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Abstract

Context—Gliomas, particularly glioblastomas, are among the deadliest of human tumors. 

Gliomas emerge through the accumulation of recurrent chromosomal alterations, some of which 
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target yet-to-be-discovered cancer genes. A persistent question concerns the biological basis for 

the coselection of these alterations during gliomagenesis.

Objectives—To describe a network model of a cooperative genetic landscape in gliomas and to 

evaluate its clinical relevance.

Design, Setting, and Patients—Multidimensional genomic profiles and clinical profiles of 

501 patients with gliomas (45 tumors in an initial discovery set collected between 2001 and 2004 

and 456 tumors in validation sets made public between 2006 and 2008) from multiple academic 

centers in the United States and The Cancer Genome Atlas Pilot Project (TCGA).

Main Outcome Measures—Identification of genes with coincident genetic alterations, 

correlated gene dosage and gene expression, and multiple functional interactions; association 

between those genes and patient survival.

Results—Gliomas select for a nonrandom genetic landscape—a consistent pattern of 

chromosomal alterations—that involves altered regions (“territories”) on chromosomes 1p, 7, 8q, 

9p, 10, 12q, 13q, 19q, 20, and 22q (false-discovery rate–corrected P<.05). A network model 

shows that these territories harbor genes with putative synergistic, tumor-promoting relationships. 

The coalteration of the most interactive of these genes in glioblastoma is associated with 

unfavorable patient survival. A multigene risk scoring model based on 7 landscape genes (POLD2, 

CYCS, MYC, AKR1C3, YME1L1, ANXA7, and PDCD4) is associated with the duration of overall 

survival in 189 glioblastoma samples from TCGA (global log-rank P=.02 comparing 3 survival 

curves for patients with 0–2, 3–4, and 5–7 dosage-altered genes). Groups of patients with 0 to 2 

(low-risk group) and 5 to 7 (high-risk group) dosage-altered genes experienced 49.24 and 79.56 

deaths per 100 person-years (hazard ratio [HR], 1.63; 95% confidence interval [CI], 1.10–2.40; 

Cox regression model P=.02), respectively. These associations with survival are validated using 

gene expression data in 3 independent glioma studies, comprising 76 (global log-rank P=.003; 

47.89 vs 15.13 deaths per 100 person-years for high risk vs low risk; Cox model HR, 3.04; 95% 

CI, 1.49–6.20; P=.002) and 70 (global log-rank P=.008; 83.43 vs 16.14 deaths per 100 person-

years for high risk vs low risk; HR, 3.86; 95% CI, 1.59–9.35; P=.003) high-grade gliomas and 191 

glioblastomas (global log-rank P=.002; 83.23 vs 34.16 deaths per 100 person-years for high risk 

vs low risk; HR, 2.27; 95% CI, 1.44–3.58; P<.001).

Conclusions—The alteration of multiple networking genes by recurrent chromosomal 

aberrations in gliomas deregulates critical signaling pathways through multiple, cooperative 

mechanisms. These mutations, which are likely due to nonrandom selection of a distinct genetic 

landscape during gliomagenesis, are associated with patient prognosis.

Malignant gliomas, with disproportionately high morbidity and mortality,1 are among the 

most devastating of human tumors. Particular genomic alterations are fundamental to both 

their formation and their malignant progression.2, 3 Although genomic instability (Box) 

lends a dynamic character to the human glioma genome, gliomas harbor recurrent 

chromosomal alterations (Box).2,4,5 Chromosomal alterations presumably exert their tumor-

promoting effect on glioma cells by modifying the expression or function of distinct genes, 

which map to those alterations,6 so as to deregulate growth factor signaling and survival 

pathways. For many chromosomal alterations, the biologically relevant target genes remain 

to be discovered.
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Box

Glossarya

Chromosomal 
alteration

is an irregularity in the number or structure of 

chromosomes, usually in the form of a gain (duplication), 

loss (deletion), exchange (translocation), or alteration in 

sequence (inversion) of genetic material.

Chromosomal 
rearrangement

encompasses several different classes of events: deletions, 

duplications, inversions, insertions, and translocations. 

Each of these events can be caused by breakage of DNA 

double helices in the genome at 2 different locations, 

followed by a rejoining of the broken ends to produce a 

new chromosomal arrangement of genes, different from the 

gene order of the chromosomes before they were broken. 

Insertions and translocations can involve the exchange of 

genetic material between nonhomologous chromosomes.

Cytogenetic 
bands

correspond to an alternating dark and light banding pattern 

of chemically stained chromosomes and provide a tool by 

which abnormalities in chromosomes from diseased cells 

can be identified.

Gene dosage refers to the copy number for a specific gene determined in 

analytic approaches that do not assess single cells but 

describe the average copy number profile of a complex 

tumor in which some cell populations may harbor copy 

number alterations of a distinct gene and some may not.

Genome-wide 
gene dosage 
profile

is a gene-by-gene representation of gene copy numbers 

across the whole genome displayed in genome order along 

the chromosomes.

Genomic 
instability

is a biological process consisting of chromosomal 

rearrangements and duplications. These phenotypes are 

often seen in the karyotype of cancer cells, where there is 

an imbalance between the mechanisms of cell-cycle control 

and mutation rates within aberrant genes.

Interactome is the whole set of molecular interactions in cells, most 

notably protein-protein interactions and protein-DNA 

interactions.

Landscape gene is a gene mapping to a chromosomal region that is part of a 

consistent pattern of chromosomal alterations.

aDefinitions are in part adapted from the National Cancer Institute (NCI) Terminology Browser (http://nciterms.nci.nih.gov/
NCIBrowser/Dictionary.do) using the NCI Thesaurus terminology.

Bredel et al. Page 3

JAMA. Author manuscript; available in PMC 2015 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do
http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do


Nonrandom 
genetic landscape

is a consistent pattern of distinct chromosomal alterations. 

Nonrandomness refers to the significant co-occurrence of 

these alterations and not to their recurrence frequency. A 

random alteration may well recur in gliomas and, thus, 

represent a biological consistency, but there is no 

statistically recognizable pattern of its recurrence with other 

alterations.

Oncogenic research on gliomas has focused on the tumor-promoting or tumor-suppressive 

function of target genes within individual chromosomal alterations.7 However, these 

alterations do not exist in isolation, nor do single genes account for gliomagenesis. Rather, 

there may be mechanistic links to genes at other, coincident alterations. To the extent that a 

set of coincident alterations confers a survival advantage, cells possessing it will be selected 

by somatic evolution.

A major challenge in cancer research is to distinguish genetic changes that directly drive the 

disease process from “passenger” mutations, which are neutral to the process and have been 

accumulated by chance.8 Herein, we take a systems biology approach to this complexity by 

integrating multidimensional genomic data and functional interactions among genes. The 

goal is to reduce the complexity and dimensionality of these data to provide biological 

insights that may translate into improved management of high-grade gliomas. Our central 

hypothesis is that such an approach reveals a nonrandom genetic landscape (Box)—a 

consistent pattern of distinct chromosomal alterations—in gliomas, which facilitates 

gliomagenesis in a cooperative fashion. Using more than 500 glioma samples—including 

multidimensional data from The Cancer Genome Atlas Pilot Project (TCGA), which aims to 

discover major cancer-causing genome alterations—we delineate the relationships of tumor-

promoting genes in gliomas. At the molecular level, these relationships explain the selection 

of such a complex genetic landscape during gliomagenesis, and at the clinical level, they 

impart prognostic insight and suggest therapeutic strategy.

