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Abstract

Compared with the dorsal hippocampus, relatively few studies have characterized neuronal 

responses in the ventral hippocampus. In particular, it is unclear whether and how cells in the 

ventral region represent space and/or respond to contextual changes. We recorded from dorsal and 

ventral CA1 neurons in freely moving mice exposed to manipulations of visuospatial and olfactory 

contexts. We found that ventral cells respond to alterations of the visuospatial environment such as 

exposure to novel local cues, cue rotations, and contextual expansion in similar ways to dorsal 

cells, with the exception of cue rotations. Furthermore, we found that ventral cells responded to 

odors much more strongly than dorsal cells, particularly to odors of high valence. Similar to earlier 

studies recording from the ventral hippocampus in CA3, we also found increased scaling of place 

cell field size along the longitudinal hippocampal axis. Although the increase in place field size 

observed toward the ventral pole has previously been taken to suggest a decrease in spatial 

information coded by ventral place cells, we hypothesized that a change in spatial scaling could 

instead signal a shift in representational coding that preserves the resolution of spatial information. 

To explore this possibility, we examined population activity using principal component analysis 

(PCA) and neural location reconstruction techniques. Our results suggest that ventral populations 

encode a distributed representation of space, and that the resolution of spatial information at the 

population level is comparable to that of dorsal populations of similar size. Finally, through the 

use of neural network modeling, we suggest that the redundancy in spatial representation along the 

longitudinal hippocampal axis may allow the hippocampus to overcome the conflict between 

memory interference and generalization inherent in neural network memory. Our results indicate 

that ventral population activity is well suited for generalization across locations and contexts.
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Introduction

Recent evidence suggests that the hippocampus may be functionally divided along its 

longitudinal axis (Bannerman et al., 2004; Fanselow and Dong, 2010). The ventral 

hippocampus (VH) contains higher concentrations of several neuromodulators and 

neuropeptides relative to the dorsal hippocampus (DH) (Gall et al., 1981; Amaral and Kurz, 

1985; Haring and Davis, 1985; Verney et al., 1985; Köohler et al., 1987; Garcia Ruiz et al., 

1993). Furthermore, the DH primarily receives input from visual, somatosensory, and spatial 

regions (Amaral and Witter, 1989), while the VH is heavily connected with areas that 

control emotion and anxiety (Saunders et al., 1988; Pitkäanen et al., 2000; Petrovich et al., 

2001; Kishi et al., 2006; Cenquizca and Swanson, 2007). These differences suggest that the 

DH may have privileged access to spatial information, while the VH may be involved in 

processing emotional information (Bannerman et al., 2004; Fanselow and Dong, 2010). 

However, intra-hippocampus associational and collateral networks and intra-entorhinal 

connections may allow spatial information to reach all regions along this axis (Amaral and 

Witter, 1989; Dolorfo and Amaral, 1998; Steffenach et al., 2002; Kjelstrup et al., 2008).

At present, few studies have compared neuronal activity in the DH and VH at the 

electrophysiological level. Although neuronal activity in the DH primarily represents space, 

the specific responses of ventral cells to spatial changes have not been fully characterized. 

Specifically, traditional manipulations of the spatial context such as cue rotations, contextual 

expansions, and exposures to similar contexts with different cues have not been tested 

(Muller and Kubie, 1987; Muller et al., 1987; Bostock et al., 1991). Additionally, while 

some studies have assessed the effects of unrewarded olfactory cues on dorsal place cells 

(Save et al., 2000; Anderson and Jeffery, 2003; Aikath et al., 2014), no electrophysiological 

studies have examined the effects of olfactory cues of distinct emotional valence in the VH 

(but see Komorowski et al., 2013, for the effects of learned olfactory associations). This 

characterization is particularly important in ventral CA1 because this region receives the 

heaviest olfactory afferents (Majak and Pitkäanen, 2003; Kerr et al., 2007) and olfactory 

cues provide critical spatial cues for rodents.

The few studies that have characterized neuronal activity along the longitudinal axis have 

revealed a gradient in the scale of spatial representation paralleling the structural differences 

along this axis. Specifically, the place field size of individual neurons increases from the 

dorsal to the ventral pole (Jung et al., 1994; Maurer et al., 2005; Kjelstrup et al., 2008; Royer 

et al., 2010). This gradient has been taken to suggest that the precision with which space is 

represented declines when progressing toward the ventral pole, perhaps to allow for 

representation of additional nonspatial information (Royer et al., 2010). Although there may 

be computational advantages to representing space on multiple scales even at the cost of 

precision (Maurer et al., 2005), the existence of a scaling gradient in place fields does not 

necessarily imply a loss of high-resolution spatial information. An alternative possibility is 

that this spatial gradient instead signals a transition from sparse coding in the DH to 

distributed population coding in the VH. At the population level, prior studies have 

demonstrated that population activity in the DH becomes decorrelated over small distances, 

corresponding to a fine spatial scale, whereas in the VH population activity remains 

correlated over much larger distances, corresponding to a broad spatial scale (Maurer et al., 

Keinath et al. Page 2

Hippocampus. Author manuscript; available in PMC 2015 December 01.

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript

H
H

M
I A

uthor M
anuscript



2005; Kjelstrup et al., 2008; Royer et al., 2010; Komorowski et al., 2013). However, even if 

activity in the VH is correlated over large distances, small changes in the population activity 

may contain spatial information that serves to decode precise spatial location.

In this study, we recorded and analyzed single-unit activity from area CA1 in either the DH 

or VH while mice explored several visuospatial and olfactory environments to compare the 

spatial characteristics of cells in these regions. We then analyzed population activity using 

several computational techniques, including principal component analysis (PCA) and neural 

location reconstruction methods, to assess whether spatial representations coded by dorsal 

and ventral populations are comparably accurate. Our results confirm that ventral cells 

indeed display some spatial tuning. Importantly, even though the spatial information of 

independent single ventral cells does not match the precision of dorsal cells, the population 

activity of ventral cells provides a faithful representation of space, comparable to dorsal 

populations of equal size. To examine the function of the apparent longitudinal redundancy 

in spatial coding, we modeled the activity of the DH and VH neuronal populations. We 

found that representational differences along the longitudinal axis may circumvent the 

competition between interference and generalization inherent in neural network memory. 

Specifically, in the DH the details of memories are robustly guarded against interference but 

fail to generalize, while in the VH the details are lost but commonalities among memories 

are successfully generalized. Together, these data indicate that there is precise spatial 

information in the VH and that the spatial gradient observed along the longitudinal axis may 

provide an important mnemonic advantage.

Materials and Methods

Subjects

Male C57BL/6 mice, 2 to 5 months old (Jackson Laboratory, Bar Harbor, ME), were housed 

individually and kept on a 12-hr light/dark cycle for at least 2 weeks before the beginning of 

the experiments. Mice had access to food and water ad libitum. Animal living conditions 

were consistent with the standards set forth by the Association for Assessment and 

Accreditation of Laboratory Animal Care (AAALAC). All experiments were approved by 

the Institution of Animal Care and Use Committee of the University of Pennsylvania, and 

were conducted in accordance with NIH guidelines.

