critical SSD was computed by taking the mean of all mid-run SSDs. It was reported that, 

except for experiments with a small number of trials (less than 30), the mid-run estimate was 

close to the maximum likelihood estimate of X50 (50% positive response; i.e., 50% SS in the 

SST, (Wetherill et al., 1966)). The stop signal reaction time (SSRT) was computed by 

subtracting the critical SSD from the median go trial RT (Logan, 1994).
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It is known that in an RT task the RT of a correct response is prolonged following an error, 

compared with other correct responses, and this prolonged RT is thought to reflect error 

monitoring (Rabbitt, 1966). We thus computed the RT difference between the go trials that 

followed a stop error (SE) and those that followed another go trial, and termed the effect size 

of this RT difference “post-error slowing” (PES; Li et al., 2009a). Similarly, RT is 

prolonged following a high-conflict as compared to low-conflict trial. We thus computed the 

RT difference between the go trials that followed a stop trial and those that followed another 

go trial, and termed the effect size of this RT difference “post-stop slowing” (PSS; Li et al., 

2009a).

2.4 Bayesian modeling of sequential effects

In the SST, the stop signal appears infrequently and elicits changes in the RT of go trials that 

follow a stop signal. Typically, compared to go trials that follow another go trial, the RT of a 

go trial following a stop trial is prolonged, reflecting a context-instructed behavioral 

adjustment. That is, participants slow down in order to accommodate the experience of a 

stop trial and the anticipation that a stop signal may appear again. While extant research 

including our own work has characterized this adjustment process as discrete events – that 

is, by comparing the RT of post-stop and post-go go trials – it is likely that participants use 

their experience with the extended sequence of events to update their belief in the likelihood 

of a stop signal continuously and adjust behavior accordingly. To capture how the series of 

events shape participants’ subjective estimate of the likelihood of a stop signal and their 

behavior, as indexed by RT, we need a mathematical model to describe the learning process.

As in our previous work (Ide et al., 2013), we use a dynamic Bayesian model (Yu and 

Cohen, 2009) to estimate the posterior belief of an impending stop signal on each trial, based 

on previous stimulus history and current observation. The Bayesian model assumes that 

subjects believe that stop signal frequency rk on trial k has probability α of being the same as 

rk-1, and probability (1-α) of being re-sampled from a fixed distribution π(rk). Subjects are 

also assumed to believe that trial k has probability rk of being a stop trial, and probability 1- 

rk of being a go trial. Based on these generative assumptions, subjects are assumed to use 

Bayesian inference to update their prior belief of seeing a stop signal on trial k, p(rk|sk-1) 

based on the prior on the last trial p(rk-1|sk-1) and last trial’s true category (sk=1 for stop trial, 

sk=0 for go trial), where sk={s1,…, sk} is short-hand for all trials 1 through k. Specifically, 

given that the posterior distribution was p(rk-1| sk-1) on trial k-1, the prior distribution of stop 

signal in trial k is given by:

where the fixed distribution π(rk) is assumed to be a beta distribution with two parameters, 

prior mean or pm, and scale or sc representing the shape parameter. The posterior 

distribution is computed from the prior distribution and the outcome likelihood according to 

the Bayes’ rule:

Ide et al. Page 5

Drug Alcohol Depend. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Bayesian estimate of the probability of trial k being stop trial, which we colloquially 

call P(Stop) in this paper, given the predictive distribution p(rk |sk-1) is expressed by:

In other words, the probability P(Stop) of a trial k being a stop trial is simply the mean of the 

predictive distribution p(rk | sk-1). The assumption that the predictive distribution is a 

mixture of the previous posterior distributions and a generic prior distribution is essentially 

equivalent to using a causal, exponential, linear filter to estimate the current rate of stop 

trials (Yu and Cohen, 2009). In summary, for each subject, given a sequence of observed go/

stop trials, and the three model parameters {α , pm , sc}, we estimated P(Stop) for each trial. 

