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Abstract

We developed a computational approach to detect and segment cytoplasm in microscopic images 

of muscle fibers. The computational approach provides computer-aided analysis of cytoplasm 

objects in muscle fiber images to facilitate biomedical research. Cytoplasm in muscle fibers plays 

an important role in maintaining the functioning and health of muscular tissues. Therefore, 

cytoplasm is often used as a marker in broad applications of musculoskeletal research, including 

our search on treatment of muscular disorders such as Duchenne muscular dystrophy, a disease 

that has no available treatment. However it is often challenging to analyze cytoplasm and quantify 

it given the large number of images typically generated in experiments and the large number of 

muscle fibers contained in each image. Manual analysis is not only time consuming but also prone 

to human errors. In this work we developed a computational approach to detect and segment the 

longitudinal sections of cytoplasm based on a modified graph cuts technique and iterative splitting 

method to extract cytoplasm objects from the background. First, cytoplasm objects are extracted 

from the background using the modified graph cuts technique which is designed to optimize an 

energy function. Second, an iterative splitting method is designed to separate the touching or 

adjacent cytoplasm objects from the results of graph cuts. We tested the computational approach 

on real data from in vitro experiments and found that it can achieve satisfactory performance in 

terms of precision and recall rates.
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INTRODUCTION

Muscular disorders refer to a large family of various muscular diseases of which many have 

no effective treatment, despite the vast effort that has been dedicated to this field. While 

there are many causes of muscular disorders, some are genetic and others are infectious or 

due to injury, one common phenotype of these disorders is the deformation and loss of 

muscle fibers. As such, examining and evaluating the morphology of muscle fibers under 

microscopes is critical in advancing both research and clinical progress because the 

normality of muscle fiber morphology is an important biomarker of the health of the fibers.

Muscle fibers are multi-nucleated cells that have elongated shapes of an ellipsoid. In cell 

assay a typical image contains dozens to hundreds of muscle fibers and a single experiment 

may generate hundreds of such images. Manually analyzing the amount of images proves to 

be a highly difficult if not impossible task. Adding to the long time required in manual 

analysis is the inevitable human error and observer’s variation in the process. Therefore 

there is an urgent need and broad applicability to develop computer-aided analysis of muscle 

fiber images. Computerized analysis can detect and quantify muscle fiber morphology in a 

quick, objective and repeatable manner. In this work we developed an integrated 

computational approach to detect, segment and quantify cytoplasm along the longitudinal 

directions of muscle fibers.

Cytoplasm of muscle fibers plays an important role in determining the proper functioning 

and health of muscular tissues (Liu et al., 2012, Bruusgaard et al., 2003). For example, the 

ratio of nuclei to cytoplasm in muscle fibers is a key biomarker widely used in studies of 

muscular dystrophies and other muscular disorders (Cohn and Campbell, 2000, Jungbluth et 

al., 2008, Puckelwartz and McNally, 2011). However, currently there lacks appropriate 

computational methods to analyze cytoplasm of muscle fibers, particularly along the 

longitudinal direction of the muscle fibers as published works often focus on the cross 

sections of muscle fibers or their nuclei. For example, a recent work by Janssens et al. 

employed supervised trained classifier approach to quantify and analyze cross sections of 

muscle fibers (Janssens et al., 2013). A work by Su et al. proposed a method of an ellipse 

fitting and sparse representation, followed by a mean-shift algorithm, to detect nuclei in 

single muscle fiber (Su et al., 2014). Only recently a work by Comin et al. presented an 

image processing pipeline consisting of thresholding, refilling of small holes caused by 

nuclei and calculating the skeleton to detect the longitudinal sections of muscle fibers 

(Comin et al., 2014). As muscle fiber image processing is closely related to other types of 

cellular image analysis and processing we next briefly review some techniques that are 

commonly used in this broad field.