Surgery

Mice were anesthetized with a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg), 

administered intraperitoneally (0.1 mL/kg) and placed in a stereotaxic frame in a flat skull 

position (David Kopf Instruments, Tujunga, CA). Two independent groups of C57Bl6 mice 

were implanted in area CA1 in either the dorsal or ventral hippocampus (from Bregma in 

mm: dorsal: AP = −1.8; ML = −1.5; DV = −1.0; ventral: AP = −3.0, ML = −3.9; DV = −2.8) 

with movable tetrodes (Fig. 1A,B). Coordinates were selected according to the 

neuroanatomical markers recently characterized in C57Bl6 mice along the longitudinal axis 

(Fanselow and Dong, 2010).
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Free Exploration Tasks

Visuospatial trials—We recorded neuronal activity from area CA1 in either the DH or 

VH in two groups of mice that explored cylindrical environments containing visuospatial 

cues. Neuronal activity was recorded in the following configurations: (a) A 35 cm cylinder 

(standard environment, SEA) containing a distinct configuration of seven black visual cues 

on the cylinder's white walls (animals were tested in the SEA at the beginning and at the end 

of the session); this trial tested general characteristics of DH and VH fields. (b) The SEA 

rotated 90° counterclockwise; this trial examined if the dorsal and ventral fields were locked 

to the external cues. (c) A second environment of identical size and color but with different 

visual cues (SEB); this trial tested if the fields remapped in the presence of different 

visuospatial cues. (d) A scaled-up large environment identical in shape, color, and cue 

configuration to the SEA (LE, 70 cm in diameter); this trial tested if the dorsal and ventral 

fields displayed expansions in size. A comparison of the first and final trials in the SEA 

served as a measure of short-term place field stability. Free exploration in each trial lasted 

10 minutes, with the exception of the LE trial that lasted 20 min to ensure proper sampling. 

In the visuospatial conditions, we recorded from the DH of six animals (89 cells) and the 

VH of five animals (65 cells).

Olfactory trials—Before conducting the olfactory trials, odor preference was determined 

in a separate group of animals. Two neutral (vanilla or cocoa) and two aversive odors (10% 

acetic acid or 20% 2-methyl butyric acid, a synthetic odor similar to that of spoiled food) 

were used to assess the effects of valence independent of he intrinsic characteristics of each 

odor. As previously described (Wang et al., 2013), odor preference was determined by 

examining approach-avoidance responses to singly presented odorants relative to water (no 

odor) in different groups of mice.

Neuronal activity was recorded in a 35 cm white cylinder with no visual cues in which the 

different odors were presented. In each trial, a paper towel (2 × 2 cm) was placed in the 

center of the platform wetted with water (no odor), the neutral, or the aversive odorant. 

Olfactory trials consisted of two sessions of three trials each, with an intersession interval of 

1 hr. Odors were presented in a semi-random order across animals; however, the no odor 

condition was always presented first. Pixel by pixel cross-correlations between the first and 

second session served to examine short-term stability of olfactory representations. 

Correlations between the no odor and odor conditions served to test if the cells remapped 

between odor conditions. All trials lasted 10 min with a 10-min inter-trial interval (ITI). 

During the ITI, the room was ventilated and contexts were cleaned with 70% ethanol to 

remove all traces of the odors. In the olfactory conditions, we recorded from the DH of five 

animals (89 cells) and the VH of four animals (42 cells). Three dorsal and two ventral 

animals were run in the visuospatial and olfactory conditions, though in these animals 

different cells were recorded in each condition.

Electrophysiology

The headstage was connected to a tethered unity gain amplifier equipped with green and 

orange LEDs used for tracking the position of the animal. The tether cable was connected to 

a distribution panel and units were amplified using a 32-channel amplifier (Neuralynx, 
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Bozeman, MT). Electrical signals were amplified between 2,500 and 10,000 times, and 

filtered between 400 and 9,000 Hz. The amplifier output was digitized at 30.3 kHz. Both the 

position of the animal and the electrophysiological data were recorded by Cheetah Data 

Acquisition software (Neuralynx, Bozeman, MT) on an HP xw4400 workstation computer. 

Beginning at least one week after surgery, neural activity from each tetrode was screened 

daily. The search for cells was conducted in the animal's home cage. The electrode bundle 

was advanced by 15 to 20 mm per day. The tetrodes were lowered in small steps to increase 

the stability of the recordings (Kentros et al., 2004; Muzzio et al., 2009). Pyramidal cells 

were identified by their characteristic firing patterns characterized by the presence of bursts 

of two to seven spikes of decreasing amplitude that fire with short interspike intervals 

(Ranck, 1973). Once pyramidal cells were identified, individual cells were isolated to assess 

recording stability. The following criteria was used to assess recording stability: (1) the cells 

must have the same cluster boundaries in sessions spaced at least 12 hr apart and (2) the 

waveforms obtained on all four wires of the tetrode must be qualitatively identical in all 

recorded sessions. Experiments were begun when these conditions were met.

Single Cell Analysis

All data were imported into and analyzed in MATLAB (Release 2010a, The MathWorks, 

Inc., Natick, MA). Units were cluster cut using MClust software (David Redish, University 

of Minnesota). Cells were only accepted for further analysis if they formed isolated 

Gaussian clusters and exhibited minimal overlap with surrounding cells and noise. Only 

cells with mean firing rates exceeding 0.12 Hz (50 spikes in 10 min) during a trial were 

included in the analyses. In the dorsal region, principal cells and interneurons have been 

well characterized based on previously established criteria for firing rates and shape of spike 

autocorrelograms (Csicsvari et al., 1998). Using these criteria, we identified four 

interneurons in the DH that were not included in the analysis (mean overall firing rate: 3.7 

Hz). Since bursting activity decreases along the dorsoventral axis in CA3 (Royer et al., 

2010) and CA1 (bursting computed as the percent of spikes occurring with an interspike 

interval less than or equal to 10msec; SEA: DH: 6.3 ± 0.8%, VH: 3.2 ± 0.5%, t(152) = 2.94, 

P < 0.01, data not shown), the shape of the aurocorrelogram is not a useful measure to 

discriminate pyramidal cells from interneurons. Therefore, we used the criteria developed by 

Royer et al., 2010, which included cells with mean firing rates of 10 Hz, displaying fields 

with 5 Hz per pixel that covered 80% of the arena. We minimized the encounter of 

interneurons by lowering the electrodes straight down to directly reach the stratum 

pyramidale. Three cells fitting the interneuron description were observed in the recorded 

ventral populations and were not included in the overall analysis.