METHODS

Tumor Samples

Forty-five fresh-frozen glioma specimens of varying morphology were collected at Stanford 

University under Stanford Institutional Review Board–approved guidelines. Written 

informed consent was obtained from all patients. Specimens were analyzed by a 

neuropathologist to confirm the histological diagnosis and the presence of vital tumor tissue 

without excessive contamination (<10%) by normal brain and tumor necrosis. Genome-wide 

gene dosage (Box)—the copy number for a specific gene—data were generated as 

previously reported4 using sex-matched reference DNA (Promega, Madison, Wisconsin) and 

a Stanford human complementary DNA (cDNA) micro-array containing 41 421 Integrated 

Molecular Analysis of Genomes and Their Expression (IMAGE) Consortium cDNA clone 

objects9 (hereafter referred to as clones) corresponding to 27 290 different UniGene cluster 

IDs (Stanford Functional Genomics Facility, Stanford, California). Corresponding genome-
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wide expression profiles for these tumors and pooled normal human brain RNA (Stratagene, 

La Jolla, California) were previously reported.10,11 Raw data for gene dosage and expression 

profiling are available at Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) 

with accession numbers GSE1991 and GSE2223, respectively, and at the Stanford 

Microarray Database (SMD) (http://smd.stanford.edu/). Agilent Human Genome CGH 

Microarray 244A gene dosage data, Affymetrix HT Human Genome U133A Array Plate Set 

gene expression data, and clinical data for 219, 188, and 207 glioblastomas, respectively, 

were obtained from the Open-Access and Controlled-Access Data Tiers Portal (http://tcga-

data.nci.nih.gov/tcga/findArchives.htm) of TCGA (http://cancergenome.nih.gov/index.asp) 

on National Human Genome Research Institute approval. At the time of data retrieval from 

TCGA, there was incomplete overlap in the types of data available for each sample. 

Alignment of sample identifiers yielded 189 samples with both gene dosage and clinical 

data, 175 samples with gene expression and clinical data, 175 samples with gene dosage and 

gene expression data, and 172 samples with all 3 data types. Affymetrix HG-U133A gene 

expression data and clinical data from 3 high-grade glioma/glioblastoma studies made public 

at Gene Expression Omnibus between March 8, 2006, and October 10, 2008, were obtained 

from the University of Texas M. D. Anderson Cancer Center (MDA)12 (GSE4271), the 

University of California at Los Angeles (UCLA)13 (GSE4412), and Lee et al14 (GSE13041), 

comprising 76, 70, and 191 samples, respectively.

Genomic Data Processing

Gene dosage data deposited into the SMD were background subtracted and included for 

downstream analysis if the reference channel intensity was at least 2.5 times the observed 

background and Pearson correlation was greater than 0.6 for the sample and reference 

channels. Locally weighted least squares (LOWESS) normalization was performed using 

SNOMAD (http://pevsnerlab.kennedykrieger.org/snomad.htm) and the Institute for 

Genomic Research TM4 Microarray Data Analysis System (TIGR MIDAS) (http://

www.tm4.org/midas.html). The GoldenPath Human Genome Assembly (http://

genome.ucsc.edu) was used to map fluorescence ratios of the arrayed human cDNAs to 

chromosomal positions. Circular binary segmentation (CBS)15 from the R package “DNA-

copy” (http://www.r-project.org/) was used to estimate segmented regions of equal dosage 

along each chromosome using 33 245 clones that passed initial data normalization and 

filtering. To increase the number of estimated segmented regions obtained by CBS and 

thereby the sensitivity of the algorithm, the α level was set to .05 rather than the default of .

01. Segmented gene dosage values were deemed changed compared with normal human 

reference DNA if they fell outside of the ±3-SD range of all segmented log2 values of 

control (glioma and normal brain) self-to-self hybridizations, resulting in classification as 

copy number “gain” for gene dosage values >0.2135 and “loss” for gene dosage values <

−0.2135. Agilent Human Genome CGH Microarray 244A data from TCGA were 

background corrected using subtraction then replacement of negative or zero values with 

half the minimum of the positive corrected values on the array, then were LOWESS 

normalized using the “limma” package for R. Data from TCGA were similarly processed as 

described above using CBS via the “snapCGH package” for R. Gene dosage segments were 

classified as chromosomal gain or loss if the absolute value of the predicted dosage was 

more than 0.75 times the interquartile range of the difference between observed and 
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predicted values for each region. Gene expression data deposited into the SMD were 

background subtracted and included for downstream analysis if the reference channel 

intensity was at least 1.5 times the observed background. LOWESS normalization was 

performed using SNOMAD and TIGR MIDAS. Preprocessed gene expression data obtained 

from TCGA,2 MDA,12 UCLA,13 and Lee et al14 were normalized as previously described.

Gene Dosage Data Analysis

We developed a new permutation-based approach, which calculates the probabilistic fit for 

the coincidence of distinct chromosomal alterations. Gene-by-gene CBS dosage data were 

averaged for each of 802 chromosomal cytogenetic bands (Box) corresponding to standard 

chromosomal high-resolution banding, based on an International System for Human 

Cytogenetic Nomenclature (ISCN) 850 chromosome ideogram.16 For each tumor (t) and 

cytoband (i), measurements x[t,i] were scored +1 for gain, −1 for loss, and 0 otherwise (ie, 

unchanged). Scores were mapped into a data matrix (x) with tumors and cytobands ordered 

as rows and columns, respectively. The association of alterations within each possible 

combination of 2 cytobands (i, j) was assessed based on computing the score S[i,j] as 

follows:

where n[i,j] indicated the number of tumors with both i and j altered, and x[t,i]*x[t,j] scores 

+1 if cytobands [i, j] for tumor t are both amplified or both deleted, –1 if one is amplified 

and the other deleted, and 0 otherwise (ie, both unchanged or only one cytoband altered). 

One thousand permutations were applied within the columns of the data matrix to estimate 

the false-discovery rate (FDR). Associations of pairs of cytobands with an FDR <0.05 were 

considered significant. The same approach was applied to the gene dosage data of individual 

candidate genes.

Gene Dosage and Expression Integration

For the Stanford samples, gene dosage and gene expression data (expression in >80% of 

tumors) were available for 15 608 clones that mapped to 10 351 genes, 7509 of which had 

either losses or gains in at least 2 tumors. For the latter, signal-to-noise (s2n) ratios were 

computed to assess the influence of dosage alteration for each gene on its transcript,17–19 

defined by the difference of the means (m) of expression levels in the groups of gene 

dosage–altered (mc) and –unaltered (mn) samples, divided by the sum of standard deviations 

(s) of expression levels in both groups (sc and sn, respectively). The above data matrix x was 

transformed such that gene dosage change (c) was assigned g for gain, l for loss, and n 

otherwise. The significance of the s2n ratio for each gene was estimated by randomly 

permuting the gene alteration labeling vector 10 000 times. We further determined 

corresponding FDR-adjusted q values using the “qvalue” package for R (default 

parameters),20 allowing for a more straightforward interpretation of statistical significance 

in the context of multiple hypothesis testing. False-discovery rate estimation was performed 

by setting fixed cutoffs and estimating the FDR by permutations as previously described.20 
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These computations were done separately for l vs n and g vs n. For clones with alterations in 

both directions, s2n ratio and corresponding q value for the more recurrent change were 

chosen. Similar s2n calculations and permutation-based P value computations were 

conducted to test and validate associations between gene dosage and gene expression for 

selected candidate genes using TCGA gene dosage and expression data. Due to the 

intentional selection of these genes for hypothesis testing in TCGA data, FDR was 

controlled using the method of Benjamini and Hochberg,21 a limiting case of q value 

correction.