Over the last several decades much effort has been dedicated to cellular image processing as 

many techniques have been developed to process different types of cells. Usually 

segmentation of cells or nuclei is carried out as the first step. Some popular segmentation 
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techniques and their modifications include intensity thresholding such as Otsu’s method 

(Otsu, 1979), iterative thresholding (Cai et al., 2014, Wu et al., 2000), mean shift method 

(Debeir et al., 2005), sliding band filter (Quelhas et al., 2010), edge detection (Wahlby et al., 

2004), and watershed and level set algorithms (Nath et al., 2006, Mukherjee et al., 2004). 

The success of these techniques depends on several factors of the underlying images, 

including their homogeneity, signal-to-noise ratio (SNR), and potential artifacts. For 

example, to overcome the limitation of over-segmentation of the watershed method, marker-

assisted watershed techniques have been proposed to improve the performance (Koyuncu et 

al., 2012, Yang et al., 2006). Following segmentation, morphological analysis is often 

needed to extract useful information from the cellular images (Plissiti et al., 2011, Amini et 

al., 2010). At this step morphological analysis generally serves two purposes. First, it is 

often necessary to use morphological operations to improve upon the result of segmentation. 

As no segmentation algorithms can produce perfect results, particularly when there are 

artifacts in the images or when the objects of interest are of different shapes or located in 

close adjacency, the segmentation results can be remedied by judicious application of 

morphological operations. Second, morphological analysis is applied to measure important 

features about the cells or nuclei, such as their sizes, diameters, spatial distribution, and 

movement. Given the large variations in the imaging processes and the different purpose of 

the underlying experiments, the design and selection of an image processing algorithm often 

depends on the biological questions to be addressed.

In this paper we proposed a computational approach to detect and segment longitudinal 

sections of muscle fibers from cell assays. At the first step, a modified graph cuts technique 

was developed to extract cytoplasm from the background of fluorescent microscopic images. 

We provided a new function model suitable for expressing regional term of graph cuts 

energy and added appropriate hard constraint to the energy. At the second step, a series of 

geometric and morphological analysis operations was designed to iteratively separate 

individual objects of cytoplasm. We tested our method on real image data and found that it 

can achieve good performance in terms of precision and recall rate.

MATERIALS AND METHODS

Cell Assay and Microscopic Imaging

The primary myoblasts were harvested from hind limb muscles of 4-week old C57BL/10 

male mice as described in (Rando and Blau, 1994) and expanded in Ham’s F10 medium 

supplemented with 20% fetal calf serum and 5ng/ml basic fibroblast growth factor on 

collagen-coated plates. After clone culture, we identified the myoblasts with anti-desmin 

antibody through immunocytochemistry. To induce myogenic differentiation of the cultured 

myoblasts, we replaced the growth medium with differentiation medium (DMEM with 2% 

horse serum) after the percentage of coverage reached over 70%. For immunostaining, the 

differentiated cells were fixed with 4% paraformaldehyde for 30 minutes at 4°C, washed and 

treated with 0.5% Triton-X 100 in phosphate buffered saline for 5 minutes at room 

temperature. We next incubated the cells with primary antibody Myosin Heavy Chain 

(MHC) diluted in 1:50 followed by incubating the cells with a CyTm3-conjugated secondary 

antibody diluted in 1:500. And the nuclei were counter-stained with 4, 6 diamidino-2-
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phenylindole (DAPI). Pictures were obtained using an Olympus fluorescence microscope 

with a 10× magnification for objective lens and 1× for eyepiece lens. The pixel size is 

0.76um and the size of each image 1200×1600 pixels. The original images were acquired in 

a three-channel RGB format with a bit-depth of 8 for each channel. In this work we worked 

with the MHC channel that shows the cytoplasm signal. Here we note that the cytoplasm 

channel may contain some interference from other channels. A typical image in the MHC 

channel is displayed in Figure 1. All the animal-based experiments have been approved by 

the institutional animal care and use committee of the Harvard Medical School.