Generally speaking, the α parameter quantifies the weight given by the subject to the 

previous trials, and pm is the mean of the fixed belief of stop signal. A sequential effect is 

defined as the linear correlation between P(Stop) and reaction time (RT) for all go trials.

That is, with assumption about participants’ prior belief in the likelihood of a stop signal, as 

modeled in a statistical distribution, and how participants learn to update this belief using a 

Bayes’ rule, we characterized the trial-by-trial change in their subjective state of stop signal 

anticipation and how this mental state impact their response time.

2.5 Sequential effect: a parameter set analysis

We hypothesized that CD and HC participants have different sequential effects. Therefore, 

we investigated, on an individual basis, the parameters of the Bayesian model that produced 

the maximum correlation, as indexed by coefficient Rmax, between Go RT and P(Stop) (Ide 

et al., 2013). The search space of model parameters were set to the following ranges: α = 

[0.50, 0.51,…, 0.98], pm = [0.02, 0.03, …, 0.5], and sc = [1, 2,…, 12]. For each subject, we 

identified the best model parameter settings {αmax, pmmax , scmax} that produced Rmax. We 

compared CD and HC participants for α (the weight given to the dynamic, posterior 

distribution p(rk-1|sk-1), as opposed to the fixed prior distribution π), pm (mean of the beta 

distribution, which represents the individual’s fixed prior of stop trial occurrence), and sc 

(the scale parameter of the beta distribution, which reflects how skewed the distribution is 

around the mean).

2.6 Statistical comparison of CD and HC

Although individual model parameters were used in maximizing the sequential effect, we 

are aware of the uncertain and noisy nature of individual model estimates, considering the 

limited number of trials per subject. In this context, it is standard in model-based behavioral 

analyses (Camerer and Ho, 1999; Daw et al., 2006; O'Doherty et al., 2004) to use a fixed set 

of model parameters that are most representative and robust estimate of the group. 

Therefore, in comparing the sequential effect between CD and HC, we used the mean values 

of the best model parameters {αmax, pmmax , scmax} as a fixed group parameter estimate, and 

computed the correlation between Go RT and P(Stop) for each individual participant, 

obtaining the “sequential effect” coefficient RSeqEff. These coefficients RSeqEff were Fisher 

transformed to ZSeqEff to conform to a normal distribution and allow parametric analysis 

(Bond and Richardson, 2004). We also compared CD and HC in the slopes of linear 
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regression between RT and P(Stop). Finally, the magnitude of sequential effect and model 

parameters were cross-correlated with clinical characteristics for CD. All statistical analyses 

were computed using MATLAB and Statistics Toolbox Release 2012b (The MathWorks, 

Inc., Natick, Massachusetts, United States).

3. RESULTS

3.1 Bayesian model parameters

In the first set of analyses, we examined the parameters of individual Bayesian models that 

produced the maximum correlation, as indexed by coefficient Rmax, between Go RT and 

P(Stop). All participants demonstrated a significant Rmax (p’s<0.01). The mean values of the 

best model parameters for CD and HD groups are summarized in Figure 1. The parameters 

pmmax (p>0.69) and scmax (p>0.14) were not significantly different between the two groups. 

However, the parameter αmax was significantly greater in the HC (αmax=0.93±0.11) as 

compared to the CD group (αmax=0.84±0.19), corrected for Bonferroni multiple 

comparisons (T(106)=3.02, p=0.003<0.05/3). The results remained the same in an analysis 

of variance with age and gender as covariates (αmax: F(1)=9.23, p=0.003, pmmax: F(1)=0.21, 

p=0.6501, scmax: F(1)=2.81, p=0.0967).

3.2 Sequential effect

Using the group averages of the Bayesian model parameters {αmax , pmmax , scmax} = {0.93, 

0.18, 10}, and {0.84, 0.18, 10} for the HC and CD groups, respectively, we computed the 

Pearson coefficient RSeqEff, and normalized RSeqEff to ZSeqEff via Fisher transformation (see 

Section 2.6 for details). ZSeqEff was significantly greater in the HC (ZSeqEff =0.37 ± 0.12) as 

compared to CD (ZSeqEff =0.31 ± 0.12) groups (two sample t-test, T(106)=2.38, p<0.019). 

