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Abstract

A closed-loop system that provides both the sensing of glucose and the appropriate dosage of 

insulin could dramatically improve treatment options for insulin-dependent diabetics. The 

intrahepatic implantation of allogeneic islets has the potential to provide this intimate control, by 

transplanting the very cells that have this inherent sensing and secretion capacity. Limiting islet 

transplantation, however, is the significant loss and dysfunction of islets following implantation, 

due to the poor engraftment environment and significant immunological attack. In this review, we 

outline approaches that seek to address these challenges via engineering biomimetic materials. 

These materials can serve to mimic natural processes that work toward improving engraftment, 

minimizing inflammation, and directing immunological responses. Biomimetic materials can serve 

to house cells, recapitulate native microenvironments, release therapeutic agents in a physiological 

manner, and/or present agents to direct cells towards desired responses. By integrating these 

approaches, superior platforms capable of improving long-term engraftment and acceptance of 

transplanted islets are on the horizon.
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INTRODUCTION

Type 1 diabetes mellitus is classified as an autoimmune disease, owing to the selective 

destruction of the beta cells within the pancreatic islet [1]. Patients exhibit a progressive loss 

of insulin production and secretion with concurrent erratic blood glucose levels. Diagnosis 

of diabetes has increased in recent years, with a rise in documented cases from 1.48 to 1.93 

cases per 100,000 between 2001 and 2009 [2].
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Currently, the therapeutic regime for type 1 diabetics includes exogenous insulin delivery 

[3]. The concept of a “closed loop” glucose sensor-insulin secretion system has moved 

closer to clinical translation due to recent engineering advancements; however, significant 

obstacles are still present, including glucose sensor accuracy and lag time, as well as insulin 

delivery methods and robust controllers. Islet transplantation has progressed from 

intellectual curiosity to realistic therapy over the past decade, as it has the potential to 

provide intimate and innate blood glucose control.

The current Clinical Islet Transplantation (CIT) protocol involves the intrahepatic injection 

of pancreatic islets, where they lodge in the liver microvasculature. While CIT has shown 

tremendous promise, the long-term function of these grafts has not proven to be adequate [4, 

5]. Immediately following intraportal islet infusion, a large percentage of the islets are lost 

(> 60%). This loss has been observed in both allogeneic and syngeneic models, indicating 

that the mechanisms of cell death are not solely dependent on specific immune responses [6, 

7]. Through these studies, researchers have identified critical issues that hamper islet 

survival, both in the short and long term. In the initial engraftment period, challenges 

include islet anoikis, delayed revascularization, and the host inflammatory response. For 

long-term engraftment, challenges include host innate and antigen-specific adaptive immune 

responses. Recent approaches seek to mitigate these issues by engineering biomimetic 

materials (i.e., materials capable of mimicking or directing a desired biological mechanism) 

that are capable of replicating the native islet environment or directing desirable host 

responses, as summarized in Table 1.

PALIATINGISLET ANOIKIS

In their native environment, islets are embedded within a niche of extracellular matrix 

(ECM) composed of basement membrane proteins, predominated by collagen type IV, 

laminin, and fibronectin [8]. These dynamic three-dimensional structures not only play an 

instructive role in islet survival, function, and proliferation, but also serve to regulate 

inflammatory and immunological pathways [9]. Isolation procedures disrupt this 

microenvironment, resulting in islet anoikis (i.e., cellular homelessness that induces 

activation of pro-apoptotic pathways) [8]. Further, homotypic and heterotypic cell-cell 

interactions within the pancreatic islet are critical for the maintenance of appropriate 

function [10]. Therefore, reestablishment of the three-dimensional ECM and maintenance of 

the appropriate cell-cell interactions are critical in engineering a functional ex vivo niche.