Place field maps were generated by first dividing the arena into a 70 × 70 pixel grid and 

computing an activity map, e.g., the total number of spikes in each pixel, and a sampling 

map, e.g., the total amount of time spent in each pixel. Both maps were then smoothed with 

a 3 cm standard deviation Gaussian kernel (Royer et al., 2010). The activity map was then 

divided by the sampling map, which yielded the place field map. Any location sampled for 

less than 1 s was considered unsampled. Only periods of movement with velocity exceeding 

3 cm/s were included in the analyses.
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Place fields were defined as any set of contiguous pixels totaling at least 80 cm2 in which 

the average firing rate was at least 20% of the peak firing rate (Rowland et al., 2011). In the 

event that a cell yielded multiple place fields, the sum of all fields was taken as the place 

field size. Firing rate patterns were further characterized by computing the mean overall, 

mean in field (average within all fields), mean out of field (average outside of all fields), and 

peak (maximum) firing rates. All recordings were conducted under unrewarded conditions 

and the reported firing rates in the dorsal region are similar to those described in mice under 

similar conditions (Kentros et al., 2004). The information content, a parameter that estimates 

how well the firing pattern of a given cell predicts the location of the animal, was computed 

as previously described (Skaggs et al., 1993) using the following formula IC = Σpi(Ri/

R)log(Ri/R), where pi is the probability of occupying location i, Ri is the firing rate at 

location i, and R is the overall mean firing rate.

In addition to these parameters, place field stability and remapping was assessed by 

performing pixel-by-pixel Pearson R cross-correlations between maps (using a 70 × 70 pixel 

grid for the large environment for comparisons with standard environments). Low Pearson R 

correlation scores indicated remapping and higher correlations scores indicated similarity 

between the fields. Field angular rotations were computed as the angle of rotation that 

maximized the pixel-by-pixel Pearson R cross-correlation between the first SEA trial and the 

SEA rotation trial place field maps, computed in 5° increments. Because it has been shown 

that approximately one-third of place fields spontaneously remap during multiple exposures 

to the same environment in mice (Kentros et al., 2004), we restricted our rotation analysis to 

only cells that remained stable (r > 0.3) across both standard environment A (SEA) 

exposures (Aikath et al., 2014).

Population Principal Component Analysis

To ensure an adequate estimation of the population covariance, the population activity 

vector for each trial was created by binning the population activity in 1 s intervals. The 

activity of each cell was then z-scored, and Principle Component Analysis was performed 

on this normalized population vector. To calculate spatial variance of principal components, 

a component place field map was computed for each dimension using the same procedure as 

described above (See Single Cell Analysis). The standard deviation of this vectorized 

component place field map was then computed as the index of spatial variance.

To determine if the spatial variance of a component was significantly above chance, a 

random distribution was generated for each component. To this end, the location of each 

animal during each session was randomly shuffled, preserving the sampling statistics of the 

animal, and a new shuffled component place field map was generated. The random spatial 

variance was computed from this map. This procedure was repeated 100 times yielding the 

appropriate random distribution. A component was considered a spatial component if its 

spatial variance exceeded the 95th percentile value of its random distribution.

Location Reconstruction

To reconstruct the location of the animal on the basis of neural activity, a standard two-step 

Bayesian algorithm with a continuity constraint was used (Zhang et al., 1998). First, place 
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field maps were generated as described above (See Single Cell Analysis), using the first 

75% of the session. Trajectories during periods of movement in the last 25% of the session 

were then reconstructed, using the following equation:

where P is the sampling probability map, Mi is the place field map of cell i, τ is the time 

interval, n is the population activity vector at time t, G is a two-dimensional Gaussian 

continuity constraint centered on the location reconstructed at time t – 1 with a standard 

deviation equal to the velocity in pixels/s at time t, and all multiplication is element-wise. A 

time interval of 1 s was used, as this has been found to yield near optimal reconstructions 

from the DH (Zhang et al., 1998). The inclusion of a continuity constraint improved 

performance of both DH and VH populations, as has been previously reported (Zhang et al., 

1998; Agarwal et al., 2014), but did not qualitatively change the results. Only sessions with 

at least 30 s of movement in the last 25% of the session, and at least three cells meeting 

criteria were included in this analysis.

Chance performance for each reconstruction was calculated by first randomly shuffling the 

population activity vector relative to the position vector during the first 75% of the session 

to create shuffled place field maps. Activity during the latter 25% of the session was 

unaltered. Chance performance was then the average of 25 randomly shuffled 

reconstructions. This control accounts for both differences in sampling, as well as the 

possibility of prediction due to spurious correlation.

Modeling

An AB/AC paradigm, in which two lists of paired associates sharing common elements (the 

A items) were sequentially learned, was used to model DH and VH learning. Each list 

consisted of eight paired associates, and was learned at a unique location to be remembered 

in conjunction with the list of associates. The AB list was learned first, followed by the AC 

list. The models of DH and VH mnemonic performance were identical, except for the tuning 

of their spatial representations. Each population was modeled as a fully connected 

autoassociator in which an encoding layer of 75 units attempted to encode and reproduce the 

activity of 11 spatial units and 24 nonspatial units. The reported results were robust across 

more sparsely connected network configurations. All transfer functions were log-sigmoid.

Each associate pair consisted of two active nonspatial units (set to 1), e.g. item A1 and item 

B1 with all other nonspatial inputs inactive (set to 0). Spatial representation consisted of 

either a single active unit (DH) or a normally distributed pattern of activity with a standard 

deviation of 2 units. All items on a list had the same spatial location. To insure equal 

contributions of the spatial representation to the error across both populations, the spatial 

representation was normalized to sum to one at all times.

The network was tested on each list by providing the spatial representation for that list, as 

well as the A item, and measuring the activity of the correct associate (either the B or C 
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item). If the activity of the correct associate unit exceeded 0.5, the item was considered 

correctly recalled (McCloskey and Cohen, 1989). Generalization was tested by providing the 

network with the spatial representation of a location nearby the original AB list location 

(centered 1 unit away from the AB location), as well as the A item, and testing for correct 

recall of item B.

The network was first exclusively trained on the AB list for 10,000 epochs, which was 

sufficient to yield a 95% level of performance in both populations. At this point, 

generalization was tested using the spatial representation of a nearby location. Then, the 

network was trained on the AC list for 50 epochs, with performance on both lists tested 

every five epochs. Interference was measured as the difference between AB list performance 

before AC list learning and AB list performance after the 50 epochs of AC list learning. The 

network was trained to minimize the cross-entropy error function via gradient descent with a 

learning rate of 0.5. No bias weights were used to encourage the network to encode all 

aspects of the list within network weights. Similar results are obtained if small negative bias 

weights are permitted. All model simulations were conducted in LENS (http://

tedlab.mit.edu/∼dr/Lens/).