Computational Approach

From a computational perspective, there are two primary challenges in detecting and 

segmenting cytoplasm objects. The first challenge is to detect cytoplasm objects in the 

presence of low contrast and sometimes uneven illumination in the images. The second 

challenge is to correctly separate touching or adjacent objects to derive accurate final results. 

We designed our computational approach to address the two challenges. The pipeline of our 

proposed method is presented in Figure 2(a). The grayscale image was obtained by 

extracting the red component of the RGB color image. Then, the grayscale image was 

processed to enhance the contrast of cytoplasm objects because the gray level distribution is 

uneven. Specifically we adjusted the intensity value of the images by the method of image 

contrast stretching. The enhanced cytoplasm objects of Figure 1 are shown in Figure 3(a).

Graph Cuts based Segmentation

A major step in our approach is graph cuts based segmentation of cytoplasm objects. Graph 

cuts technique is a recently developed algorithm based on graph theory. The object could be 

extracted optimally because graph cuts algorithm incorporates both boundary term and 

regional term (Boykov and Funka-Lea, 2006, Boykov and Kolmogorov, 2004). Methods 

based on graph cuts are robust and are suitable for solving many difficult problems, such as 

some complicated objects could not be expressed only through region based method nor 

boundary based method.

A graph is defined as a set of nodes and a set of edges with each edge connecting two nodes. 

It can be written as

(1)

where G represents the graph, V and E represent its nodes and edges, respectively. 

Typically, the nodes have two special terminal nodes S and T, representing the object label 

and the background label, respectively. The edges connecting neighborhood nodes are called 

"n-links", while the edges connecting a terminal node are called "t-links" (Boykov and 

Funka-Lea, 2006), illustrated as Figure 4(a). An s-t cut is defined as a subset of edges C ⊂ E 

such that S and T become completely separated on the induced graph G(C) =<V, E\C>. Our 

goal in this work is to obtain a best cut that could give an optimal segmentation in the 

cytoplasm image.

We create a graph through the image, the pixels and two terminal nodes foreground S and 

background T constitute the nodes, and the relationships between the pixel and terminal 
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nodes as well as relationships between pixels constitute the edges. Here we only consider 4-

adjacency neighborhood about the relationship between pixels. If we set a value to every 

edge evaluating the relationships, then we will constitute an energy function

(2)

where A is a vector and defines a segmentation, R(A) is the regional term, i.e., the "t-links", 

and B(A) is the boundary term, i.e., the "n-links". And λ (λ≥0) is a weight controlling the 

balance between the regional term and the boundary term. The bigger λ is, the ratio of the 

boundary term is less, and the result would be more discontinuous and over-segmentation 

phenomena will be more serious. It has been shown that minimization of energy E(A) is 

guaranteed to converge (Kolmogorov and Zabin, 2004). And

(3)

(4)

where Rp(S) and Rp(T) represent the probability of a pixel p belonging to terminal node S 

and T, respectively. p ∈ T and p ∈ S represent the pixel, after the segmentation, belongs to 

background and foreground, respectively. Bp,q represents the similarity degree of pixel p and 

pixel q, and pixels p and q should be in the 4-connected neighborhood N. By definition, the 

more similar pixels p and q are, such as the gray values of p and q are the same, the larger 

the value Bp,q is. The more likely that p belongs to a terminal node S or T, the larger the 

value of Rp(S) or Rp(T) is.

The regional term is usually related to the intensity of a pixel. In this paper, we constructed a 

function module based on Radial Basis Function (RBF) (Salah et al., 2011) to express Rp as

(5)

where I is the intensity of pixel p. The intensity of the image was normalized to [0, 1] by 

linear transformation. t could be thought as the center or basis, and t equals 1 when 

computing the probability of a pixel belonging to the object Rp(S). Likewise, when 

computing the probability of a pixel belonging to the background Rp(T), t equals 0. a and b 

are adjustable parameters, and we set a to 6 and b to 0.5 in this paper. The probability of a 

pixel belonging to cytoplasm objects can be seen from Figure 4(b). The horizontal axis 

represents the gray value of a pixel, and the vertical axis represents the probability of the 

pixel belonging to the cytoplasm objects, i.e., Rp(S). A larger b corresponds to a higher 

probability. The slope of the curve will be steeper and the probability difference of high gray 

level and low gray level will be larger if a is bigger.