Two of the most common biomaterials used for islet transplantation are alginate and 

poly(ethylene glycol) (PEG) hydrogels [11–13]. While easy to use and stable, they are 

fundamentally inert biomaterials and do not dynamically interact with the encapsulating 

cells. While this approach might be desirable for some applications, the loss of instructive 

interactions between the material and the embedded cells can result in accreting dysfunction 

or apoptosis via activation of anoikis. This phenomenon was illustrated by Lin et al. [14], 

whereby low beta cell seeding within PEG hydrogels resulted in dysfunction and loss of 

cells, while high loading densities produced favorable cell responses. This correlation was 

attributed to modulation of cell-cell interactions. While high cell seeding can lead to more 

favorable cell-cell interactions, these loading densities may not be optimal for nutrient 
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delivery. Biomimetic materials can recapitulate these cell-cell interactions without these 

limitations. For example, the incorporation of the cell-cell receptors ephrin-As and EphAs 

into PEG hydrogels resulted in improved beta cell survival and function, when compared to 

unfunctionalized gels [14, 15]. ECM components, such as fibronectin, collagen, and growth 

factors, have also been incorporated within biomaterials to promote beta cell stability. For 

example, insulinoma cells photoencapsulated in PEG gels containing collagen IV and 

laminin demonstrated increased insulin secretion, when compared to gels without said 

components [16]. It has also been shown that cell-cell and cell-ECM interactions can be 

recaptitulated using decellularized pancreatic matrix components absorbed onto microbeads 

[17]. As an alternative approach, anti-apoptotic agents, such as the hormone glucagon-like 

peptide 1 (GLP-1) have demonstrated efficacy in promoting islet survival when tethered to a 

biomaterial [18].

While contact-dependent signaling promotes survival, islets encapsulated within polymers 

are dependent on simple diffusion of oxygen, nutrients, and waste, sometimes over large 

distances. With this in mind, macroporous scaffolds, which permit host cell infiltration, are 

an effective platform; permitting the graft to be architecturally integrated within the host. In 

addition to the incorporation of ECM components such as collagen IV [16], poly(lactic-co-

glycolic acid) (PLGA) macroporous scaffolds have also been designed to actively promote 

islet engraftment via the sequential release of insulin-like growth factor (IGF) and 

transforming growth factor beta 1 (TGF-β1)into the local environment [19, 20]. The capacity 

of these trophic factor-loaded scaffolds to facilitate islet function and survival in vivo 

remains to be explored. Overall, materials that mimic the islet niche, either through the 

presentation of ECM mimetics or the secretion of desirable engraftment factors, can provide 

a controlled approach for directing the graft microenvironment toward favoring islet survival 

and function.

ENHANCING ISLET REVASCULARIZATION

Pancreatic islets require an extraordinary degree of vascularization, which is essential to 

support their oxygen demand and provide optimal glucose-responsive insulin secretion. 

Unlike whole organ pancreas transplantation where perfusion is quickly restored upon vessel 

anastomosis, the islet isolation process strips the native vascular architecture, resulting in an 

extended period of neovascularization following implantation. Therefore, an appreciable 

proportion of islets suffer from ischemic injury in the immediate post-transplant phase. 

Further, if islets are encapsulated for immunoprotection, complete islet revascularization is 

not feasible. As such, engineering sites with optimal vascularization are crucial to abating 

islet hypoxia and providing superior glycemic responsiveness.

Various approaches have been employed to promote a rich vascular network following islet 

transplantation. The use of a scaffold to guide a vascular network is one approach. For 

example, a decellularized pancreas serves as a simple, yet functional, biomimetic organ 

platform for transplantation, as vascular channels are preserved within the existing natural 

construction of the ECM. Islets seeded within these scaffolds exhibit physiological insulin 

secretion under basal and high glucose conditions [21, 22]. As an alternative approach, the 

transplant site could be prepared prior to islet implantation to alleviate the exposure of 
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sensitive islets to the inflammatory and hypoxic environment that typically accompanies 

neovascularization [23–25].

While it has long been known that angiogenic growth factors, such as vascular endothelial 

growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor 

(PDGF), and endothelial growth factor (EGF), can significantly improve vascularization, the 

simple delivery of these factors to the local microenvironment results in the loss of spatial 

and temporal gradients, leading to dysfunctional vessel formation. The incorporation of 

“helper” cells, such as endothelial or mesenchymal cells, can promote stable and 

physiological neovascularization; however, the additional nutritional burden of these cells 

on the transplant site during early engraftment can outweigh their long-term benefits.