Gene Set Enrichment Analyses and Modeling of Gene Interactions

Gene set enrichment analyses, using hypergeometric testing for the set of genes with 

significant gene dosage–gene expression relationships, were executed using Ingenuity 

Pathways Analysis (IPA) (Ingenuity Systems, Mountain View, California) to identify 

overrepresented biological functions and signaling pathways from the IPA database for this 

gene set with right-tailed P <.05. Ingenuity Pathways Analysis was also used to identify 

direct and indirect physical (protein-protein) and functional interactions between genes with 

significant gene dosage–gene expression relationships. An initial gene set was first overlaid 

onto the set of all cataloged IPA interactions and “focus genes” required in the IPA 

algorithm were identified as the subset having direct interactions with other genes in the 

initial set. The specificity of a gene’s interactions was calculated as the percentage of its 

interactions with other significant genes in the initial set. Genes with the highest specificity 

of connections were used for the initiation and growth of biological networks with a 

maximum of 35 genes. Networks of highly interconnected genes were identified by 

statistical likelihood as follows:

where N is the number of genes in the genomic network, of which G are focus genes, for a 

network of s genes, f of which are focus genes; and C(N,s) is the binomial coefficient. The 

score reflects the negative logarithm of the P value that signifies the likelihood of the focus 

genes in a network being found together as a result of random chance. We merged the top-

scoring networks using a “force-direct layout algorithm” to form a composite network 

representing the underlying biology of the process. Gene set enrichment analyses for the 

composite network were computed as above. For purposes of further investigation, genes 

with connectivity (ie, number of interactions with other genes) above the 95% quantile of 

the overall distribution of gene connectivity in the composite network were deemed network 

“hub” genes. Genes with tumor-related biological functions and interactions with hub genes 

were deemed “hub-interacting” genes. For the interaction of the hub genes with each other 

and with the hub-interacting genes, the mode of functional interaction was integrated with 

the direction of gene dosage change of each gene constituent of a gene pair to determine the 

presence of a cooperatively tumorigenic relationship. The BioGRID protein interaction 

repository22 was used to confirm high connectivity of candidate genes yielded by the IPA 

analyses by providing an experimentally based data source for physical protein interactions. 
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The entire set of interactions observed in humans (release 2.0.51; March 26, 2009) was 

downloaded and the number of interactions (or connectivity) observed for all proteins 

represented in the data set was compared with the number of interactions observed for the 

candidate genes yielded by the IPA analyses using a Wilcoxon rank-sum test.

Survival Analysis and Multigene Predictor

Survival curves were estimated by the Kaplan-Meier product-limit method, and survival 

distributions between groups were compared using the log-rank test. Univariate and 

multivariate Cox proportional hazards regression analyses were performed with overall 

survival as the dependent variable, and the proportional hazards assumption was tested using 

interactions with time. To create a multigene predictor model, we first selected predictor 

genes based on their statistical significance at P<.05 in univariate Cox models relating 

continuous gene dosage data to survival in the TCGA data set. To combine data for the 7 

detected genes, we used a schema according to the presence of alterations of these genes in 

individual tumors. Based on the number of alterations we assigned tumors to a high-risk 

group (≥5 of 7 genes altered in the direction associated with gliomagenesis) and a low-risk 

group (≤2 genes altered). The remainder of the tumors were considered moderate-risk. For 

the data sets that only included gene expression data without gene dosage data, we used 

transcript levels above or below their respective medians within a data set to reflect possible 

chromosomal gain or loss. For genes whose deletion or amplification demonstrated 

association with survival data at the genetic level in the TCGA analysis, we assigned an 

“alteration call” to denote potential chromosomal loss or gain if the transcript level was 

below or above the median. We created low-, moderate-, and high-risk groups for the 

transcript data based on the number of alteration calls using the same criteria as for the 

genetic data.

Statistical Calculations and Data Visualization

Unless otherwise specified, all statistical calculations were performed using R software, 

version 2.8.1, and packages from Bioconductor, release 2.3 (http://www.bioconductor.org/). 

Paired and unpaired t test, Wilcoxon rank-sum test, and 2-way contingency table analysis 

based on Pearson χ2 test were used as appropriate. Odds ratios in the 2-way contingency 

table analysis were computed according to the equation (a/b)/(c/d), where a and b indicate 

the number of landscape genes (Box)—genes mapping to the nonrandom genetic landscape

—with and without significant gene-dosage effect, respectively; and c and d indicate the 

number of nonlandscape genes with and without significant gene dosage effect, respectively. 

Corresponding 95% confidence intervals (CIs) for the estimated parameters were computed 

on “constant χ2 boundaries” as detailed elsewhere.23 Unsupervised hierarchical clustering 

was done in Cluster (http://rana.lbl.gov/EisenSoftware.htm),24 and 2-way complete linkage 

clustering based on Pearson correlation as the distance metric was applied. Two-class, 

unpaired Significance Analysis of Microarrays (SAM; version 3.02; http://www-

stat.stanford.edu/~tibs/SAM/)25 was used to assess the weight of individual genes in driving 

the clustering. TreeView (http://rana.lbl.gov/EisenSoftware.htm) and Caryoscope (http://

dahlia.stanford.edu:8080/caryoscope/index.html) software were used to map gene dosage 

and s2n ratios as a function of human genome order to an ISCN-850 human chromosome 

ideogram.
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RESULTS

Patients

Forty-five patients treated at Stanford University between April 5, 2001, and April 19, 2004, 

constituted the initial molecular discovery set. Diagnoses included 26 glioblastomas, 5 

astrocytic gliomas (grades I-III), 8 oligodendrogliomas (including 3 anaplastic 

oligodendrogliomas), and 6 anaplastic oligoastrocytomas according to World Health 

Organization classification.26 Two hundred nineteen glioblastoma samples collected 

between July 26, 1989, and November 23, 2007, and profiled as part of TCGA constituted a 

molecular validation set and a clinical training set. Corresponding clinical data were 

available for 207 of the 219 patients (77 females and 130 males), of which 192 were dead 

and 15 were alive at last follow-up. Mean patient age was 55.8 (SD, 15.1) years. Median 

follow-up was 50.6 (range, 1.1–503.4) weeks. A sample population of 76 high-grade glioma 

patients (25 females and 51 males) treated at MDA,12 whose data were made public on 

March 15, 2006, constituted a first clinical validation set. Patients included 55 with 

glioblastomas and 21 with anaplastic astrocytomas. Mean patient age was 45.8 (SD, 12.9) 

years. Sixty-two patients were dead and 14 were alive at last follow-up. Median follow-up 

was 93.0 (range, 3.0–477.0) weeks. A sample population of 70 high-grade glioma patients 

(43 females and 27 males) treated at UCLA,13 made public on March 8, 2006, constituted a 

second clinical validation set. Patients included 47 glioblastomas, 8 anaplastic astrocytomas, 

9 anaplastic oligodendrogliomas, and 6 anaplastic oligoastrocytomas. Mean patient age was 

45.6 (SD, 15.0) years. Forty-four patients were dead and 26 were alive at last follow-up. 

Median follow-up was 63.2 (range, 1.0–359.0) weeks. A unified sample population of 191 

glioblastoma patients (74 females and 117 males) from multiple institutions,14 made public 

on October 10, 2008, constituted a third clinical validation set. Mean patient age was 53.8 

(SD, 13.6) years. One hundred seventy-six patients were dead and 15 were alive at last 

follow-up. Median duration of follow-up was 55.6 (range, 1.0–479.0) weeks.