The boundary term is usually related to the distance between pixels and the intensity 

difference. To compute the boundary term we employed a Gaussian function
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(6)

where dist(p,q) is the Euclidean distance between two pixels p and q. The graph is 4-

connected neighborhood in this paper, so the distance of every pixel pair is same and 

dist(p,q) equals 1 everywhere. σ is the standard deviation of intensity values in the 

cytoplasm image. Ip and Iq represent the gray value of pixel p and q, respectively.

Imposing a Constraint in Graph Cuts based Segmentation

Graph cuts method has an advantage of incorporating lots of information to its energy 

function, such as a priori information of the image, shape or other features of the object. In 

this paper, we exploit this advantage of graph cuts by introducing area, which is obtained by 

Otsu's method (Otsu, 1979), as a constraint on the graph cuts based segmentation. We 

applied Otsu's thresholding method to the grayscale image and then obtain a binarized 

image. In the binarized image the larger regions tend to be cytoplasm and smaller regions 

tend to be artifacts, mainly caused by the influence of cell nuclei.

Based on the fact that nuclei are much smaller than the size of cytoplasm we set a threshold 

to filter out small regions considered to be nuclei. In our previous work we developed a 

technique to detect and segment nuclei in a different channel of images from the same 

muscle fiber specimen (Guo et al., 2014). We then calculated the average area of nuclei and 

denote it as the threshold Tarea. Next we compared the area of regions in the binarized 

cytoplasm images to Tarea. If the area of a region is larger than 2Tarea, then we set all the 

values of Rp(T) of the pixels in this region to be 1/10,000 times of their original values. If 

the area of a region is smaller than Tarea, then we set all the values of Rp(S) of the pixels in 

this region to be 1/10,000 times of their original values. Here the reason of setting the 

weight to be 1/10,000 is to reduce the value as small as possible but not to be zero.

After constructing the regional term and boundary term, and modifying the regional term 

according to the hard constraint, we obtain the energy function E(A). To achieve an optimal 

segmentation defined by the cut, our goal now is to minimize energy E(A). And the energy 

could be minimized by the min-cut/max-flow theory (Boykov and Kolmogorov, 2004, 

Kolmogorov and Zabin, 2004). After the minimization, the cytoplasm would be extracted 

and shown as foreground in the resulting binarized images. As there are many "holes" in the 

extracted cytoplasm objects due to the staining of nuclei in the DAPI channel, we filled 

them with a morphological operation of region filling. After applying the graph cuts step, we 

obtained the binarized image of Figure 1, which is shown in Figure 3(d).

Iterative Splitting Method

Due to the limited resolution and the point spread function of microscopes and the fact that 

some muscle fibers are located close to each other there are cases that the segmented objects 

appear touching or adjacent to others. To address this challenge for accurate separation of 

cytoplasm objects we develop an iterative splitting method to split touching and adjacent 

cytoplasm objects. This approach is based on the observation that the touching points of two 

or multiple adjacent cytoplasm objects are on the concave points of their joint region. To 
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split the touching cytoplasm, the first step is to identify the touching ones. The second step 

is to identify the line, called splitting line, that legitimately separate two touching objects. 

We treat every connected region, such as regions in Figure 3(d), as one region and find the 

smallest convex polygon G that can contain the region. If the region has two or more 

cytoplasm objects, then the edge of the polygon will be somehow far away from the 

boundary of the region and then there is a blank area between the region and polygon. So, 

our method of filtering the touching cytoplasm is realized via an area threshold. If the area 

of the polygon is k times larger than the area of foreground region, then this region is 

considered having two or more touching cytoplasm objects, where k is a positive parameter 

measuring area and should be larger than 1, and we set k equals 1.2 in this work. A k that is 

too small will result in large number of isolated cytoplasm objects and may cause a high rate 

of false positives. Figure 5(a) shows such an example of a foreground region considered to 

have multiple cytoplasm objects.