Biomimetic materials strive to mimic the native temporal and spatial controlled presentation 

of these factors via tethering to dynamic materials. Thus, as the material interacts with the 

host cells, release of the angiogenic factors provides instruction and direction to the vascular 

sprout. On the synthetic material side, nanofibers composed of heparin and heparin binding 

peptide amphiphiles have been engineered to present desired growth factors [26]. These 

nanostructures retain localized VEGF and FGF2, thereby facilitating revascularization and 

improving engraftment. Another approach links degradable PEG hydrogel with VEGF and 

hepatocyte growth factor (HGF), resulting in increased vessel density [27]. Alternatively, 

native binding domains and natural materials can be used for the same purpose. For 

example, we studied the use of fibrin gel, linked to a fibronectin (FN) fragment capable of 

presenting both a growth factor and major integrin binding domain, and observed the 

synergy of this presentation on islet engraftment. Scaffolds containing fibrin/FN/PDGF gels 

exhibited improved engraftment efficacy in syngeneic transplant models [28]. The use of 

native ECM proteins can promote islet survival and vascularization. For instance, collagen 

matrices containing chondroitin-6 sulfate, chitosan, and laminin demonstrated enhanced 

vascularization post-transplantation [29]. Alternative approaches explored the use of the 

unique proangiogenic factor sphingosine-1-phosphate (S1P) prodrug FTY720. FTY720 is 

typically used to sequester lymphocytes in secondary lymphoid tissue [30]. While systemic 

delivery inhibits angiogenesis, the local delivery of FTY720, using nanofiber scaffolds, was 

shown to stimulate neovascaularization [31,32]. Overall, highly promising biomimetic 

materials capable of recapitulating native mechanisms for guided and controlled 

neovascularization are poised to make a significant impact in the field of islet 

transplantation.

On a different note, while pro-vascularization approaches improve oxygen delivery in the 

long-term, the development of a functional vascular bed takes, at minimum, several days. In 

the interim, islet necrosis occurs due to severe hypoxia. To alleviate this loss, investigators 

are exploring the use of in situ oxygenation [33]. Our group has developed a hydrolytically 

reactive, oxygen generating, biomaterial, based on the encapsulation of solid calcium 

peroxide within polydimethylsiloxane (PDMS) [34]. In vitro testing exhibited prevention of 

hypoxia-induced cell death and insulin secretion dysfunction, when these materials were 

used. Alternatively, the use of an oxygen chamber adjacent to the encapsulated islets has 

shown significant promise in small and large animal studies [35–37]. As a complementary 

approach, oxygen delivery platforms can be combined with proangiogenic growth factors. 

Yang et al. Page 4

Curr Diabetes Rev. Author manuscript; available in PMC 2016 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For example, Shimoda et al. incorporated a VEGF vector into lipid-stabilized micro bubbles, 

which also contained perfluorocarbon gas [38]. This technology facilitated revascularization 

of islets transplanted into the liver. Overall, ensuring appropriate oxygenation of the islet 

transplant is a critical component for success, particularly for extra hepatic sites. Current 

biomimetic approaches have shown great potential in achieving this goal.

DAMPENINGINFLAMMATORY PROCESSES

Transplanted islets incite two different inflammatory pathways: instant blood-mediated 

inflammatory reaction (IBMIR), an inflammatory and thrombotic reaction specific to islets; 

and generalized surgical inflammation, a tissue injury reaction associated with trauma. 

Following intrahepatic islet transplantation, islets are in direct contact with blood. This 

contact instigates IBMIR, which involves platelet adherence to the islet and activation of 

coagulation and complement cascades [39]. This response is believed to contribute to 

significant islet loss immediately after infusion, resulting in decreased clinical efficacy [40]. 

In addition, these inflammatory elements act as chemo attractants for neutrophils and 

monocytes, leading to islet infiltration and attack [41]. Overall, these inflammatory events 

brew a highly toxic islet microenvironment.