Histology

Electrode placement was verified after the completion of the experiments by passing a 

current (0.1 mA for 5 s) through the tetrodes that yielded unit data (52500 Lesion Making 

Device, Ugo Basile, Comerio VA, Italy). Then, animals were perfused with 10% formalin 

solution (Fisher Scientific, Hampton, NH). The brains were removed and fixed at 4°C for at 

least 24 hrs in 10% formalin containing 3% potassium ferrocyanide (J.T Baker, Deventer, 

Netherlands) for Prussian blue staining. The brains were then transferred to a 30% sucrose 

solution and kept for at least 24 hrs at 4°C for cryoprotection. The tissue was cryosectioned 

(30μm thick, coronal) and Nissl stained using standard histological procedures (Powers and 

Clark, 1955). Fig. 1A,B shows examples of Nissl stained micrographs and schematics of the 

location of the electrodes in all the animals included in the study.

Statistical Analyses

For all single cell analyses, two-way ANOVAS with repeated measures were used to 

determine the significance of all parameters. Student Newman Keuls (SNK) post hoc tests 

were used to determine which groups displayed significant differences. In all single cell 

figures, markers denote significant SNK post hoc contrasts. Watson-Williams circular 

statistics were used to compare angular rotations between dorsal and ventral populations. 

ANCOVAS, t-test, and Pearson r correlations were used for population analyses. ANOVAs 

were run to verify the significance of modeling results. In all figures and tables, error bars 

represent +1 standard error of the mean. F values, degrees of freedom, and probability levels 

of all statistical tests reported in the main text can be found in the main text or the 

accompanying table where indicated.
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Results

Visuospatial Single Cell Responses

Across all visuospatial trials, ventral cells fired much more diffusely than dorsal cells, 

similar to what has been previously shown (Kjelstrup et al., 2008; Royer et al., 2010; Figs. 

1C,D). In agreement with a previous report from area CA3 (Kjelstrup et al., 2008), we found 

that ventral cells exhibited higher firing rates than dorsal cells including mean and in-field 

rates (P < 0.03, Figs. 1E,F, Table 1; A and B). There were no differences in peak and out of 

field firing rates except in the mildly anxiogenic LE where ventral cells displayed higher 

rates than dorsal cells (P < 0.001, Figs. 1G,H, Table 1; C and D). Furthermore, ventral cells 

exhibited lower spatial information content, a parameter that estimates how well the firing 

pattern of that cell predicts the location of the animal, than dorsal cells. However, this effect 

was not observed in the LE, where cells in both groups exhibited high information content 

(P < 0.008, Fig. 1K, Table 1; G). There were no differences in the number of fields between 

the groups (P > 0.05; Fig. 1I, Table 1; E).

To examine whether ventral cells would be influenced by changes in external cues, we 

tested the cellular responses to several manipulations of the spatial layout. DH place cells in 

rats and mice have been shown to follow rotations of contextual cues (Muller and Kubie, 

1987; Cho et al., 1998; Kentros et al., 1998). This has also been observed in a subset of 

medioventral cells in rats (Poucet et al., 1994). To determine if this was also the case for 

cells in the most ventral regions in mice, we rotated the SEA cylinder with its visuospatial 

cues 90° clockwise. Place field rotations following the cues were observed in both the DH 

and VH. However, while DH cells appeared tightly coupled to the rotated visual cues, 

ventral cells tended to rotate only partially, displaying significantly smaller angular rotations 

than DH cells (P < 0.05, Fig. 2, see Materials and Method).

Next, we examined the effects of changing proximal cues on dorsal and ventral cells by 

calculating the degree of remapping between SEA and SEB. We performed pixel by pixel 

cross-correlations between SEA and SEB and compared those correlations with those 

obtained between the two sessions in the SEA. The results indicated that cells in both the 

DH and VH displayed significantly more remapping in SEB than in the original 

environment SE (P < 0.001, Fig. 1L, Table 1; H). Finally, we examined the effects of 

contextual expansion by placing animals in the LE. Previously, it has been observed that 

36% of dorsal cells in rats fire in a similar relative location with a slight expansion of place 

fields in response to contextual scaling (Muller and Kubie, 1987), but this effect has not 

been tested in the mouse or the VH. Place field size exhibited by VH cells increased 

significantly in the LE compared to the SE (P < 0.001), while those of dorsal cells on 

average did not significantly expand (Fig. 1J, Table 1; F). The expansion observed in ventral 

cells could be a reflection of the normally large and diffuse characteristic of ventral place 

cells, a property that may be constrained in the SE. Interestingly, both in the DH and VH, we 

typically observed remapping in the LE rather than expansion of the place fields, suggesting 

that the LE was perceived as a novel context rather than an expanded version of the same 

environment. In summary, single cells in the VH display some sensitivity to alterations in 
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the visuospatial context; however, these responses in general lack the precision observed in 

dorsal cells.

Olfactory Single Cell Responses

We first determine odor preference by examining approach/avoidance behaviors. We found 

that mice significantly avoided both 10% acetic acid and 20% 2-MB (two-tailed t-test: t(1,23) 

= 2.80, P = 0.010; t(1,27) = 3.48, P = 0.002, respectively), but not cocoa or vanilla (t(1,23) = 

0.78, P = 0.539; t(1,29) = 0.88, P = 0.386, respectively; data not shown). Since no significant 

differences were observed between either the two neutral or the two aversive odors, the data 

for each valence condition were pooled.

In the olfactory trials ventral cells displayed more diffuse fields than dorsal cells (Figs. 

3A,B). Additionally, aversive odors elicited strong responses in the VH. This was 

manifested by significant increases in firing rate in ventral cells in comparison to relatively 

stable firing rates in dorsal cells. These effects were observed in overall, in-field, out-of-

field, and peak firing rates (P < 0.02, Figs. 3C–F, Table 1; A–D). The ventral increase in 

firing rate in the aversive odor condition was not related to field expansions because the 

ventral field size decreased in the presence of the aversive odor (Fig. 3H, Table 1; F), 

although the number of fields increased (Fig. 3G, Table 1; E).

We tested the stability of the place fields by comparing the first and second olfactory 

sessions. While dorsal cells exhibited high short-term stability, ventral cells displayed 

substantial remapping between same odor trials (P < 0.001, Table 1; H, data not shown). 

Additionally, to determine how the cells responded between odor conditions, we tested the 

stability between no odor and odor conditions (P < 0.004, Fig. 3J, Table 1; I). Dorsal cells 

remained stable across all conditions, while ventral cells displayed significant remapping. 

These results indicate that as long as the odors are presented in the same spatial location, 

dorsal spatial representations are unaffected by odor type or valence. Conversely, ventral 

cells are more sensitive to odors and display remapping. These results corroborate previous 

lesion studies showing that the VH plays an important role in odor discrimination (Kesner, 

2013; Weeden et al., 2014). In summary, ventral cells appear to be more sensitive than 

dorsal cells to valence and olfactory cues as indicated by increases in firing rate and 

remapping, respectively. Altogether, the single cell analysis revealed that ventral cells do 

respond to spatial alterations, although the precision of these changes may be lower than that 

observed in dorsal cells.