Modeling of a Nonrandom Genetic Landscape in Gliomas

Figure 1 shows the genome-wide gene dosage profiles (Box)—a gene-by-gene 

representation of gene copy numbers across the whole genome—for the Stanford (45 

tumors) and TCGA (219 tumors) data sets according to genome position. The profiles 

highlight a similar pattern of recurrent chromosomal alterations, including gains and losses 

(Figure 1), and their boundaries throughout the glioma genome (eFigure 1, available at 

http://www.jama.com). We modeled the association of chromosomal alterations with each 

other. Figure 2A shows a genome-wide association matrix for 802 chromosomal cytogenetic 

bands (cytobands; Box)—subregions of a chromosome visible microscopically after special 

staining—in the 45 Stanford tumors. Numerous significant (FDR<0.05) cytoband-cytoband 

associations are identified across the human glioma genome (Figure 2A). Filtering of those 

associations for more than 10% frequency identifies an initial genetic landscape of 

aneuploidy (–, losses; +, gains) involving 10 networking regions (or territories) on 

chromosomes 1p-, 7+, 8q+, 9p-, 10-, 12q+, 13q-, 19q-, 20+, and 22q- displaying 37 

associations (Figure 2B). An independent validation analysis of 219 TCGA glioblastomas 

using the same permutation-based approach reveals a very similar association matrix (Figure 

3A), confirming 9 (90%) of 10 chromosomal territories (except for the long arm of 
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chromosome 1p) and 21 (56.8%) of 37 territorial associations (Figure 3B). The 

chromosomal territories confirmed in this validation analysis are hereafter referred to as a 

(TCGA-validated) genetic landscape.

Gene Dosage Reflected in Gene Expression

We observed a significant (q<.10) gene dosage–gene transcript relationship for 1562 

(15.1%) of 10 351 expressed genes in the 45 Stanford tumors, including genes implicated in 

gliomagenesis such as EGFR, MYC, MDM2, GBAS, PTEN, CDK6, MTAP, IGF1R, MXI1, 

WDR11, and FGFR2. Gene set enrichment analyses—which test for high representation of 

distinct biological processes and signaling pathways—revealed a significant (P<.05 by right-

tailed Fisher exact test) enrichment of those genes for various tumor-promoting (and 

developmental) functions and pathways (eFigure 2).

We noted a widespread association of changes in gene dosage and expression across the 

glioma genome (eFigure 3). However, there was a greater likelihood for a gene dosage 

effect on the expression of genes mapping to the genetic landscape than on the expression of 

genes mapping to random genetic alterations (P<.001 by Pearson χ2 test; odds ratio, 7.7; 

95% CI, 6.9–8.6) (eFigures 3 and 4). Within the genetic landscape, we noted a greater 

propensity for alterations to be hypomorphic, ie, to reduce gene expression, rather than 

hypermorphic, ie, to increase gene expression (for hypomorphic vs hypermorphic, odds 

ratio, 8.4; 95% CI, 7.3–9.6 vs 3.5; 95% CI, 2.8–4.2; P <.001 for both) (eFigures 3 and 4).

Highly Interacting Landscape Genes

Genes with a role in gliomagenesis are more likely to function as part of a cooperative group 

or network rather than individual units.10,27,28 Our hypothesis that the characterized 

common genetic landscape alters biological networks to promote glioma formation 

prompted network modeling to identify the interaction of the genes affected by dosage 

effects in the glioma genome. This yielded a “node-and-edge” graph that maps 214 genes 

(represented as nodes) into a network of various physical (protein-protein) or functional 

interactions (represented as edges connecting the nodes) (Figure 4). The modeled 

interactions are both directed (well-defined information flow; eg, from a transcription factor 

to the gene it regulates) and undirected (eg, mutual binding relationships). Gene set 

enrichment analyses revealed a greater probability for over-representation of tumor-

promoting (83.1% of genes) and developmental (29.5%) functions and pathways in the 

network than for all 1562 gene dosage–driven genes (eFigure 2).

The organization of genes and proteins into functional networks likely reflects cellular 

function.27 We studied the genes with high connectivity (a large number of incident edges), 

as their alteration may affect many other genes in the network; such highly influential genes 

should be preferred therapeutic targets. We identified 11 highly connected hub genes (Figure 

4 and eFigure 5A), all of which have a tumor-promoting function and notably included 

genes with a known biological role in gliomagenesis, such as EGFR, MYC, PTEN, and BAX. 

Genes that interact functionally with the hub genes are also likely to fundamentally 

influence the network. Analysis of the reciprocal functional relationship of the 11 hub genes 

with each other and with 92 hub-interacting genes with a tumor-related function disclosed 
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125 cooperatively tumorigenic gene-gene relationships (Figure 4). A matched-pair analysis 

of the number of putatively cooperative vs nonco-operative interactions for those genes 

revealed a significant prevalence (125 [71.8%] of all 174 interactions; P = .003 by paired t 

test) of cooperatively tumorigenic relationships in the network (eFigure 6).

We found that 6 (54.5%) of 11 hub genes and 52 (56.5%) of 92 tumor-related hub-

interacting genes mapped to the TCGA-validated genetic landscape. We tested the 

nonrandomness of coalteration of the individual hub and hub-interacting genes mapping to 

the genetic landscape (the landscape hub and hub-interacting landscape genes, constituting 

together the landscape genes) by applying the same approach used initially to model a 

genome-wide genetic landscape. We then integrated the association data with the interaction 

data of our network model (Figure 4) to identify significant interactions for the landscape 

genes; that is, physical (protein-protein) and functional interactions between genes whose 

gene dosage alterations are significantly associated (FDR<0.05) (eFigure 5, B and C). This 

analysis revealed 37 significant interactions involving all 6 (100%) landscape hub genes—

CDC42, EGFR, MYC, PTEN, BAX, and EP300—and 31 (59.6%) of the 52 hub-interacting 

landscape genes (eFigure 5, B and C). Thirty-one (83.7%) of these 37 significant 

interactions demonstrated a cooperatively tumorigenic relationship (Figure 5). Mapping of 

these relationships to a human chromosome ideogram reveals that the involved genes are 

broadly dispersed throughout the TCGA-validated landscape (Figure 5).

To validate a significant gene-transcript correlation for the 31 landscape genes with 

cooperatively tumorigenic relationships, we integrated corresponding gene dosage and 

expression profiles in TCGA using a statistical approach similar to that above. Combined 

gene dosage and gene expression data were available for 30 of the 31 genes in TCGA’s data 

set. This analysis confirmed significant gene dosage effects on expression for 27 (90.0%) of 

the 30 genes, excluding MGAT3, MYBL2, and PCNA (Benjamini-Hochberg FDR-corrected 

P<.05) (Figure 5).

Finally, we confirmed high connectivity for 25 of the 27 validated landscape genes (MFN2 

and ABCC4 did not have interactions reported at the time of analysis) using BioGRID, a 

general repository for protein-protein interactions. For 8445 available genes (the entire set of 

human protein interactions) with at least 1 interaction reported in humans, there were 30 386 

gene-gene pairs with at least 1 reported interaction between them. The median number of 

reported interactions for the entire data set was 3 (range, 1–202). For the 25 validated 

landscape genes available for analysis, the median number of reported interactions was 12 

(range, 1–108). A Wilcoxon rank-sum test comparing the number of observed interactions 

yielded P<.001, confirming the significantly higher interconnectivity of the TCGA-validated 

landscape genes than of the entire set of human protein interactions.

Landscape Gene Alterations Associated With Patient Outcome

Unsupervised hierarchical clustering—which assigns objects (herein, patient and genes) into 

groups (called clusters) so that objects from the same cluster are more similar to each other 

than are objects from different clusters—of 189 glioblastomas with gene dosage and clinical 

data in TCGA based on the 27 TCGA-validated landscape genes identified 2 major 

subgroups with a significant difference in their mean number of landscape gene alterations 

Bredel et al. Page 11

JAMA. Author manuscript; available in PMC 2015 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(P<.001 by unpaired t-test): one consisting of 153 tumors showing substantial alterations of 

the landscape genes (mean, 54.7% [SD, 16.1%]) and one consisting of 36 tumors showing 

far fewer alterations (mean, 24.3% [SD, 15.5%]) (Figure 6, A and B). Supervised group 

predictor analysis revealed highest group-predictive power for altered genes on 

chromosomes 7 and 10.

