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Abstract

We synthesized Gd2O3 and Gd2O3 doped by europium (Eu) (2% to 10%) nanoplatelets using the polyol chemical
method. The synthesized nanoplatelets were characterized by X-ray diffraction (XRD), FESEM, TEM, and EDX techniques.
The optical properties of the synthesized nanoplatelets were investigated by photoluminescence spectroscopy. We also
studied the magnetic resonance imaging (MRI) contrast enhancement of T1 relaxivity using 3 T MRI. The XRD for Gd2O3

revealed a cubic crystalline structure. The XRD of Gd2O3:Eu
3+ nanoplatelets were highly consistent with Gd2O3

indicating the total incorporation of the Eu3+ ions in the Gd2O3 matrix. The Eu doping of Gd2O3 produced red
luminescence around 612 nm corresponding to the radiative transitions from the Eu-excited state 5D0 to the 7F2. The
photoluminescence was maximal at 5% Eu doping concentration. The stimulated CIE chromaticity coordinates were
also calculated. Judd-Ofelt analysis was used to obtain the radiative properties of the sample from the emission spectra.
The MRI contrast enhancement due to Gd2O3 was compared to DOTAREM commercial contrast agent at similar
concentration of gadolinium oxide and provided similar contrast enhancement. The incorporation of Eu, however,
decreased the MRI contrast due to replacement of gadolinium by Eu.
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Background
Gadolinium is a rare earth (RE) metal that has paramag-
netic properties that enhance the magnetic resonance
imaging (MRI) signal [1]. Gadolinium ions have seven
unpaired electrons in the valence shell and hence have a
high magnetic moment suitable for MRI. Gadolinium
accelerates proton relaxation and hence shortens the T1
relaxation time. Gadolinium complexes such as Gd-
DTPA and Gd-DOTA are some of the most commonly
used clinical MRI contrast agents [2,3]. Gadolinium is a
good host material for luminescence applications due to
its thermal, chemical, and photochemical stability [4-6].
The gadolinium oxide doped with Eu3+ (Gd2O3:Eu

3+) is
paramagnetic with attractive photoluminescence (PL)
properties. It is widely used in fluorescence lamps, televi-
sion tubes, biological fluorescent labeling [5,7,8], MRI
contrast [9-11], hyperthermia [12], immunoassays [13,14],
* Correspondence: maalej@kfupm.edu.sa
1Center of Excellence in Nanotechnology, Research Institute, King Fahd
University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
2Physics Department, King Fahd University of Petroleum and Minerals,
Dhahran 31261, Saudi Arabia
Full list of author information is available at the end of the article

© 2015 Maalej et al.; licensee Springer. This is a
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
and display applications [15-18]. Eu3+-doped Gd2O3

nanoparticles are red-emitting phosphors with bright
luminescence and long-term photothermal stability
[19]. Gd2O3:Eu

3+ is also a very efficient X-ray and
thermoluminescent phosphor [20]. Eu3+-doped CaF2-
fluorophosphate glass composites has intense IR fluor-
escence and is a promising candidate for IR lasers and
amplifiers [21].
Gadolinium oxide and RE gadolinium oxide have been

synthesized by many groups using different techniques
such as sol-gel [22], polyol [23], flame-spray pyrolysis
[24,25], laser ablation [26], hydrothermal [17,27,28], and
direct precipitation [29].
In the present work, Gd2O3 and Gd2O3:Eu

3+ nanopla-
telets were synthesized using the simple and novel polyol
chemical method. Detailed structural analysis such as
field emission scanning electron microscopy (FESEM),
transmission electron microscopy (TEM), and energy-
dispersive X-ray EDX are reported. The photolumines-
cent properties of Eu3+-activated gadolinium oxide were
investigated. Judd-Ofelt analysis was used to determine
the radiative properties of the synthesized nanoparticles
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Figure 1 XRD pattern of Gd2O3, 2% 5%, and 10% Eu:Gd2O3 (a) and
high-intensity (222) plane resolved for different Eu concentrations (b).
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from their PL emission spectra. The attractive multifunc-
tional Gd2O3 and Gd2O3:Eu

3+ nanoplatelets were investi-
gated form MRI contrast enhancement.