Analysis of Population Activity

An important question that arises from the previous analysis is, given that ventral cells do 

respond to the spatial characteristics of the environment, does their broader tuning in fact 

reflect a decrease in the precision of spatial representation? Several other brain regions 

exhibit broadly tuned representations similar to those observed in the VH (Stopfer et al., 

1997; Jones et al., 2006; Osborne et al., 2008; van Duuren et al., 2008). In these cases, most 

notably in the olfactory system, it has been informative to estimate the representation of a 

particular stimulus as a function of temporally coordinated activity across a population of 

neurons rather than as the sum of individual representational units (MacLeod and Laurent, 
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1996; Stopfer et al., 1997, 2003; Laurent et al., 2001). One technique that has proven useful 

for the analysis of distributed representations is PCA (Hiroi et al., 2013). PCA is a statistical 

tool for restructuring highly correlated, high dimensional data into a low dimensional 

representation that makes common correlations more apparent. Principal components are 

rank-ordered by the amount of variance they capture, so simply examining the leading 

principal components can reduce the dimensionality of the data while preserving much of 

the structure. In the context of neural population activity, PCA extracts weighted 

combinations of firing activity hidden within the distributed population activity and re-

represents these combinations in a more accessible, low dimensional space.

In the case of individual dorsal place cells, space is represented by the larger-than-chance 

variance in activity across different spatial locations, from the maximum firing rate at the 

peak of the place field to the silence at locations outside the place field. Similarly, if the VH 

were to represent spatial location with a population code, then the network activity along 

certain principle components should vary with location more than would be expected by 

chance. Furthermore, if this spatial information is more distributed in VH populations, then 

ventral spatial components should weight the activity of multiple cells more highly than DH 

spatial components.

We tested these predictions by analyzing the spatial variance of the PCA transform of 

population activity in the DH and VH. Because unequal sampling of the environment and 

limited time of exploration could yield spatial variance in activity unrelated to spatial 

coding, a random distribution of spatial variances was created for each component and trial 

by repeatedly shuffling the position of the animal relative to population activity, and 

measuring the resulting spatial variances (see Materials and Methods). If the spatial variance 

of the population activity along any component was larger than the 95th percentile of the 

shuffled control distribution, that component was considered to be a spatial component.

In both the DH and the VH, the percentage of spatial components in each population 

exceeded the 5% which would be expected by chance, indicating that location is a critical 

determinant of population activity in both regions (DH: t(38) = 20.2, P < 0.001; VH: t(48) = 

6.4, P < 0.001). A region × population size ANCOVA, with the number of spatial 

components as the dependent variable, revealed significant effects of region, population 

size, and an interaction (F(1,84) = 56.3, P < 0.001, F(1,84) = 118.0, P < 0.001, F(1,84) = 13.2, 

P < 0.001, respectively). This reflects that, while the number of spatial components 

increases with population size in both regions, the increase occurs more rapidly in the DH 

than the VH. Follow-up correlations confirmed significant large positive relationships 

between the number of spatial components and population size in both regions (P < 0.001; 

Fig. 4A). The difference between regions in rate of increase of spatial dimensions with 

population size may be the result of additional representational content in the VH that is 

uncorrelated with space. Alternatively, a distributed population code may diminish our 

capacity to distinguish informative spatial variance from noise in VH populations with 

limited sample sizes. Despite these differences, both regions do show evidence of 

representational content of space. Finally, the average absolute cell weighting of the spatial 

principal components in the VH exceeded that of the DH (t(64) = 3.8, P < 0.001; Fig. 4B), 

indicating a more distributed representation of spatial variance in the VH than in the DH.
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Since the leading components extracted by PCA capture a larger proportion of the 

population variance, only a subset of the leading spatial components is necessary to assess 

the spatial population activity. To visualize the population variance representing space in the 

DH and VH, the three leading spatial components were selected, and a composite place field 

map was created for each trial (Fig. 4C). These composite PCA place field maps depict the 

average normalized and color-coded population activity along the three selected components 

at each location. If position in space were represented in the activity of the neural 

population, then distinct colors, corresponding to unique population activity, should be 

observed at different spatial locations. This was observed in the visuospatial and olfactory 

conditions in both DH and VH populations (Figs. 4D,E). However, there is a noticeable 

qualitative difference between the DH and VH in location representation. In the DH, where 

spatial location is coded by finely tuned activity, the composite PCA place field maps 

resemble discrete, largely orthogonal representations, with each principal component 

representing a single precise location (typically the place field of a single cell). Conversely, 

in the VH composite PCA place field maps reveal a distributed representation of location. In 

these maps, location is represented with high precision but the activity of the entire 

population must be considered to disambiguate locations: the activity of a single cell, or 

even a single principal component, is insufficient.

Location Reconstruction

While the PCA-aided analyses reveal much about the representational differences between 

the DH and the VH, the most direct way to evaluate total spatial information content at the 

population level is to reconstruct the spatial location of the animal on the basis of neuronal 

activity. Though several approaches to location reconstruction have been proposed, the 

Bayesian approach, developed for the sparse DH cells, has become the standard method 

because it is typically the most precise (Zhang et al., 1998). Using a two-step Bayesian 

algorithm with a continuity constraint, we reconstructed trajectories during periods of 

movement in both the DH and the VH. Reconstruction performance was compared to 

shuffled controls to ensure that neither sampling differences nor spurious correlations could 

account for accurate performance. Shuffled controls were generated by randomly shuffling 

the activity vector for each cell relative to the position vector of the animal during the 

learning portion of the algorithm, and reconstructing the location of the animal on the basis 

of this shuffled activity (see Materials and Methods for additional details).

Performance on both olfactory and visuospatial trials was comparable, so all data were 

collapsed for further analysis. Reconstruction accuracy was computed by calculating the 

difference between the mean reconstruction error (the distance between the actual and the 

reconstructed locations) of the neural data and the shuffled control, with positive values 

indicating more accurate reconstructions. Accuracy in both the DH and the VH was 

significantly higher than the shuffled control (DH: t(37) = 7.8, P < 0.001; VH: t(19) = 2.6, P < 

0.02). A region × population size ANCOVA for accuracy revealed only a main effect of 

population size (F(1,70) = 9.9, P < 0.003), indicating that larger populations yield more 

accurate reconstructions (Fig. 5A). Neither the main effect of region nor the interaction 

between population size and region was significant (F(1,70) = 2.1, P > 0.1, F(1,70) = 0.3, P > 

0.1, respectively). These results indicate the presence of precise spatial information in both 
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the DH and VH, with VH activity often attaining remarkable accuracy despite the broad 

tuning of individual cells. This is further illustrated in example trajectories showing the 

performance of the decoding algorithm in comparison to the actual path of the animal (Fig. 