Thus, CD participants showed greater RT variability that is unexplained by P(stop), in 

comparison to HC, who showed strong and consistent modulation of RT by P(stop). We 

performed another analysis to confirm this finding. We computed the Go RT for P(Stop) 

binned from 0.1 to 0.45 (equally spaced into 18 bins) for individual participants, and then 

averaged Go RT for each bin. We performed a linear regression each for CD and HC groups 

(RSeqEff =0.81 with p<4.64e-05, and RSeqEff =0.92 with p<5.5e-08, respectively) and the two 

regressions were significantly different in slope (T(32)=2.22, p<0.034; regression slope 

analysis (Zar, 1999); Figure 2).

3.3 Correlation of sequential effect with stop signal task performance and clinical 
characteristics

We also computed traditional, non-model-based measures of behavioral performance in the 

stop signal task, as shown in Table 2. There were no significant differences on these 

outcome measures between CD and HC, except for a trend difference for %go, with 

correction for multiple comparisons (Table 2). The normalized sequential effect, measured 

by ZSeqEff , was correlated to post-error slowing and post-stop signal slowing in HC but not 

CD participants (Figure 3). ZSeqEff was not correlated to SSRT for HC or CD.

Neither ZSeqEff nor αmax was significantly correlated to years of education, years of alcohol 

use, or days of alcohol use in the prior month in CD or HC (all p’s > 0.05, corrected, 
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pairwise correlation and multiple regression). In CD, neither ZSeqEff nor αmax was 

significantly correlated to years of cocaine use, amount of monthly cocaine use in the prior 

year, days of cocaine use in the prior month, days of abstinence prior to the current 

assessment, BDI, STAI-S, STAI-T, or CCQ (all p’s > 0.05, corrected, pairwise correlation 

and multiple regression). In a two-by-two (group x smoker status) analysis of variance, we 

examined the influence of smoker status on the sequential effect. The results showed a 

significant main effect of group (F=4.46, p=0.037), as expected, but did not show a 

significant main effect of smoker status (p=0.666) or interaction effect (p=0.930).

4. DISCUSSION

4.1 Impaired Bayesian learning for cognitive control in cocaine addiction

Compared to demographically matched healthy participants, cocaine dependent individuals 

exhibited altered sequential learning for cognitive control, specifically using a diminished 

temporal window of contextual information to predict stopping events, as well as attenuated 

modulation of go RT by this contextual information. These new results reveal conceptually 

novel and mathematically precise deficits associated cocaine-addiction, enabled by the 

Bayesian modeling framework taken here. In other words, compared to control participants, 

cocaine dependent individuals did not use the contextual information as efficiently to update 

their estimate of the likelihood of a stop event and adjust their behavior accordingly. This 

novel finding on a deficit of learning has to our knowledge never been described in the 

context of cognitive control for stimulant dependence.

In the stop signal task, a traditional, non-model-based measure that resembles the sequential 

effect is post-error slowing (PES)/post-stop signal slowing (PSS), the extent of reaction time 

slowing in go trials following a stop error/stop trial, as compared to those following a go 

trial. We showed in earlier work (Ide et al., 2013), that the commonly observed post-error 

slowing is likely a consequence of post-stop slowing, as stop trials and error trials are highly 

correlated in the stop-signal task (see, however, Chang et al., 2014; Li et al., 2008b for 

neural correlates of post-error and post-success slowing). Once we take into account the 

increase in go RT as a function of increased P(stop), due to the observation of a stop trial, 

there is no additional modulation of go RT by whether that stop trial is an error or correct 

trial (Ide et al., 2013). Thus, PES is no more than a noisier form of PSS. In addition, PSS is a 