We hypothesized that the group of tumors with extensive landscape gene alterations might 

be those that are biologically more aggressive and, hence, have a worse prognosis. A 2-class 

model confirmed a significant difference in overall survival between the 2 groups (median 

duration of survival of 51 vs 72 weeks), such that tumors with extensive alterations 

demonstrated a comparably unfavorable outcome (hazard ratio [HR], 1.75; 95% CI, 1.19–

2.59; log-rank P=.004) (Figure 6C). Median duration of follow-up was 73.1 (range, 10.6–

503.4) weeks for the group with modest alterations and 47.0 (range, 1.1–307.4) weeks for 

the group with extensive alterations. Tumors with wide-spread landscape gene alterations 

had a 2-year survival rate of 12.9% and 82.34 deaths per 100 person-years vs a 2-year 

survival rate of 32.0% and 48.31 deaths per 100 person-years for tumors with modest 

alterations.

Multigene Predictor Model

To determine the potential utility of a concise molecular profile in estimating the prognosis 

of an individual glioblastoma patient, we assessed the survival association of gene dosage 

for each of the 27 validated landscape genes in TCGA glioblastomas. Cox proportional 

hazard regression indicated statistically significant survival associations for 7 landscape 

genes, including the DNA polymerase delta 2, small subunit (POLD2) (P = .01) and 

cytochrome C, somatic (CYCS) (P = .01) genes on chromosome 7, the MYC oncogene on 

chromosome 8 (P=.03), and the aldoketo reductase family 1, member C3 (AKR1C3) (P = .

002), YME1-like 1 (YME1L1) (P=.006), annexin A7 (ANXA7) (P=.008), and programmed 

cell death 4 (neoplastic transformation inhibitor) (PDCD4) (P=.01) genes on chromosome 

10. Each of the 7 genes has a biological function whose alteration might contribute to 

tumorigenesis. The avian myelocytomatosis homologue (MYC) is a major oncogene10; 

ANXA7 is a candidate tumor suppressor gene in breast and prostate cancer29–33 and its 

protein product is a phosphorylation target of the epidermal growth factor receptor (EGFR) 

oncoprotein34; AKR1C3 and PDCD4 have been implicated in colorectal cancer35,36 and 

their expression is regulated by phosphatase and tensin homolog (PTEN)37; YME1L1 has 

been related to cancer development and progression38 and has been identified as an MYC-

responsive gene,39 as has CYCS.40 The protein encoded by POLD2 is a subunit of the DNA 

polymerase delta complex, which also contains the protein product of the landscape gene 

PCNA; it is involved in DNA replication and repair and its expression is regulated by 

PTEN.37

In the TCGA training set of 189 glioblastomas, the combined 7-gene predictor model 

assigned 119 tumors to a high-risk group (≥5 of 7 genes altered) with a median duration of 

follow-up of 49.3 (range, 2.4–307.4) weeks, 39 to a low-risk group (≤2 genes altered) with a 

median follow-up of 62.9 (range, 10.6–503.4) weeks, and 31 to a moderate-risk group (all 

others) with a median follow-up of 51.0 (range, 1.1–183.1) weeks. There was a significant 
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difference in overall survival for the 3 groups (log-rank P = .02; Cox model HR, 1.63; 95% 

CI, 1.10–2.40 [P=.02] comparing high-risk vs low-risk groups and HR, 1.87; 95% CI, 1.13–

3.10 [P = .01] comparing moderate-risk vs low-risk groups; 49.24, 92.66, and 79.56 deaths 

per 100 person-years for low, moderate, and high-risk groups, respectively) (Figure 7A). 

Similar multigene models using gene expression data revealed significant differences in 

survival for the MDA and UCLA validation sets (Figure 7, B and C). In the MDA set, 23, 

33, and 20 patients were assigned to the low-, moderate-, and high-risk groups and had 

median follow-up times of 175 (range, 33–477) weeks, 70 (range, 12–467) weeks, and 62 

(range, 3–311) weeks, respectively. The low-, moderate-, and high-risk groups demonstrated 

15.13, 41.10, and 47.89 deaths per 100 person-years, respectively. A log-rank test for all 3 

curves yielded P=.003 and Cox modeling yielded an HR of 3.04 (95% CI, 1.49–6.20; P = .

002) comparing high-risk vs low-risk groups and an HR of 2.52 (95% CI, 1.33–4.78; P=.

005) comparing moderate-risk vs low-risk groups (Figure 7B). In the UCLA set, 20, 34, and 

16 patients were assigned to the low-, moderate-, and high-risk groups and had median 

follow-up times of 128.5 (range, 6–359) weeks, 58.5 (range, 8–320) weeks, and 49 (range, 

1–147) weeks, respectively. The low-, moderate-, and high-risk groups demonstrated 16.14, 

38.41, and 83.43 deaths per 100 person-years, respectively. A log-rank test for all 3 curves 

yielded P = .008 and Cox modeling yielded an HR of 3.86 (95% CI, 1.59–9.35; P=.003) 

comparing high-risk vs low-risk groups and an HR of 2.12 (95% CI, 0.97–4.63; P=.06) 

comparing moderate-risk vs low-risk groups, respectively (Figure 7C). In the multi-

institutional validation set of 191 glioblastomas, 43, 92, and 56 patients were assigned to the 

low-, moderate-, and high-risk groups and had median follow-up times of 73 (range, 1–479), 

57.5 (range, 8–313), and 47 (range, 1–242) weeks, respectively. The low-, moderate-, and 

high-risk groups demonstrated 34.16, 63.49, and 83.23 deaths per 100 person-years, 

respectively. A log-rank test for all 3 curves yielded P = .002 and Cox modeling yielded an 

HR of 2.27 (95% CI, 1.44–3.58; P<.001) comparing high-risk vs low-risk groups and an HR 

of 1.72 (95% CI, 1.14–2.59; P = .01) comparing moderate-risk vs low-risk groups (Figure 

7D), confirming the robustness of the multigene predictor model in glioblastoma at the 

expression level. Although gene dosage was prognostic in TCGA tumors, we did not find an 

association between mRNA expression and survival in the TCGA data set. Heterogeneity of 

patient characteristics and treatment (tumor samples collected over nearly 2 decades at 

varying institutions) and the fact that gene transcription is more dynamic and fluctuant than 

gene dosage may explain the disparity in findings in the TCGA group at the genetic and 

transcript levels.

COMMENT

The pathobiology of human gliomas emerges through the actions of multiple genes and their 

interactions with each other. As the classic theories regarding glioma origin and 

gliomagenesis are currently being reappraised,41 we used a systems biology approach 

without regard to morphological subtypes to generate a model of a nonrandom genetic 

landscape in gliomas. Herein, nonrandomness describes a significant association of distinct 

chromosomal alterations. Our model proposes that this genetic landscape involves multiple 

reciprocal gene alterations, which cooperatively promote gliomagenesis and contribute to 

unfavorable patient prognosis, thus providing the selection pressure for its conservation.
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Identification of the importance and mechanistic interplay of such gene alterations in 

gliomas prompts evaluation of their potential as therapeutic targets. The network context of 

a gene likely affects the efficacy of therapies that target its protein. The complexity of our 

landscape model helps explain the lack of therapeutic efficacy of strategies targeting single 

gene products. For example, targeting the oncoprotein EGFR alone has had limited clinical 

effect despite the prominence of EGFR in our model as a landscape hub gene.42 This 

paradox is resolved by the fact that the deregulation of EGFR in glioblastomas does not exist 

in isolation. But rather, the functional organization of EGFR, and other gene dosage–altered 

genes within the landscape, in a complex network of interactions predicts that 

monotherapeutic approaches will fail: extensive cross-talk between interacting genes and 

their pathways permits resistance to therapy. The topology of our landscape model suggests 

that molecular targeting of multiple (hub) genes will be more effective.