After identifying a touching cytoplasm object O, the next step is to find proper splitting lines 

to separate individual objects based on the proposed iterative splitting method. The 

flowchart of Figure 2(b) shows the steps of finding splitting lines to separate touching 

cytoplasm objects. First, the boundary of object O is extracted from the resulting images 

given by the graph cuts method. Two adjacent vertices of a convex polygon of Figure 5(a), 

the polygon segment enclosed by the two vertices, and the boundary between them will 

constitute a concave region. Second, the concavity point P is found in the concave region, 

and P is defined as a point on the boundary which has the biggest concavity depth (CD) 

value and the value should be greater than a threshold CDT. CD is defined as the Euclidean 

distance from the point on the boundary to the polygon segment (Kumar et al., 2006). Its 

calculation is illustrated in Figure 5(b). By definition the larger the CD the deeper the 

convexity is at point P (Rosenfeld, 1985). Then all the concavity points of object O are 

identified and denoted as Pset. The connecting lines of concavity points will constitute 

potential splitting lines. The following steps show the process of screening real splitting 

lines. All the Euclidean distances between any two points from Pset are computed and 

recorded as Dset and the distances are also the length of line segments which connecting two 

concave points. Then the smallest distance from Dset is found. The connecting line, with 

this smallest distance which connecting two concavity points, is considered as the splitting 

line if the line is fully contained in the binarized object. After that the two points from Pset 

are removed and re-compute Dset and re-select the smallest distance from Dset. If the line 

goes out from the object, then remove the distance value from Dset and re-select the 

smallest distance. These steps iterate until the number of Pset is smaller than 2 or the 

number of Dset is 0. At last all the screened segments constitute the real separating lines of 

the object. Here we set CDT equals 10. If CDT is too small, the number of screened 

concavity points will be large and some of them would be false positives. If CDT is too 

large, some true concavity points would be missed. Figure 5(c) shows the concavity points 

and the filtered splitting lines of the cytoplasm object of Figure 5(a).
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RESULTS

Figure 3(f) shows a segmentation result by the proposed method. From which we can see 

that the cytoplasm objects are well extracted from the background and touching cytoplasm 

objects are separated through the subsequent processing steps.

To evaluate the method, we tested our approach on real images from a muscular dystrophy 

experiment and computed its performance. Overall there are more than 1,500 cytoplasm 

objects in ten images in our test. We used both precision and recall rate to evaluate the final 

result and the area-constrained graph cuts method. And we also validated the results with 

manual analysis in terms of accuracy. In this work accuracy is defined as

(7)

where Nmanual is the number of cytoplasm objects in one image obtained by manual analysis 

and Nauto is the number of cytoplasm objects given by the computational approach. We 

obtained true positives (TP), false positives (FP), and false negatives (FN) for each image. TP 

is the number of true cytoplasm in the extracted image. FP is the number of objects 

incorrectly identified as cytoplasm and it also includes over-segmentation, i.e., one 

cytoplasm is split into two or more cytoplasm. FN is the number of cytoplasm objects missed 

by the approach and also includes under-segmentation, i.e., two or more cytoplasm objects 

are considered as one object. Precision is the ratio of TP over the number of automatically 

identified cytoplasm objects (Nauto) in one image such that

(8)

By definition, Nauto equals TP plus FP and Nmanual equals TP plus FN. While precision 

evaluates the identified result, the recall rate evaluates the identification ability. Recall rate 

is calculated as the ratio of TP over Nmanual in one image

(9)

The overall performance of the proposed method is shown in Table 1. The average accuracy 

is 93.3% and all the values are consistently above than 90%, so we can conclude that the 

proposed method achieved a high accuracy. The average precision is 96.9% and 9 of 10 

images are higher than 95%. And the average recall rate is 90.0% and 8 of 10 images are 

higher than 89%.