Through extensive in vitro and clinical trial studies, it has been identified that tissue factor 

(TF) present on the surface of islets is a strong contributor to IBMIR. Traditionally, clinical 

IBMIR has been ameliorated with heparin, dextran sulfate, and a complement inhibitor 

(SCA1); however, systemic administration of these agents can lead to bleeding 

complications, while demonstrating only a marginal impact on ameliorating IBMIR. More 

targeted approaches to block TF on the cell surface, such as the use of antibodies, have 

resulted in dampened inflammatory responses [42], but delivery of these antibodies has 

proven to be complex.

Biomaterials could provide a more benign and localized platform to mask cell surface 

factors that are associated with IBMIR activation. Simple polymer coatings using materials 

such as alginate, PEG-lipid, and other PEG derivative surface-modifications have been 

shown to rescue islets from early-phase IBMIR-mediated destruction [43, 44]. The further 

functionalization of coatings to engineer biomimetic platforms, such as the co-

immobilization of motifs, can serve to actively inhibit complement activation and serve as 

anticoagulants. For example, Cabric et al. used biotin/strepavidin to tether heparin to islet 

surfaces, which resulted in attenuated levels of thrombin, antithrombin, and complement 

C3a [45]. Thrombomodulin, a transmembrane protein that binds thrombin and inhibits its 

ability to cleave fibrinogen and activate factor V, factor VIII, or platelets, has been tethered 

to PEGylated islets [46], layer-by-layer avidin/biotin coatings [47], and lipid bi-layers [48]. 

These approaches have demonstrated decreased activation of coagulation pathways, marked 

conversion of the anticoagulant activated protein C, and decreased intraportal fibrin 

formation and neutrophil infiltration. Islet surfaces have also been coated with PEG-lipid 

and further modified with immobilized urokinase, a fibrinolytic enzyme [49]. These islets 

experienced reduced ischemia, cell injury, and blood coagulation. As such, coating strategies 

designed to actively modulate the islet-blood interface can locally mitigate IBMIR.
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In addition to IBMIR, generalized inflammatory pathways are specifically detrimental to 

islet survival. For example, interleukin-1 (IL-1), produced by the pancreatic islets, not only 

drives inflammatory processes but also leads to the production of nitric oxide, which can 

inhibit insulin secretion [50]. The release of additional cytokines, such as IL-1β, IL-6, tumor 

necrosis factor-α (TNF-α), and interferon-γ (IFN-γ), can further accelerate islet damage and 

destruction [51]. While blockage of IL-1 through an IL-1 receptor antagonist (IL-1Ra) 

produces anti-inflammatory activity [52], the systemic delivery of these agents is 

challenging. A biomimetic strategy used PEG hydrogel tethered with IL-1 receptor inhibitor 

peptide, which reduced beta cell death following IL-1β, TNF-α and IFN-γ exposure [53]. 

Further investigations into the relative contributions of these factors in impairing islet 

function, and engineering biomaterials that aim to attenuate these inflammatory reactions, 

are warranted.

MODULATING ADAPTIVE IMMUNITY

Following islet transplantation, as with other allogeneic organ transplants, variation in 

human leukocyte antigen (HLA) activates an adaptive immune response involving both 

CD4+ and CD8+ T cells, which result in targeted host cell attack. Unique to type 1 diabetes 

is the role of autoimmunity, whereby the transplanted islets can also activate humoral 

responses. As such, current islet allograft recipients must rely on systemic 

immunosuppressant or anti-rejection therapy. While adjustments to the dosage and drugs 

used in the immunosuppressive regimen have been made since the original Edmonton 

protocol [54, 55], challenges remain in mitigating side effects, maintaining patient 

compliance, and achieving full protection of the islet graft.

An attractive alternative to systemic immunosuppression is the polymeric encapsulation of 

islets to mask direct antigen presentation. Microencapsulation was firstly described in the 

1960s by Chang et al. [56]. Since then, various permutations and geometries have been 

employed, from the macro to nano scale. Recent clinical publications demonstrate some 

promises in polymeric encapsulation for protecting islets from host immune attack. For 

example, recipients of microencapsulated allogeneic islets exhibited reduced HbA1c levels 

and exogenous insulin requirements, without the detection of alloantibodies [57]. Further, 

Ludwig et al. implanted a macroscale encapsulation device, supplemented with oxygen that 

offered protection of the graft with no changes in islet autoantibody and donor alloantibody 

[58]. While limited blood glucose control was observed, this was likely due to an inadequate 

number of transplanted islets. On the research side, new polymers and encapsulation 

methods are being explored for the fabrication of ultrathin coatings. For example, islets have 

been encapsulated within PEG-based conformal coatings using a microfluidic platform [59]. 