Our study has limitations. First, our landscape model reduces the biological complexity of 

human gliomas to the genetic level. However, the fundamental mechanisms of 

carcinogenesis include both genetic and epigenetic events. Future integration of genetics and 

epigenetics could better explain gliomagenesis. Second, our model assumes that cancer cells 

modify only pre-existing biological pathways. But, in complex diseases such as gliomas, 

genes may additionally interact in new pathways and networks. Therefore, exploration of 

gene networks without a priori assumptions may complement this network approach based 

on known gene interactions. We recognize that the connectivity (and, thus, the potential 

importance) of genes in a network like ours depends not only on biological reality but also 

on sampling, experimental conditions, and reporting of results; there may be other genes that 

significantly contribute to network behavior that our model has not addressed. Furthermore, 

the candidate gene-gene interactions that emerged from our model need to be further tested 

mechanistically in a brain tumor–specific context. And, finally, our assumption of 

nonrandom coselection of distinct chromosomal alterations may be invalidated by 

chromosomal rearrangement (Box) of parts between nonhomologous chromosomes in the 

genetic landscape. Recent evidence suggests that recurrent translocations might be more 

common in solid tumors than previously appreciated.43 However, physical rearrangements 

have not been reported for the chromosomal territories mapping to our TCGA-validated 

genetic landscape in gliomas, nor could they explain the frequent coselection of 

chromosomal loss and gain events within the landscape.

To date, therapeutic decisions for human gliomas are mainly guided by inexact and 

heterogeneous clinical and morphological measures. Risk estimation in glioblastomas, 

which share similar pathological characteristics but show substantial variation in outcome, is 

particularly challenging. This calls for better risk estimation strategies, which might improve 

treatment efficacy and quality of life. Such strategies have to take into account the key 

mechanisms contributing to glioblastoma pathogenesis.

Several gene sets have been proposed as multigene predictors of glioblastoma patient 

survival.5,13,44–46 Many of those sets have used so-called meta-genes—patterns of gene 

expression—for risk classification. Although meta-genes support the notion that, in a 

complex glioblastoma tumor, it is not a single gene but, rather, multiple genes that drive the 

disease process, the risk associations of metagenes are primarily correlative. While 
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metagenes, by definition, constitute gene subsets identified without considering underlying 

mechanisms, some studies have shown that such metagenes can characterize clinically 

relevant molecular subtypes of high-grade gliomas.12–14 Recently, a consensus gene 

expression profile associated with patient outcome across independent data sets and an 

optimized 9-gene metagene predictor have been reported for high-grade gliomas.47

While the primary role of multi-gene predictor models would be to prospectively identify 

glioma patients with low vs high likelihood for a durable response to standard therapy, 

molecular predictor models that place genes into pathways and networks allow mechanistic 

insights that are crucial for developing novel molecularly targeted therapies. We show that a 

focused set of 7 landscape genes associates with patient survival across several different 

study populations with discrimination similar to that of correlative multigene predictors. 

These observations lay the foundation for future development of a mechanistically based 

molecular risk estimation model in glioblastomas and high-grade gliomas. In our study, the 

multigene predictor model associates with survival when taking into account either genetic 

or transcriptional information about those genes. The genetic model might lend itself better 

to translation into clinical practice for 2 reasons. First, while the expression of an individual 

gene can vary over short periods of time in cancers, gene dosage is more static and more 

amenable to predictive screens. Second, the gene expression model depends on risk 

groupings in which the transcript profile of an individual patient is related to the profiles of 

other patients, with a potential for demographic bias. In contrast, the genetic predictor 

allows risk estimation based on a patient’s individual biological profile by using a binary 

model (the gene is altered or it is not).

CONCLUSION

The current work provides a network model and biological rationale for the selection of a 

nonrandom genetic landscape in human gliomas. Coincident genetic alterations of multiple 

landscape genes may evolve rapidly under positive selection to provide multiple, synergistic 

mechanisms of dysregulation of critical signaling pathways toward gliomagenesis. A 

multigene predictor model incorporating 7 landscape genes demonstrates how molecular 

insights emerging from our integrative multidimensional analysis could translate into 

relevant clinical end points affecting the future management of gliomas.

Acknowledgments

Funding/Support: This work was supported by the State of Illinois Excellence in Academic Medicine Program 
(EAM Award 211 to Dr M. Bredel).

Role of the Sponsor: The funding organization had no role in the design and conduct of the study; collection, 
management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript.

References

1. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008; 359(5):492–507. [PubMed: 
18669428] 

2. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human 
glioblastoma genes and core pathways. Nature. 2008; 455(7216):1061–1068. [PubMed: 18772890] 

Bredel et al. Page 15

JAMA. Author manuscript; available in PMC 2015 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma 
multiforme. Science. 2008; 321(5897):1807–1812. [PubMed: 18772396] 

4. Bredel M, Bredel C, Juric D, et al. High-resolution genome-wide mapping of genetic alterations in 
human glial brain tumors. Cancer Res. 2005; 65(10):4088–4096. [PubMed: 15899798] 

5. Nigro JM, Misra A, Zhang L, et al. Integrated array-comparative genomic hybridization and 
expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer 
Res. 2005; 65(5):1678–1686. [PubMed: 15753362] 

6. Chin K, Devries S, Fridlyand J, et al. Genomic and transcriptional aberrations linked to breast 
cancer pathophysiologies. Cancer Cell. 2006; 10(6):529–541. [PubMed: 17157792] 

7. Beroukhim R, Getz G, Nghiemphu L, et al. Assessing the significance of chromosomal aberrations 
in cancer: methodology and application to glioma. Proc Natl Acad Sci U S A. 2007; 104(50):
20007–20012. [PubMed: 18077431] 

8. Chin L, Gray JW. Translating insights from the cancer genome into clinical practice. Nature. 2008; 
452(7187):553–563. [PubMed: 18385729] 

9. Lennon G, Auffray C, Polymeropoulos M, Soares MB. The IMAGE Consortium: an integrated 
molecular analysis of genomes and their expression. Genomics. 1996; 33(1):151–152. [PubMed: 
8617505] 

10. Bredel M, Bredel C, Juric D, et al. Functional network analysis reveals extended gliomagenesis 
pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res. 2005; 
65(19):8679–8689. [PubMed: 16204036] 

11. Stears RL, Getts RC, Gullans SR. A novel, sensitive detection system for high-density microarrays 
using dendrimer technology. Physiol Genomics. 2000; 3(2):93–99. [PubMed: 11015604] 

12. Phillips HS, Kharbanda S, Chen R, et al. Molecular subclasses of high-grade glioma predict 
prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer 
Cell. 2006; 9(3):157–173. [PubMed: 16530701] 

13. Freije WA, Castro-Vargas FE, Fang Z, et al. Gene expression profiling of gliomas strongly predicts 
survival. Cancer Res. 2004; 64(18):6503–6510. [PubMed: 15374961] 

14. Lee Y, Scheck AC, Cloughesy TF, et al. Gene expression analysis of glioblastomas identifies the 
major molecular basis for the prognostic benefit of younger age. BMC Med Genomics. 2008; 1(1):
52. [PubMed: 18940004] 

15. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of 
array-based DNA copy number data. Biostatistics. 2004; 5(4):557–572. [PubMed: 15475419] 

16. Mitelman, FE. ISCN 1995: An International System for Human Cytogenetic Nomenclature. Basel, 
Switzerland: S Karger; 1995. 