crude approximation (or a particular simple special case) of the Bayesian interpretation of 

sequential effect, the modulation of go RT by P(stop), as PSS takes into account only the 

last trial, while the Bayesian model takes into account all previous trials, with the fitted 

parameter α characterizing the effective time window over which past observations can 

affect the current trial. As such, PSS (and PES) has fundamentally less statistical power to 

uncover any group differences between CD and HC subjects. Indeed, we saw PSS/PES was 

not significantly different between the two groups, while the more sensitive Bayesian 

measures were. Looking closer, we saw that PSS was only significantly correlated with the 

Bayesian parameter ZSeqEff in HC, and not in CD subjects. This suggests a potentially more 

random, or less principled, source of behavioral variability during cognitive control in 

cocaine-dependent users.
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The current findings are consistent with reports from behavioral studies of probabilistic 

reversal learning, suggesting response perseveration and/or excessive switching in cocaine 

addicts (Ersche et al., 2011, 2008; Patzelt et al., 2014). In particular, Patzelt and colleagues 

used a Bayesian Hidden Markov model to distinguish between these two underlying 

processes in a normative framework (Patzelt et al., 2014). The latter study showed that 

deficits in reversal learning hinged primarily on increased responsivity to false feedback and 

spontaneous switching in cocaine addicts. Our results provide a potential explanation to this 

increased responsivity: compared to HC, CD participants utilize a smaller time window of 

past observations to predict the future, as measured by α in our Bayesian model. This 

tendency to discount past data and latch onto any potential novel pattern in the environment 

would naturally result in more spontaneous switching and sensitivity to unexpected feedback 

driven by noise rather than true changes in the environment. Separately, we speculate that 

the excessive responsivity of CD participants to (false) feedbacks may account for the 

seemingly intact PES/PSS along with a diminished sequential effect as observed with the 

stop signal task. Unlike a “one-shot” response, Bayesian sequential effect requires 

integration of trial experience in an internal model for behavioral guidance. This excessive 

responsivity to a salient stimulus and failure in evaluating and integrating its significance in 

the longer-term behavioral context is reminiscent of ill-adapted behavior such as impulsive, 

cue-elicited drug seeking in addicts (Broos et al., 2012; Moreno-Lopez et al., 2012; Perry et 

al., 2008). Also in support of this hypothesis are findings of altered activation of the medial 

prefrontal cortex in cocaine addicts (Li et al., 2008; Luo et al., 2013), including the dorsal 

anterior cingulate cortex (dACC) and supplementary motor area, regions that have been 

implicated in feedback based learning (Jocham et al., 2009). Indeed, lesioning of the dACC, 

while not impairing the performance of monkeys immediately after errors, made them 

unable to integrate risk and payoff in a dynamic foraging task (Kennerley et al., 2006). 

Furthermore, cocaine addiction is associated with altered error-related thalamic connectivity 

(Zhang et al., 2014), which plays a critical role in cognitive control (Hendrick et al., 2010; 

Ide and Li, 2011). It is possible that chronic cocaine use compromises catecholamine 

signaling required for contextual learning (Jocham and Ullsperger, 2009). On the other hand, 

as the magnitude of sequential effect did not correlate with any of the cocaine use variables, 

we cannot rule out the possibility that deficits in contextual learning may predispose 

individuals to cocaine misuse. Together, these results highlight the intricate nature of the 

deficits in cognitive control and the utility of examining these deficits under a normative, 

computational framework.