Alternatively, the layer-by-layer deposition of polymers, either via electrostatic interactions 

[60], hydrogen bonding [61], or covalent linkages [62], has shown promise, with some 

approaches providing immunoprotection in allograft rodent models [63].

While polymeric encapsulation may serve to block direct antigen presentation (i.e. the direct 

recognition of donor MHCs and peptides on the surface by host T cells), indirect antigen 

presentation (i.e. the presentation of shed antigens by host antigen presenting cells (APC) to 

host T cells in a self-restricted manner) is likely still activated, as coatings permit shed 
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antigen release into the local microenvironment. This immune activation is expected to be 

further exacerbated when xenogeneic islets are employed, as the degree of foreign antigens 

is further elevated. While the exact role of indirect antigen presentation in graft loss or 

dysfunction is still unclear, approaches seeking to direct host immune responses toward 

tolerogenic pathways could further enhance graft longevity.

Manipulating the presence of regulatory T cells (Tregs) is one of the primary approaches 

used to direct immune cell responses toward acceptance of foreign cells. Tregs, a crucial 

subset of T cells, modulate innate and adaptive immunity, thereby helping to maintain 

balance in effector responses. The generation of Tregs tolerant to islet antigens could lead to 

a local (and possibly systemic) environment that favors long-term islet acceptance. The co-

transplantation of islets with ex vivo expanded Tregs demonstrated delayed CD34+ stem 

cell-mediated rejection of islet transplants, via decreased macrophages and neutrophil 

recruitment to the islet allograft and inhibition of cytokine production of IFN-γ by Th1 T 

cells [64, 65]. While polyclonal Tregs induce delays in rejection, this approach is inefficient; 

requiring large numbers to achieve beneficial effects [66]. Alternatively, alloantigen-specific 

Tregs have shown enhanced potency, with establishment of long-term graft tolerance via 

selective suppression of Th1 cells [67]. These results suggest that antigen-specific Tregs 

may be the most effective population to employ for prevention of allograft rejection [66].

While the use of ex vivo expanded Tregs has potential, ensuring stable engraftment of these 

cells is an appreciable challenge, as substantial Treg loss is commonly observed following 

transplantation [68]. The generation of Tregs at the site of implantation may be a more 

stable approach, whereby T cell recruited to the islet graft can be converted to Tregs by the 

local microenvironment. Recent efforts have sought to engineer this via a biomimetic 

materials approach through two main tactics: 1) the local release of immunomodulatory 

agents; and 2) the surface presentation of immunomodulatory signals.

The local release of soluble immunosuppressive factors holds great interest in the field of 

allograft transplantation, as local delivery reduces the cost and side effects typically 

associated with systemic delivery, while still retaining potency. Tailoring the local delivery 

of these soluble agents, however, can be a challenging task. The material selected should be 

customized to the desired agent to ensure compatibility and the desired kinetic release, while 

not inciting an immune response. Some of the most common materials employed for local 

drug delivery are poly (D,L-lactic) acid (PLA) and poly (D,L-lactic glycolic acid) PLGA. 

These materials have been doped with steroids, such as the corticosteroid loteprednol 

etabonate (LE) or dexamethasone, to build a delivery system that minimizes systemic side 

effects while maximizing local efficacy [69]. In addition, these formulations were found to 

prolong allograft survival by giving rise to a local immunosuppressive environment [70]. 

Alternatively, these materials have been used to deliver signals for Treg induction, e.g. 

PLGA microspheres releasingIL-2, TGF-β1, and rapamycin [71]. It is postulated that local 

release of these agents in the context of an allograft can direct antigen-specific Treg 

generation. Other biomaterial platforms are emerging that may provide more dynamic 

release characteristics. For example, tacrolimus was locally delivered using the self-

assembled amphiphiletriglycerol monostearate (TGMS), with release modulated via 
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enzymatic degradation in vivo. This material resulted in long-term acceptance of a vascular 

composite allograft in a hind limb model [72].