5B).

As an independent measure of spatial information, reconstruction accuracy can be used to 

validate the procedure used to select PCA spatial components. A region × number spatial 

components ANCOVA, with reconstruction accuracy as the dependent measure, revealed 

only a significant main effect of the number of spatial components (F(1,64) = 17.7, P < 

0.001; Fig. 5C). Neither an effect of region nor an interaction with region was significant 

(F(1,64) = 0.4, P > 0.1, F(1,64) = 0.6, P > 0.1, respectively). This result suggests that the 

spatial components identified by our PCA analysis do indeed capture spatial information.

Modeling the Effect of a Spatial Gradient on Memory

The results of the preceding analyses suggest that there is redundancy in spatial 

representation along the longitudinal axis raising the question of what function this may 

serve. It has recently been suggested that differential spatial coding strategies along the 

longitudinal hippocampal axis may contribute to a gradient that shifts processing from 

pattern separation in DH populations to pattern completion in VH populations (Poppenk et 

al., 2013). We extend this hypothesis by suggesting that a redundant spatial gradient could 

provide a mnemonic advantage. Specifically, sparse dorsal representations should be 

resilient to interference, while distributed ventral representations should excel at 

generalizing across locations.

Dorsal cells represent space with sparse, finely tuned activity. Thus, population 

representations in the DH even at similar locations can be very different from one another. 

As a consequence of this representational dissimilarity, spatial and non-spatial 

commonalities in the environment may be represented by very different patterns of activity, 

minimizing interference but limiting the capacity of the DH to generalize to locations 

extending beyond the place field size. In the VH, on the other hand, this situation is 

reversed. Because space is represented in this region by the conjoint activity of many 

broadly tuned cells, representations of even dissimilar locations may be similar. These 

distributed representations may allow the VH to extract appropriate commonalities between 

different situations, and thus better generalize to new or similar events, at the cost of 

interference.

Thus to assess the impact that a spatial representational gradient may have on episodic 

memory more generally, we modeled the ability of the DH and VH to store and retrieve 

nonspatial associations learned at different spatial locations (Fig. 6A). Because we were 

particularly interested in interference and generalization in these populations, we used a 

traditional AB/AC paradigm, in which two lists of paired associates, sharing common 

elements (the A items) and thereby subject to cross-list interference, are learned sequentially 

(Briggs, 1954; McCloskey and Cohen, 1989). Consistent with previous work, each 

population was modeled as an autoassociator (O'Reilly and McClelland, 1994; Rolls, 1996), 

taking both spatial and nonspatial inputs. Each population had to remember the lists of 

nonspatial paired associates in conjunction with the location where each list was learned. 
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Modeled DH and VH populations only differed in the sparseness of the spatial 

representation (Fig. 6B).

Learning and forgetting curves, as well as aggregated interference and generalization 

performance of each of the populations are shown in Figures 6C,D. As expected, the 

magnitude of both interference and successful generalization increased from the dorsal to 

the ventral populations (F(2,147) = 65.8, P < 0.001; F(2,147) = 305.5, P < 0.001, respectively; 

Fig. 6D). It is also worth noting that in dorsal populations, interference was well below 

catastrophic levels (where prior information is completely forgotten before new information 

is learned), with learning and forgetting curves comparable to those previously reported 

(Briggs, 1954; McCloskey and Cohen, 1989). Finally, since the representation of nonspatial 

information was identical in both the dorsal and ventral populations, these results highlight 

the impact that a gradient in spatial representation alone may have on memory. In sum, these 

results demonstrate that a redundant spatial gradient along the longitudinal axis can offset 

the competition between interference and generalization inherent in network memory, 

biasing ventral populations toward learning generalizations across locations.

Discussion

Differences in connectivity along the dorso-ventral axis have suggested that the dorsal and 

ventral regions may function separately and process different types of information, with the 

DH specializing in spatial processing and the VH in emotional information (Bannerman et 

al., 2004; Kesner, 2013). This functional dichotomy has recently been challenged by studies 

suggesting that the DH represents space (e.g. location on a map), while the VH codes for 

context (e.g. which map to use; Komorowski et al., 2013; Nadel et al., 2013). However, 

under both perspectives, the general consensus in the field is that spatial information in the 

VH lacks precision (Royer et al., 2010; Komorowski et al., 2013). In this study we 

demonstrate that despite spatial information projecting primarily to the DH, the VH also 

precisely represents space. Our single-cell analyses indicate that individual ventral cells are 

sensitive to changes in the spatial characteristics of an environment. Additionally, despite 

the broadly tuned nature of individual cells, we demonstrate that it is possible to extract 

high-resolution spatial information from population activity in the VH. Thus, our data 

suggest that the gradient in spatial scaling along the longitudinal hippocampal axis signals a 

shift from sparse to distributed coding rather than a loss of high-resolution spatial 

information. To partially account for this redundancy, we propose a neural network model 

indicating that redundant spatial coding may provide a mechanism by which the 

hippocampus can simultaneously protect the specifics of memories from interference in the 

DH while learning and supporting generalization in the VH. These data suggest that accurate 

representation of space on multiple scales may provide a mnemonic advantage.

Spatial Versus Emotional Processing

In agreement with previous reports (Royer et al., 2010), we also found that cells in the VH 

are more sensitive to emotional valence than those in the DH. This is evident in the aversive 

odor conditions and the mildly anxiogenic LE, where ventral cells displayed increases in 

firing rate but dorsal cells did not. It is possible that in addition to providing a population 
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code of space, ventral cells also respond to emotional valence through changes in firing rate. 

In the DH, analysis of individual trajectories through a firing field have revealed significant 

variability in firing rate (Fenton and Muller, 1998; Fenton et al., 2010). This has been taken 

to suggest that while the location in which a particular cell fires serves to represent space, 

firing rate variability above the threshold needed to form a spatial representation may 

convey non-spatial information (for review, see O'Keefe and Burgess, 2005). Indeed, 

increases in firing rate in the DH have been shown to code for several task contingencies, 

behavioral variables, and objects (O'Keefe, 1976; Wiener et al., 1989; Markus et al., 1994; 

Deadwyler et al., 1996; Sakurai, 1996; Wood et al., 1999; Kennedy and Shapiro, 2009; 

Muzzio et al., 2009). Thus, similar alterations in firing rate in the VH may code for 

emotional valence. Interestingly, even though the mildly anxiogenic cues used in this study 

did not produce changes in firing rate in the DH, previous studies have shown that very 

strong emotional cues do lead to increases in firing rate in the DH (Moita et al., 2003; Wang 

et al., 2012). Therefore, it is possible that responsiveness to emotional cues is not exclusive 

to the VH, and that there exists an emotional processing gradient along the hippocampal 

axis. In the future, it would be important to determine whether emotional information can 

also be extracted from population activity in both hippocampal regions.