Methods
Synthesis of Gd2O3 and Gd2O3:Eu

3+

All reagents were of analytical grade and were used
without further purification in the experiment. In this
experiment, 0.5 M gadolinium acetate (Gd(OAC)3) was
dissolved in ethanol under continuous stirring. Then 50
wt.% polyethylene glycol (mol. wt 600) was transferred
in the solution under continuous stirring. After some-
time, dropwise addition of 0.1 M diethylamine was car-
ried out into the reaction solution. For the doping
purpose, 2% Eu (EuCl3) was transferred in the solution.
The resultant solution was refluxed at 100°C for 48 h.
After the reaction, the flask was cooled to room
temperature. The precipitates of Gd2O3 were separated
from the solution by centrifuging for 30 min with a rota-
tion speed of 3,000 rpm and then washed using deion-
ized water. The rinsing was repeated three to five times
to totally remove organic and inorganic ions adsorbed
on the surface of the product. The white grayish color
product was dried in an oven at 80°C for 24 h. In order
to obtain highly crystalline nature of Eu-Gd2O3, the
product was further calcinated in ambient atmosphere at
approximately 600°C for 12 h. Similar procedure was
adopted for 5% and 10% europium (Eu) doping.

Characterization
The synthesized products were characterized using X-ray
diffraction (XRD), FESEM, TEM, PL, and MRI. The crys-
tal structure of the synthesized nanoparticles was investi-
gated by XRD using a (XRD Shimadzu 6000; Shimadzu,
Kyoto, Japan) advance X-ray diffractometer with Cu-Kα
radiation source (λ = 1.5418 Å). The FESEM analysis was
done using (FESEM JSM-6700F). TEM analysis was done
on a high-resolution transmission electron microscope
(HRTEM; JEOL, Tokyo, Japan). The PL spectrum was re-
corded using Shimadzu spectrofluorometer (Shimadzu).
The excitation source was a 150-W Xenon lamp with ex-
citation wavelength fixed at 350 nm, and the emission
monochromator was scanned in the 450 to 900-nm wave-
length range. The MRI contrast enhancement due to dif-
ferent Gd2O3 concentrations from a commercial contrast
agent, Dotarem® (Guerbet LLC, Bloomington, IN, USA),
was compared to the contrast due to Gd2O3 nanoparticles
and Gd2O3 nanoparticles doped with Eu (2% to 10%). The
different concentrations were placed in plastic 10 ml test
tubes. The test tubes were placed in a plastic test tube
holder and imaged in a 3 T MRI scanner (General Electric,
Fairfield, CT, USA). A pulse echo T1 sequence was used
with pulse repetition rates of 20, 30, 50, 100, 200, 300, 400,
500, and 1,000 ms. The images were then analyzed in
order to determine the contrast enhancement due to the
nanoparticles and to obtain the T1 relaxation times.

Results and discussion
Structural properties
XRD measurements were used to explore the phase and
structure of Gd2O3 and Gd2O3:Eu

3+ nanostructures.
Figure 1a demonstrates the XRD pattern of Gd2O3 and
2%, 5%, and 10% Gd2O3:Eu

3+, respectively. These results
confirmed the cubic structure of Gd2O3 and Gd2O3:Eu

3+

with spatial group Ia3 (JCPDS card No. 00-012-0797).
No other peaks were observed in the XRD spectrum re-
lated to impurities. Due to Eu doping, a high-intensity
(222) peak shift was observed as shown in Figure 1b.
The presence of strong peaks indicates the highly crys-
talline nature of Gd2O3 nanostructures.
Figure 2a,b,c,d shows the FESEM images of Gd2O3

and Gd2O3:Eu
3+ with different doping concentrations of

2%, 5%, and 10%, respectively. Figure 2a shows fine
nanoflakes of Gd2O3. It is interesting to note that the



Figure 2 FESEM micrograph of (a) Gd2O3, (b) Gd2O3:Eu 2%, (c) Gd2O3:Eu 5%, and (d) Gd2O3:Eu 10%.
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thickness of the nanostructures augmented when doped
with 2% Eu. Figure 2b shows FESEM micrograph of 2%
Gd2O3:Eu