The Bayes model suggests that cocaine addicts learn from a shorter time window in 

anticipating future events than healthy humans. One possible mechanism underlying this 

difference is an impairment of working memory in cocaine addiction. Indeed, many 

previous studies have shown impaired working memory as a result of chronic exposure to 

cocaine (Albein-Urios et al., 2012; Fisk et al., 2011; Jovanovski et al., 2005; Kalapatapu et 

al., 2011; Kalechstein et al., 2013; Kubler et al., 2005; Lundqvist, 2005; Moeller et al., 2010; 

Porter et al., 2011; Rosselli and Ardila, 1996; Tau et al., 2013; Tomasi et al., 2007; 

Vonmoos et al., 2013). Since chronic cocaine use compromises cerebral structures critical 

for working memory and the extent of the structural deficits is related to years of drug use 

(Ide et al., 2014), more research is needed to confirm a lack of association between altered 
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sequential effect and drug use. Furthermore, recent work suggests that a number of cognitive 

functions may recover during abstinence in cocaine addicted individuals (Connolly et al., 

2013, 2012). Our cocaine participants were abstinent for only 2 to 3 weeks. It remains to be 

investigated whether they will recover from this impairment with a more extended period of 

abstinence.

The working hypothesis here, that dysfunctional cognitive control in cocaine addicts 

cooccur with an impaired ability to anticipate events that require modifications to ongoing 

behavior, is consonant with some existing modeling work on cognitive deficits in cocaine 

addiction. For example, it was recently proposed that cocaine addicts have enhanced model-

free behavioral control and diminished model-based behavioral control, as compared to 

healthy controls (Lucantonio et al., 2014). Anticipatory or proactive control is a form of 

model-based control – thus, our work shows the impairment of a particular form of model-

based control in the context of the stop-signal task. Although the statistical learning 

occurring in the stop-signal task, as captured by the Bayesian model in this work, is not 

driven by explicit rewards, and requires model-based mechanisms, cognitive deficits related 

to reward-driven learning need to be considered in future research (Redish, 2004).

4.2 Limitations of the study

There are a few important limitations to consider for the current work. First, CD and HC 

groups differed in a number of clinical characteristics that could not be accounted for with 

covariance analyses. Although these clinical variables, including years of education, did not 

appear to be correlated with the outcome measures in the CD group, we cannot rule out their 

influences on the main findings. Furthermore, our participants were not thoroughly assessed 

for impulsivity or ADHD symptoms; thus, the current results may not generalize to a wider 

population of cocaine addicts and warrant replication in future studies. Second, we did not 

observe a significant difference in SSRT between CD and HC in the current study, while 

previous work from our laboratory and others have largely reported a difference in SSRT 

between cocaine (and other substance) abusers and healthy controls. On the other hand, it 

should be noted that the effect size varied greatly across studies (please see (Smith et al., 

2014) for a review). In our earlier work the effect size of the difference ranged from 0.098 to 

0.641 (Bednarski et al., 2011; Li et al., 2008a, 2010, 2006b), suggesting a small to moderate 

difference. Additionally, the current study focused on individuals (including both HC and 

CD) who demonstrated a significant sequential effect. The rationale is that sequential effect 

represents the outcome of learning, which requires sufficient engagement and considerable 

attention devoted to the behavioral task. By focusing on those who demonstrated a 

significant sequential effect, we are able to identify what may have gone awry in the 

learning process in model-based analysis. The data of those who did not demonstrate a 

sequential effect will likely exhibit model fit with extreme parameters that are harder to 

interpret and to generalize across participants. Therefore, this group of CD individuals might 

not represent the typical population of cocaine addicts that we, and others, have examined. 

Third, cognitive control encompasses a wide range of psychological processes that go 

beyond the stop signal task. Studies that employ a different behavioral paradigm such as 

reversal learning and working memory may reveal deficits to complement the current 

findings. Finally, we did not observe a relationship between these deficits of proactive 
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control and clinical characteristics including extent of cocaine use or treatment outcome 

measures. We also could not rule out the effects of alcohol (Bednarski et al., 2012; Hu et al., 

in press; Li et al., 2009b, 2005b; Yan and Li, 2009) or marijuana (Li et al., 2005b) use on the 

current results. Thus, the clinical significance of the current findings remains to be 

established.