While the previous data indicate that the VH is indeed responsive to emotional cues, the idea 

of an exclusive spatial-emotional functional dichotomy along the longitudinal axis is at odds 

with recent work demonstrating contextual representations in the VH (Komorowski et al., 

2013; Nadel et al., 2013). Additionally, this segregation creates a conundrum for circuits 

underlying forms of learning that require precise spatial information, such as spatial working 

memory, contextual fear conditioning, and extinction. The VH is the only hippocampal area 

that directly projects to the medial prefrontal cortex and sends robust projections to the 

amygdala (Pitkäanen et al., 2000; Hoover and Vertes, 2007), two brain regions that are 

critical for several forms of contextual learning (for review see Marek et al., 2013; Maroun, 

2013). As a consequence, the VH region must directly or indirectly convey spatial 

information. Since there are substantial connections between the DH and VH (Amaral and 

Witter, 1989), it is likely that the VH controls the transfer of information between the DH 

and the prefrontal cortex. In support of this idea, a recent study found that inhibition of the 

VH reduces the synchronization between the prefrontal cortex and the DH, important for 

spatial working memory tasks (O'Neill et al., 2013). Our results indicate that the VH is not 

just passively transferring spatial information but rather further processing this information 

at the population level, which places the VH in a key position to modulate contextual 

learning.

Contextual Versus Precise Spatial Processing

The idea that the VH is important for encoding contextual information has been previously 

suggested by fMRI and electrophysiological studies (Komorowski et al., 2013; Nadel et al., 

2013; Poppenk et al., 2013). These studies indicated that while the DH is critical for spatial 

relationships, the VH is necessary for the identification of places (Nadel et al., 2013). Our 

single-cell data support this idea by showing that cells in the VH remap in response to 

changes in the spatial layout, display expansions when environments are enlarged, and are 

sensitive to cue rotations. Interestingly, although ventral cells appear to be locked to external 
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landmarks, the angular rotation of the fields fell midway between the original and rotated 

position of the cues. This finding suggests that while the contextual change is coded, other 

aspects of the context may be integrated within the ventral representation at the single cell 

level. One possibility is that since all cue rotations are performed in the same room, ventral 

cells may be integrating between the proximal reference frame (e.g., rotated cue) and a distal 

reference frame (e.g., room light). It has been shown that different dorsal cells within a 

population simultaneously lock to distinct reference frames when cues are in conflict 

(Knierim et al., 1998; Zinyuk et al., 2000; Gothard et al., 2001; Jackson and Redish, 2007; 

Kelemen and Fenton, 2010); however, this has not been tested in VH cells. Our data suggest 

that rather than locking to a single reference frame or fluctuating between different reference 

frames over time, ventral cells may instead integrate several types of information when 

particular landmarks are altered. As we further demonstrate that ventral populations can 

provide very accurate spatial information, the VH may be in a unique position to form 

complex representations that incorporate precise trajectories with contextual as well as non-

spatial information.

The Role of the VH in Generalization Across Space

The results of the modeling conducted in this study suggest that the hippocampus may 

employ a representational gradient in part to bypass the tradeoff between interference and 

generalization inherent in network memory. Specifically, rather than encoding memories in 

a single population, the hippocampus may redundantly encode the same memory in a 

number of populations, each varying in its sparsity and, by extension, its bias toward 

interference and generalization. Our model suggests that in the DH, generalization is 

restricted to immediately neighboring locations, reducing the amount of interference 

between memories formed at different locations, while in the VH generalization is supported 

across a much wider range of spatial locations, at the cost of interference between these 

memories. This would allow the hippocampus to robustly generalize while protecting the 

specifics of memories from catastrophic interference (McCloskey and Cohen, 1989). As we 

have shown in our interference results, a spatial representational gradient would not only 

directly impact spatial associations, but could influence memory for nonspatial information 

as well. Therefore, we suggest that the function of this spatial gradient may not reflect a 

change in the representation of spatial information per se, but may instead reflect a balance 

of competing demands on an episodic memory system.

Our population coding analyses demonstrate that place field overlap is crucial for broadly 

tuned ventral representations to precisely code spatial location. If ventral place fields were 

large but not overlapping or unreliable, the ability of the VH to learn to generalize across 

place field boundaries would be greatly compromised. By providing evidence that spatial 

precision is preserved in ventral populations, we show that ventral populations are well 

positioned to learn generalizations across locations.

We observe that ventral cells, like dorsal cells, remap between contexts, raising the question 

of whether ventral cells retain the ability to generalize between locations across different 

contexts. As we have noted, the ability to generalize is a product of representational 

similarity between locations. In the DH, finely tuned place fields, in conjunction with 
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random remapping across contexts, reduces the likelihood that locations across contexts 

where generalization is appropriate also share representational similarity. However, because 

ventral cells are broadly tuned and frequently span the entirety of the environment, changes 

in the spatial code do not result in completely orthogonal representations of locations across 

environments. Thus, despite remapping, the overlap of ventral fields could potentially 

support generalization across contextual boundaries.

Recent work demonstrated that ventral representations gradually change with experience as 

rewarded odor associations are learned (Komorowski et al., 2013). Specifically, as rats 

learned the reward contingencies of two connected contexts containing the same two odor 

cues but differentially rewarded, ventral cells originally active across both contexts 

gradually became context selective. This suggests that ventral representations are shaped 

with experience to avoid behaviorally detrimental generalizations across events as the 

reward contingency is learned. Our work compliments and further extends these results by 

demonstrating that in novel, non-rewarded environments, coding precise spatial location is 

an organizing principle of distributed ventral representations, which may allow ventral cells 

to support behavioral generalization across locations, contextual boundaries, and events.

Other Potential Roles of the VH

It is worth noting that the scaling of spatial representations along the longitudinal 

hippocampal axis may also serve non-mnemonic functions. For example, precise distributed 

ventral representation may be useful for estimating distances on larger scales. Because 

representations of nearby locations are correlated (Maurer et al., 2005; Kjelstrup et al., 

2008), representational overlap can be used as a distance metric, but only when 

representations of the two locations overlap. Thus, maximum estimable distance would be 

bound by the distribution of the representation across the population. In the DH where 

spatial representations are sparse, nearby locations may be represented by a completely new 

set of place cells, thereby rendering population activity alone insufficient to determine the 

distance separating these locations. The broader representations of the VH could support the 

estimation of distances over a much larger scale. Distance estimation can be critical for 

planning and goal-directed navigation, and evidence of this function and its segregation 

along the longitudinal hippocampal axis has been reported in humans (Morgan et al., 2011). 