17. Hyman E, Kauraniemi P, Hautaniemi S, et al. Impact of DNA amplification on gene expression 
patterns in breast cancer. Cancer Res. 2002; 62(21):6240–6245. [PubMed: 12414653] 

18. Golub TR, Slonim DK, Tamayo P, et al. Molecular classification of cancer: class discovery and 
class prediction by gene expression monitoring. Science. 1999; 286(5439):531–537. [PubMed: 
10521349] 

19. Juric D, Bredel C, Sikic BI, Bredel M. Integrated high-resolution genome-wide analysis of gene 
dosage and gene expression in human brain tumors. Methods Mol Biol. 2007; 377:187–202. 
[PubMed: 17634618] 

20. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S 
A. 2003; 100(16):9440–9445. [PubMed: 12883005] 

21. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach 
to multiple testing. J R Stat Soc Series B Stat Methodol. 1995; 57(1):289–300.

22. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general 
repository for interaction datasets. Nucleic Acids Res. 2006; 34(database issue):D535–D539. 
[PubMed: 16381927] 

23. Fleiss, JL. Statistical Methods for Rates and Proportions. 2. New York, NY: John Wiley & Sons; 
1981. sect 5.6

24. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide 
expression patterns. Proc Natl Acad Sci U S A. 1998; 95(25):14863–14868. [PubMed: 9843981] 

Bredel et al. Page 16

JAMA. Author manuscript; available in PMC 2015 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



25. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing 
radiation response. Proc Natl Acad Sci U S A. 2001; 98(9):5116–5121. [PubMed: 11309499] 

26. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central 
nervous system. Acta Neuropathol. 2007; 114(2):97–109. [PubMed: 17618441] 

27. Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene connectivity, function, 
and sequence conservation: predictions from modular yeast co-expression networks. BMC 
Genomics. 2006; 7:40. [PubMed: 16515682] 

28. Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular 
classification for therapy. Nat Rev Neurosci. 2004; 5 (10):782–792. [PubMed: 15378038] 

29. Srivastava M, Bubendorf L, Srikantan V, et al. ANX7, a candidate tumor suppressor gene for 
prostate cancer. Proc Natl Acad Sci U S A. 2001; 98 (8):4575–4580. [PubMed: 11287641] 

30. Leighton X, Srikantan V, Pollard HB, Sukumar S, Srivastava M. Significant allelic loss of 
ANX7region (10q21) in hormone receptor negative breast carcinomas. Cancer Lett. 2004; 210(2):
239–244. [PubMed: 15183540] 

31. Srivastava M, Bubendorf L, Raffeld M, et al. Prognostic impact of ANX7-GTPase in metastatic and 
HER2-negative breast cancer patients. Clin Cancer Res. 2004; 10(7):2344–2350. [PubMed: 
15073110] 

32. Srivastava M, Torosyan Y, Raffeld M, Eidelman O, Pollard HB, Bubendorf L. ANXA7 expression 
represents hormone-relevant tumor suppression in different cancers. Int J Cancer. 2007; 121(12):
2628–2636. [PubMed: 17708571] 

33. Torosyan Y, Dobi A, Naga S, et al. Distinct effects of annexin A7 and p53 on arachidonate 
lipoxygenation in prostate cancer cells involve 5-lipoxygenase transcription. Cancer Res. 2006; 
66(19):9609–9616. [PubMed: 17018618] 

34. Furge LL, Chen K, Cohen S. Annexin VII and annexin XI are tyrosine phosphorylated in 
peroxovanadate-treated dogs and in platelet-derived growth factor-treated rat vascular smooth 
muscle cells. J Biol Chem. 1999; 274(47):33504–33509. [PubMed: 10559235] 

35. Nakagawa H, Liyanarachchi S, Davuluri RV, et al. Role of cancer-associated stromal fibroblasts in 
meta-static colon cancer to the liver and their expression profiles. Oncogene. 2004; 23(44):7366–
7377. [PubMed: 15326482] 

36. Yang HS, Matthews CP, Clair T, et al. Tumori-genesis suppressor Pdcd4 down-regulates mitogen-
activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell 
invasion. Mol Cell Biol. 2006; 26(4):1297–1306. [PubMed: 16449643] 

37. Matsushima-Nishiu M, Unoki M, Ono K, et al. Growth and gene expression profile analyses of 
endometrial cancer cells expressing exogenous PTEN. Cancer Res. 2001; 61(9):3741–3749. 
[PubMed: 11325847] 

38. Wan D, Gong Y, Qin W, et al. Large-scale cDNA transfection screening for genes related to cancer 
development and progression. Proc Natl Acad Sci U S A. 2004; 101(44):15724–15729. [PubMed: 
15498874] 

39. Guo QM, Malek RL, Kim S, et al. Identification of c-myc responsive genes using rat cDNA 
microarray. Cancer Res. 2000; 60(21):5922–5928. [PubMed: 11085504] 

40. Deng Y, Wu X. Peg3/Pw1 promotes p53-mediated apoptosis by inducing Bax translocation from 
cytosol to mitochondria. Proc Natl Acad Sci U S A. 2000; 97(22):12050–12055. [PubMed: 
11050235] 

41. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med. 
2005; 353(8):811–822. [PubMed: 16120861] 

42. Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R. Epidermal growth factor receptor-mediated 
signal transduction in the development and therapy of gliomas. Clin Cancer Res. 2006; 12(24):
7261–7270. [PubMed: 17189397] 

43. Jenkins RB, Blair H, Ballman KV, et al. A t(1;19) (q10;p10) mediates the combined deletions of 
1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res. 2006; 
66(20):9852–9861. [PubMed: 17047046] 

44. Rich JN, Hans C, Jones B, et al. Gene expression profiling and genetic markers in glioblastoma 
survival. Cancer Res. 2005; 65(10):4051–4058. [PubMed: 15899794] 

Bredel et al. Page 17

JAMA. Author manuscript; available in PMC 2015 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. Mischel PS, Shai R, Shi T, et al. Identification of molecular subtypes of glioblastoma by gene 
expression profiling. Oncogene. 2003; 22(15):2361–2373. [PubMed: 12700671] 

46. Nutt CL, Mani DR, Betensky RA, et al. Gene expression-based classification of malignant gliomas 
correlates better with survival than histological classification. Cancer Res. 2003; 63(7):1602–1607. 
[PubMed: 12670911] 

47. Colman H, Zhang L, Sulman EP, et al. A multi-gene predictor of outcome in glioblastoma. Neuro 
Oncol. In press. 

Bredel et al. Page 18

JAMA. Author manuscript; available in PMC 2015 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Gene Dosage Alterations Across the Glioma Genome

Cartesian line diagrams depict the frequency of gene dosage alteration across a tumor 

population for genes mapped according to genome position along the chromosomes (X and 

Y chromosomes omitted). Gene dosage profiles were generated using circular binary 

segmentation change point analysis of microarray-based genomic hybridization profiles. 