In lieu of local soluble release, the presentation of selected agents on a material surface can 

serve to direct host immune cell responses. These agents could be tethered to materials co-

transplanted with the islets, linked to the cell surface via reactive polymers, or incorporated 

within the polymeric material used to encapsulate the islets. The most common agents 

selected are those capable of directing T cell responses, particularly by the manipulation of 

the second signal. In one approach, functionalized FasL, termed SA-FasL, was linked to a 

cell surface using strepavidin-biotin binding [73]. The resulting SA-FasL coated islets 

demonstrated long-term graft acceptance, which was attributed to the elimination of 

alloreactive T cells and a subsequent increase in Tregs. While previous reports demonstrated 

that FasL overexpression by islets failed to protect allogeneic hosts, this was likely due to 

the form of expression [74, 75]. When membrane-bound FasL is cleaved by 

metalloproteinases and becomes soluble, it has been found to activate inflammatory 

responses and promote neutrophil recruitment [73]. In contrast, the membrane-bound form 

of FasL induces apoptosis and eliminates the self-reactive T cells [76]. As such, the 

presentation of these immunomodulatory proteins is a significant variable to consider when 

designing these materials.

Immunomodulatory motifs can also be added to encapsulating hydrogels, whereby direct 

antigen presentation is blocked by the encapsulating material while motifs can modulate 

indirectly activated immune cells. As an illustration, Hume et al. modified TGF-β1 and 

IL-10 by thiolization and linked this to a PEG hydrogel [77]. The resulting polymer surface 

was found to decrease activation of dendritic cells. The sufficiency of this 

immunosuppressive approach to protect islet survival against allogeneic rejection in vivo 

would be of interest for future studies.

Finally, a scheme for tolerance induction that has shown strong potential is one that 

exploited the natural clearance of apoptotic cells to induce antigen-specific tolerance. This 

was firstly demonstrated using ECDI-fixed donor splenocytes, which resulted in the long-

term acceptance of allogeneic islets in a rodent model [78]. This approach was translated to 

a strictly biomimetic platform using both material microparticles and polymer linkers, which 

presented peptides to induce antigen-specific tolerance in a mouse model of autoimmune 

encephalomyelitis [79–81]. Subsequently, this was applied to islet transplantation, whereby 

donor antigen-coupled biodegradable particles using donor spleen lysates were administered 

to induce tolerance in recipient animals [82]. Subsequent transplantation of matched islets 

resulted in allograft protection for over 250 days. Overall, these platforms could be used for 

directing tolerogenic responses, which would serve to not only address generalized allograft 

immunity, but possibly autoimmune responses.

NEW DIRECTIONS

Developing biomimetic materials for islet transplantation, while still in early stages of 

development, has the potential to emerge as a successful strategy in constructing a 

functional and stable endocrine organ. ECM biomimetics rescues islets from anoikis, while 
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oxygen-generating and angiogenic materials promote revascularization of the voracious 

islet. Encapsulation can provide long-term engraftment, while the local secretion or 

immobilization of immunomodulatory motifs endeavors to attenuate and direct inate and 

adaptive immune responses. Combining these platforms would ultimately result in a 

physiological-like endocrine pancreas, engrafted within an ectopic site, without systemic 

immunosuppressive therapy. Further, advancements made in biomimetic materials for islet 

transplantation could easily translate to the field of organ transplantation and tissue 

engineering as a whole.
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Table 1

A summary of problems and biomimetic approaches outlined in this review.

Problem Biomimetic Approach

Anoikis Mimicry of cell-cell interactions on benign encapsulation polymers

Incorporation of ECM mimetics, anti-apoptotic components, and trophic factors

Vascularization Use of decellularized organs, such as the pancreas

Scaffold-, nanofiber-based delivery of ECM components and angiogenic growth factors

In situ oxygen generation

Inflammation Surface tethering of native anticoagulant or anti-inflammatory agents

Local release of anti-inflammatory agents

Adaptive immunity Cellular encapsulation within benign polymers

Local delivery of immunosuppressive factors via biomaterials

Immunomodulatory motifs tethered to encapsulating polymers
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