4.3. Conclusions

In a moderate-sized sample tested on the stop signal task, cocaine addicts showed altered 

sequential effect, as compared to healthy control participants, suggesting a dysfunctional 

learning and adaptation system for cognitive control. Deficits in cognitive functioning 

hamper progress in treatment and recovery from addiction. The current study may provide a 

behavioral marker to monitor the effects of behavioral treatment and pharmacological 

regimens on enhancing cognitive functions of cocaine addicted individuals (McKee et al., 

2007; Sofuoglu, 2010).
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Highlights

• We used a Bayesian model to examine cognitive control in cocaine dependence.

• Addicts showed less sequential effect and slower learning rate, compared to HC.

• Results suggest deficient utilization of contextual information in addicts.

• Findings provide a new account of altered cognitive control in cocaine 

addiction.
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Figure 1. 
Average values of the best model parameters: αmax (CD: 0.84±0.19, HC: 0.93±0.11), prior 

mean (CD: pmmax=0.19±0.22, HC: pmmax=0.17±0.21), and scale (CD: scmax=9.4±4.4, HC: 

scmax=10.5±3.3). Error bars indicate the standard deviation of the mean. *two sample t-test, 

p<0.05/3, Bonferroni corrected).
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Figure 2. 
Sequential effect in cognitive control during the stop signal task. HC group (blue) presents a 

significantly steeper sequential effect, as measured by the correlation between go RT (ms, y-

axis, left) and P(Stop), when compared to the CD (red) group (regression slope analysis, 

p<0.05). Error bars indicate standard error of the mean for each P(Stop) bin. The bottom 

histograms show the frequencies (numbers, y-axis, right) of go trials per bin of P(stop) each 

for HC (blue) and CD (red) groups. P(Stop) and RT data of these go trials are used to 

compute the sequential effect.
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Figure 3. 
Stop signal task performance measures and sequential effect, as measured by ZSeqEff. Left 

column: cocaine dependent (CD) group (n=51). Right column: healthy control (HC) group 

(n=57). SSRT: stop signal reaction time, PES: post error slowing, PSS: post-stop slowing. * 

PES and PSS are significantly correlated with ZSeqEff in HC (p<0.05/6, Bonferroni 

corrected). The regression slopes of ZSeqEff and PES were significantly different between 

HC and CD participants (T(104)=2.26, p=0.026, two-tailed Student t test). The regression 
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slopes of ZSeqEff and PSS were also significantly different between the two groups 

(T(104)=2.09, p=0.039, two-tailed Student t test).
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Table 1

Demographics and clinical characteristics of cocaine dependent (CD) and healthy control (HC) subjects

Subject characteristic CD (n=51) HC (n=57) p-value

Age (years) 38.5 ± 7.9 37.3 ± 9.9 0.51*

Years of Education 11.8 ± 1.6 14.7 ± 2.8 3e-08*

Gender (M/F) 37/14 32/25 0.08^

Beck Depression Inventory (BDI) 13.9 ± 7.9 N/A N/A

STAI State 40.1 ± 9.7 N/A N/A

STAI Trait 41.9 ± 8.9 N/A N/A

CCQ-Brief score 18.8 ± 7.2 N/A N/A

Smoking Status (Yes/No) 34/17 20/37 0.001^

Years of alcohol use 15.2 ± 8.7 13.5 ± 15.3 0.50*

Days of drinking (prior month) 12.0 ± 8.7 3.6 ±5.3 1e-10*

Years of Marijuana use 10.0 ± 4.5 <1 1e-10*

Average amount of monthly cocaine use
(gm) in the prior year 14.5 ± 20.6 N/A N/A

Days of cocaine use in the prior month 15.1 ± 8.1 N/A N/A

Years of cocaine use 15.7 ± 8.8 N/A N/A

Days abstinent prior to assessment 18.2 ± 6.1 N/A N/A

Note: values are mean ± S.D.; Symbols indicate the test applied in analysis:

*
two-tailed two-sample t test;

^
χ2 test; Days of cocaine/alcohol use pertain to use prior to admission.
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