Given that the hippocampus integrates many aspects of episodic memory, including spatial 

and nonspatial events such as emotional and motivational information (Wood et al., 1999; 

Moita et al., 2003, 2004; Kennedy and Shapiro, 2009; Wang et al., 2012), it is likely that the 

purpose of the redundant spatial gradient along the longitudinal hippocampal axis is 

multifaceted. This work highlights the existence and importance of precise spatial coding as 

a critical determinant of activity along the longitudinal axis.
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Figure 1. 
Histology and single cell visuospatial responses. A, B) Representative photomicrographs of 

rostrocaudal DH and VH coronal sections after Nissl staining (top panels) and coronal 

schematic representations showing the location of the electrodes in all animals. Tetrodes 

were moved in unison and lesions indicate location of the bundle. Dorsal: visuospatial: N = 

6; olfactory: N = 5; three animals were run in both conditions. Ventral: visuospatial: N = 5; 

olfactory: N = 4; two animals were run in both conditions. C, D) Example place cell rate 

maps depicting the activity of dorsal (C) and ventral (D) cells during visuospatial trials. 

Cells in both regions remapped in the SEB and LE, but remained stable during exposures to 

the same environment (SEA). The peak firing rate is shown in the lower right corner of each 

map. Place fields are outlined in grey. E, F) Ventral cells exhibited higher mean (E) and in 

field (F) firing rates than dorsal cells across all visuospatial conditions (Table 1; A and B). 

G, H) Ventral cells did not significantly differ from dorsal cells in peak (G) or out of field 

(H) firing rates, except in the mildly anxiogenic LE (Table 1; C and D). I) The number of 

fields did not differ between regions, but more cells in both regions displayed multiple fields 

in the LE (Table 1; E). J) Consistent with prior work, ventral cells displayed larger fields 

than dorsal cells, an effect that was significant in the LE (Table 1; F). K) Ventral cells 
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displayed lower information content than dorsal cells in the small environments, but there 

were no differences between the groups in the LE (Table 1; G). L) Pixel-by-pixel cross-

correlations of place field maps quantifying stability across conditions. Dorsal and ventral 

cells showed comparable remapping across sessions. In both regions more remapping was 

observed when the visuospatial cues were replaced (SEB) and when the environment was 

expanded (LE) than when the animals were tested in the same original environment (SEA1/

SEA2; Table 1; H). SEA: standard environment A, SEB: standard environment B; LE: large 

environment. MFR: mean firing rate, In FR: in field firing rate, PFR: peak firing rate, out 

FR: out of field firing rate, IC: information content. Error bars indicate +1 standard error. 

*Indicates significant SNK post hoc comparison at α = 0.05. +Indicates a trend toward 

significance (P between 0.05 and 0.09).
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Figure 2. 
Cue rotations. A, B) Example place field maps for dorsal (A) and ventral (B) cells when the 

local visual cues are rotated. C, D) Histograms of best-fit rotation angles for C) dorsal and 

D) ventral cells. The majority of dorsal cells displayed rotations of the fields that were 

tightly coupled to the cue rotations. However, ventral rotations systematically fell between 

the original and the rotated position of the cues (Watson-Williams circular test: F(1,56) = 

5.12, P = 0.03). The peak firing rate is shown in the lower right corner of each map. Place 

fields are outlined in grey.
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Figure 3. 
Single cell olfactory responses. A, B) Example place cell rate maps depicting the activity of 

A) DH and B) VH cells during olfactory trials. The peak firing rate is shown in the lower 

right corner of each map. Place fields are outlined in grey. C–F) Ventral cells exhibited 

higher mean (C), in field (D), peak (E), and out-of-field (F) firing rate than dorsal cells in 

the aversive odor condition (Table 1; A–D). G) Ventral cells displayed more place fields 

than dorsal cells in the aversive odor condition (Table 1; E). H) Place field size of ventral 

cells was larger than that of dorsal cells in the no odor and neutral odor conditions. 

However, there were no differences between the groups in the aversive odor condition 

(Table 1; F). I) Ventral cells displayed lower information content than dorsal cells in the no 

odor and neutral odor conditions. Since information content decreased in dorsal cells during 

the aversive odor condition, there were no differences between the groups during this trial 

(Table 1; G). J) Pixel-by-pixel cross-correlations of place field rate maps. Dorsal place fields 

remained significantly more stable across odor conditions than ventral place fields (Table 1; 

H). None: no odor, Neut: neutral odor, Avers: aversive odor. MFR: mean firing rate, In FR: 

in field firing rate, PFR: peak firing rate, out FR: out of field firing rate, IC: information 

content. Error bars indicate +1 standard error. *Indicates significant SNK post hoc 

comparison at α = 0.05.
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Figure 4. 
Principle component analysis (PCA) of spatial population activity. A) In both the DH and 

the VH, the percent of spatial components significantly exceeded chance (black dotted line). 

The number of spatial components also significantly correlated with population size in both 

regions, although this correlation was higher in the dorsal than ventral region. B) The mean 

absolute weight of ventral spatial components exceeds that of dorsal populations, which 

reflects a more distributed spatial representation. C) Schematic showing construction of 

composite place field maps for the three leading spatial components. Place field maps were 

generated for each spatial component, treating the activity along each component as if it 

were a cell. Spatial component place field maps were then normalized and represented in 

red, green, and blue, respectively. If position were well represented by distinct network 

states, we predicted a patchwork pattern with unique colors (network states) at unique 

locations. D, E) Example composite place field maps. Note that in both D) dorsal and E) 

ventral populations, particular locations are uniquely represented. However, while unique 

locations are sparsely represented in the DH (often driven by the activity of a single cell), in 

the VH unique locations are only apparent when the conjoint activity of many cells, and 

often many components, is considered.
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Figure 5. 
Location reconstructions. Since no differences were observed between visuospatial and 

olfactory conditions, data were collapsed to determine the relationship between accuracy 

and both population size and spatial components. A) Reconstruction accuracy was 

significantly greater than chance (dotted line) and increased with population size in both the 

DH and VH. B) Examples of 10s trajectories reconstructed from dorsal and ventral neural 

populations during different trials. Note that even smaller ventral population sizes can 

represent trajectories with striking accuracy. Population size is indicated in the lower right 

corner of each trajectory map. Actual trajectory is shown in green, reconstructed trajectory 

in red. C) Reconstruction accuracy and the number of spatial components show a significant 

relationship, with no difference between regions.
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Figure 6. 
Modeling of the mnemonic impact of a spatial representational gradient. A, B) Diagrams of 

model details. A) Each hippocampal population was modeled with an identical 

autoassociator. DH and VH simulations only differed in the sparseness of their spatial 

representations, with no differences in their nonspatial input. B) An AB/AC paradigm was 

used to test the influence of sparse and distributed spatial representations on interference and 

generalization of nonspatial associates. AB and AC lists were learned at different locations, 

corresponding to different spatial representations. C) Learning and forgetting curves for both 

lists during the course of AC list learning. AB associations were learned above 95% 

performance level before AC list learning. D) Magnitude of interference and generalization 

effects in both populations. nter: interference, Gen: generalization. Histogram bars represent 

mean plus one standard error of the mean.
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