And we also list the performance of graph cuts step in Table 2. The average accuracy, 

precision and recall rate is 96.5%, 99.9% and 96.6% respectively. From the distribution of 

values, we can conclude that the graph cuts step can extract cytoplasm from background 

with a high reliability. Figure 6 shows some examples by using the graph cuts step. As can 

be seen from the figure, the cytoplasm objects are extracted from the background with a 

relatively accurate boundary. From the figure, we can see the intensity inhomogeneity 

within the extracted cytoplasm object. The graph cuts method contains a boundary term 
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which considering the consistency of neighborhood pixels and so it could eliminate the 

influence of uneven intensity.

Figure 7 shows some examples of final results given by the computational approach. We 

observe that cytoplasm objects are extracted while the artifacts are removed. And the 

touching cytoplasm objects are separated well by the selected splitting lines. But there are 

still some problems to be addressed, such as if one cytoplasm is intersected by another, after 

the splitting one intersecting cytoplasm would be separated into two objects. The broken 

cytoplasm should be connected again and this is what we will improve in the future work.

For a comparison of our method with existing algorithms, we used a level set method 

proposed by (Chunming et al., 2005) for benchmarking. Figure 8 compares the results given 

by our method and the level set method. It seems that the level set method would capture 

more cytoplasm parts than the proposed method and give boundaries that are smoother than 

the proposed method. The limitation of the level set method is that one needs to set the 

number of iterations to achieve satisfactory results. Another concern about level set methods 

is the high computational complexity and relatively long time they take. In comparison, the 

proposed graph cuts method is computationally fast and can handle multiple objects, in 

contrast, level set methods are usually best suited to to extract single or a small number of 

objects. We note that in our case each image contains multiple objects and the overall task is 

to process a large number of such images generated in a single experiment. So a suitable 

algorithm should be considered to process this type of images for both high accuracy and 

efficiency.

DISCUSSION

In this paper, we proposed a computational approach to detect and segment cytoplasm of 

muscle fiber from fluorescence microscopic images by employing graph cuts to identify 

cytoplasm signals and an iterative splitting method to accurately separate them. 

Measurement of cytoplasm is important to elucidate many biological processes in 

musculoskeletal research as the intactness of cytoplasm reflects the health of muscle fibers. 

Given the large number of muscle fibers contained in a typical microscopic image manual 

analysis is often not feasible. As such computerized analysis is of significant benefit to 

advance our understanding of muscle fibers and their cellular processes. Our approach 

consists of two main steps to first extract cytoplasm objects from the images using a 

modified graph cuts method and second accurately separate touching objects by iterative 

splitting method. We take advantage of the longitudinal shape of muscle fibers and impose 

an area constraint to design a modified graph cuts method. Graph cuts methods have the 

advantage to separate an image into two classes, foreground and background and have been 

used in cellular image processing. For example, Danek et al. (Danek et al., 2009) used a 

two-stage graph cuts model to segment touching cell nuclei, in the first stage the nuclei are 

extracted from the background and touching nuclei are separated in the second stage. Al-

Kofahi et al. proposed a method that utilizes graph cuts twice to first binarize a nuclei image 

and then reduce computational complexity in identifying nuclear seed points (Al-Kofahi et 

al., 2010). Graph cuts based active contour methods have also been developed to segment 

nuclei images (Chen et al., 2008). However the special type of the cytoplasm images has 
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unique challenge in image processing such that some cytoplasm objects may overlap or 

touch others in the images and graph cuts method alone is insufficient to separate them. 