Both the discovery and validation sets show consistently high frequencies of alterations 

involving chromosomes 1p, 7, 8q, 9p, 10, 12, 13, 19, 20, and 22. IMAGE indicates 

Integrated Molecular Analysis of Genomes and Their Expression Consortium.
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Figure 2. 
Model of a Nonrandom Genetic Landscape in Gliomas: Discovery Set

A permutation-based approach, which calculates the probabilistic fit for the coincidence of 

distinct chromosomal alterations, was applied to the gene dosage data in the discovery set 

from Stanford University. The gene dosage data generated by the circular binary 

segmentation change point algorithm were averaged according to 802 cytogenetic bands 

(cytobands)—subregions of a chromosome visible microscopically after special staining—

that correspond to an International System for Human Cytogenetic Nomenclature (ISCN) 

850 chromosome ideogram. The association map (A) indicates chromosomal regions 

(territories) with significant co-occurrence of gene dosage alteration (false-discovery rate 

[FDR]–corrected P<.05). Red scores denote the significant association of 2 chromosomal 

gains or 2 chromosomal losses; blue scores, the significant association of a gain and a loss 

event. The color gradation reflects a score that indicates the significance of cytoband-

cytoband associations. The association map shows a consistent pattern of significant 

associations, which denotes a nonrandom genetic landscape in gliomas. B, Chromosomal 

territories that showed an alteration frequency of greater than 10% (involving chromosomes 

1p, 7, 8q, 9p, 10, 12, 13, 19, 20, and 22) in the discovery set and their significant 

associations are mapped to a human ISCN-850 chromosome ideogram. (See interactive 

Figure 1 showing significant associations in the discovery and validation sets at http://

www.jama.com.)
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Figure 3. 
Model of a Nonrandom Genetic Landscape in Gliomas: Confirmation by Validation Set

Permutation-based approach described in Figure 2 was applied to the validation set from 

The Cancer Genome Atlas Pilot Project (TCGA). The association map (A) indicates 

chromosomal regions (territories) with significant co-occurrence of gene dosage alteration 

(false-discovery rate [FDR]–corrected P<.05). Red scores denote the significant association 

of 2 chromosomal gains or 2 chromosomal losses; blue scores, the significant association of 

a gain and a loss event. The color gradation reflects a score that indicates the significance of 

cytoband-cytoband associations. The association map shows a consistent pattern of 

significant associations, which denotes a nonrandom genetic landscape in gliomas. B, 

Significant associations identified in the discovery set (Figure 2B) that were confirmed in 

the TCGA validation set. The blue bars and corresponding blue labels indicate chromosome 

territories with TCGA-confirmed significant associations to other territories (TCGA-

validated nonrandom genetic landscape). (See interactive Figure 1 showing significant 

associations in the discovery and validation sets at http://www.jama.com.)
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Figure 4. 
Complex Network of Glioma Gene Interactions Highlighting Hub Gene–Hub Gene and Hub 

Gene–Hub-Interacting Gene Interactions

Graphical representation of the interactions and networking of 214 glioma genes. The 214 

genes represent the subset of all 1562 genes with significant gene dosage–transcript 

relationships (false-discovery rate–adjusted q<.10) that map to the top-scoring subnetworks 

identified in a network modeling approach using Ingenuity Pathway Analysis. These 

subnetworks were merged using a force-directed layout algorithm to form a composite 
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network representing the underlying biology of the process. Genes are represented as nodes 

using various shapes that represent the functional class of the gene product. The interactions 

of genes with tumor-related biological functions and fulfilling the criterion of a network hub 

(11 genes) or interacting with hub genes (hub-interacting gene; 92 genes) are highlighted. 

Hub gene refers to a gene that shows a number of interactions with other genes (the hub-

interacting genes or other hub genes) that is above the 95% quantile of the overall 

distribution of the number of interactions of all genes in the network (eFigure 5A). 

Cooperatively tumorigenic interactions are interactions for which integration of the mode of 

interaction for a hub-hub (solid red lines) or hub–hub-interacting gene pair (blue lines) with 

the direction of gene dosage–gene expression change (gain or loss) reveals an effect on this 

interaction that synergistically promotes tumorigenesis. Paired t testing comparing the 

number of cooperative vs noncooperative interactions for 11 hub genes with each other and 

92 hub-interacting genes with tumor-related functions reveals a significant prevalence (P=.

003) of cooperatively tumorigenic interactions (125 [71.8%] of all 174 interactions) (eFigure 

4). (See interactive Figure 2 of the complete network at http://www.jama.com.)
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Figure 5. 
Networking of 31 Hub and Hub-Interacting Genes With Cooperatively Tumorigenic 

Relationships That Map to the TCGA Validated Landscape

Human chromosome ideogram representation of the networking of 31 hub and hub-

interacting genes that map to The Cancer Genome Atlas Pilot Project (TCGA)–validated 

genetic landscape and possess cooperatively tumorigenic relationships. These cooperatively 

tumorigenic relationships emerge through the mode of interaction between the genes and 

their significant coalteration. Gene dosage–gene expression integration for 30 of the 31 

genes with combined availability of gene dosage and expression data in TCGA confirmed 

significant gene dosage effects on transcription for 27 (90.0%) of 30 genes (Benjamini-

Hochberg false-discovery rate–corrected P<.05). Labels indicate the cytogenetic band 

mapping of the genes.
aGenes with a significant (P<.05) relationship between gene dosage and duration of patient 

survival in the TCGA data set based on Cox proportional hazards regression analysis.
bGenes without confirmed significant gene dosage–gene expression relationship in the 

TCGA data set.
cTIMP3 is embedded within an intron of the SYN3 gene. Gene dosage information for 

TIMP3 was only indirectly available through a probe mapping to SYN3 in TCGA. 
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Integration of gene dosage information using this probe and TIMP3 transcript information 

revealed a significant (P<.05) gene dosage–transcript relationship.
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Figure 6. 
Subgroups of Glioblastomas With Distinct Landscape Gene Profiles Associated With 

Patient Survival

A, Unsupervised hierarchical clustering (2-way complete linkage clustering based on 

Pearson correlation as the distance metric) of 189 of 219 glioblastomas from The Cancer 

Genome Atlas Pilot Project (TCGA) (with availability of corresponding survival data) 

according to the 27 landscape genes in Figure 5 with a TCGA-validated gene dosage–

expression relationship. Rows on heat map represent patient samples; columns represent the 

27 genes. Two major tumor clusters with distinct gene dosage alteration patterns were 

identified (moderate and extensive). Supervised group predictor analysis revealed highest 
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group-predictive power for altered genes on chromosomes 7 and 10. B, Distribution of the 

number of landscape gene alterations among the 2 major clustering subgroups identified by 

the hierarchical clustering in panel A. The groups show a significant difference in mean 

number of landscape gene alterations (P<.001 by unpaired t test). C, Kaplan-Meier estimates 

of overall survival of the 2 major clustering subgroups indicated in panels A and B. Median 

follow-up was 73.1 (range, 10.6–503.4) weeks for the group with modest alterations and 

47.0 (range, 1.1–307.4) weeks for the group with extensive alterations.
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Figure 7. 
Multigene Risk Scoring Model in Malignant Gliomas

Patient assignment to low-, moderate-, and high-risk groups is based on risk scores 

generated by the number of gene dosage alterations (0–2, 3–4, and 5–7, respectively) of 7 

landscape genes (POLD2, CYCS, MYC, AKR1C3, YME1L1, ANXA7, and PDCD4), each of 

which was individually linked to patient survival in Cox proportional hazard regression 

analyses in The Cancer Genome Atlas Pilot Project (TCGA). A, Kaplan-Meier estimates of 

overall survival for the 3 groups in 189 glioblastomas from TCGA) with available survival 

data. Median follow-up for the low-, moderate-, and high-risk groups was 62.9 (range, 10.6–

503.4), 49.3 (range, 2.4–307.4), and 51.0 (range, 1.1–183.1) weeks, respectively. B, 

Estimates of overall survival in the University of Texas M. D. Anderson Cancer Center 

(MDA) validation set of 76 high-grade gliomas. Median follow-up for the low-, moderate-, 

and high-risk groups was 175 (range, 33–477) weeks, 70 (range, 12–467) weeks, and 62 

(range, 3–311) weeks, respectively. C, Estimates of overall survival in the University of 

California, Los Angeles (UCLA) validation set of 70 high-grade gliomas. Median follow-up 
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for the low-, moderate-, and high-risk groups was 128.5 (range, 6–359) weeks, 58.5 (range, 

8–320) weeks, and 49 (range, 1–147) weeks, respectively. D, Estimates of overall survival 

in the unified validation set of 191 glioblastomas. Median follow-up for the low-, moderate-, 

and high-risk groups was 73 (range, 1–479), 57.5 (range, 8–313), and 47 (range, 1–242) 

weeks, respectively.
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