Adding to the challenge of separating adjacent cytoplasm objects there is other interference 

in the images, i.e., the artifacts from the nuclei channel. As the muscle specimen were 

stained and prepared for multi-channel imaging to reveal both cytoplasm and nuclei there 

are, inevitably, interference from one channel to the other channel of images. This is evident 

in Figure 1, from which we can observe small regions that are actually from the nuclei 

channel or due to imperfect slice preparation. Therefore, we reduce interference from the 

artifacts by comparing areas of regions to a preset threshold to constrain graph cuts in 

cytoplasm segmentation. This step utilizes the prior information from muscle cell biology 

that the nuclei are much smaller than the area of cytoplasm of a muscle fiber. Here we note 

that because muscle fibers are multi-nucleated cells, we cannot derive a one-to-one mapping 

between the number of nuclei to the number of cytoplasm objects in constraining the graph 

cuts process. However, we observed that our area-constrained graph cuts approach is able to 

achieve satisfactory performance in identifying cytoplasm. Our next challenge was to 

separate adjacent cytoplasm objects for accurate segmentation.

So, following the area-constrained graph cuts method an iterative splitting method is applied 

to separate touching objects to obtain the final segmentation result. In designing the iterative 

splitting method we exploit the fact that geometrically two touching cytoplasm objects 

always form a concavity connection at their intersection. So the splitting method searches 

for concavity points along the boundary of any binarized objects obtained from the graph 

cuts method and the concavity points constitute many potential separating lines. We then 

analyze and iteratively filter out lines that are not considered as the optimal splitting lines. 

The final segmentation results are created by separating touching objects along the 

legitimate splitting lines. We applied our method on real image data acquired in an in vitro 

experiment that was designed to study the viability of muscle fibers in a muscular dystrophic 

project. Based on the analysis of more than 1,500 cytoplasm objects we found that the 

proposed approach can achieve satisfactory performance as validated by manual analysis. 

Hence we conclude that the proposed approach can provide computerized analysis to greatly 

reduce the time and human effort required in manual analysis of complex muscle fiber 

images at high objectivity.

Overall our approach, first, takes advantage of the prior biology information about muscle 

fiber cytoplasm and nuclei to remove artifacts and, second, utilizes shape analysis to 

accurately separate adjacent cytoplasm objects. The analysis results can then be quantified to 

provide detailed information about muscle fiber morphology to corroborate with other 

experiments in our search for treatment of musculoskeletal disorders. Our future work will 

focus on improving the algorithms to achieve more accurate results in more challenging 

scenarios. Finally we note that as a computational technique the proposed approach can be 

used in combination with other measurements to address profound biological questions. For 

example, together with nuclei detection and segmentation (Guo et al., 2014) we can derive 

the nuclei-to-cytoplasm ratio, which is an important biomarker used in many 

musculoskeletal experiments.
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Figure 1. 
A typical cytoplasm image of muscle fibers captured in the MHC channel.
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Figure 2. 
(a) The pipeline of the proposed method of this paper. (b) The flowchart of splitting 

touching cytoplasm step.
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Figure 3. 
(a) The enhanced image after preprocessing. (b) The binarized image after using Otsu's 

method. (c) The area filtering result of (b). (d) The binarized image of (a) after using graph 

cuts method. (e) The segmentation result by the proposed iterative splitting method. (f) The 

superimposed result, the green color represents the boundary of single cytoplasm objects.
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Figure 4. 
(a) The constructed graph model. (b) The probability of a pixel belonging to a cytoplasm 

object versus its grayscale value.
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Figure 5. 
(a) An example showing the steps of separating adjacent cytoplasm objects. The red lines 

represent the smallest convex polygon containing the object. (b) The illustration of 

concavity depth. P is a pixel on the boundary of object O and G is the corresponding 

polygon edge, CD is the vertical line from P to G. (c) The selected splitting lines of (a). The 

green points are the concavity points and the red lines inside the region are the splitting 

lines.
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Figure 6. 
Examples showing the extracted cytoplasm by the area-constrained graph cuts method. The 

green color represents the boundary of cytoplasm.
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Figure 7. 
Examples showing the final segmentation results by the proposed method after iterative 

splitting of adjacent objects.
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Figure 8. 
Comparison of extracted cytoplasm given by the proposed method (a) and level set method 

(b).
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