3+ nanoplatelets with some nanocrystals. When
the concentration of Eu3+ increased to 5%, highly uniform
nanoplatelets were formed. The thickness of each nano-
platelet is about 15 to 25 nm (Figure 2c). Figure 2d shows
FESEM micrograph of 10% Gd2O3:Eu

3+ irregularly thick
nanoplatelets. It is observed that by further increasing
the concentration of Eu, the thickness and diameter of
nanoplatelets increased significantly. FESEM observa-
tion showed clear change in the morphology due to
doping from Gd2O3 nanoflakes to thick Gd2O3:Eu

3+

nanoplatelets.
Figure 3a,b,c,d,e,f,g,h shows TEM HRTEM images of

Gd2O3 with different Eu concentrations (2%, 5%, and 10%).
The TEM analysis is in agreement with FESEM results in
which the evolution of nanoplatelets is observed. The
growth of Gd2O3:Eu

3+ nanoplatelets is seen in TEM mi-
crographs. From the HRTEM, the interspacing between
the lattice fringes was found to be 0.316 nm which corre-
sponds to growth plane (110) indicating the growth of
nanoplatelets along the axis in [001] direction. The
energy-dispersive spectrum (EDS) investigation (Figure 4)
also confirmed that all the detected peaks are related to
Gd, O, and Eu, indicating a chemically pure Gd2O3:Eu

3+

phase. No other peak related to impurities was found in
the samples.
Fluorescence properties
Figure 5 shows the PL spectra of Eu3+-doped Gd2O3

nanoparticles for different dopant concentrations (2%, 5%,
and 10%) recorded in the 450 to 900-nm wavelength
range. The spectra have five emission lines at 580, 593,
612, 652, and 708 nm corresponding to 5D0 →

7FJ (J = 0,
1, 2, 3, 4) transitions, respectively. The two transitions cor-
responding to 5D0 → 7FJ (J = 5, 6) are presented in the
inset of Figure 5. We recorded a strong PL peak centered
around 612 nm in addition to many smaller peaks for
three different concentrations of Eu in Gd2O3. The high
red luminescence signal intensity for Eu-doped samples
around 612 nm corresponds to the radiative transitions
from the Eu-excited state 5D0 to the 7F2 state (Figure 5).
This sharp intense line indicates a complete incorporation
of the dopant ions into Gd2O3 nanocrystals by replacing
Gd3+ in a preferred C2 site symmetry compared to the S6
symmetry indicated by the 5D0 to the 7F1 transition [30].
In addition to the intense peak, numerous smaller peaks
have been identified in the visible spectral range between
500 and 800 nm corresponding to the transitions from ex-
cited to the ground energy level of Eu. We also observed
an increase of the emission intensities when the Eu3+ con-
centration increases to reach a maximal value at 5 mol%.
Then the emission intensities decrease because of the con-
centration quenching. This emission behavior resembles
exactly the fluorescence of Eu3+-doped phosphors [29,31].



Figure 3 TEM micrographs of (a,b) Gd2O3, (c,d) Gd2O3:Eu 2%, (e,f) Gd2O3:Eu 5%, and (g,h) Gd2O3:Eu 10%.
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Based on these measurements, we deduced an energy
level scheme (Grotrian diagram) of the observed transition
in PL spectra as shown in Figure 6 and Table 1.
CIE chromaticity coordinates
The luminescent intensity of the emission spectral mea-
surements has been characterized using the CIE1931
chromaticity diagram (Figure 7) to get information
about the composition of all colors on the basis of color
matching functions �x λð Þ , �y λð Þ , and �z λð Þ [32,33]. The
(x, y) coordinates are used to represent the color and
locus of all the monochromatic color coordinates. The
values of the color chromaticity coordinates (x, y) were
found to be (x = 0.6387; y = 0.3609) for Gd2O3:Eu

3+ (2%),
(x = 0. 6447; y = 0. 3550) for Gd2O3:Eu

3+ (5%), and (x = 0.
6477; y = 0.3520) for Gd2O3:Eu

3+ (10%) (Figure 7). The
color coordinates are all in the pure red region of the
chromaticity diagram. Indeed, the present nanoplatelets
Gd2O3:Eu
3+ give emission in the red region with appre-

ciable intensity for fluorescence imaging.

Judd-Ofelt and radiative analysis
The Judd-Ofelt theory [34,35] is the most widely used
and known theory in the analysis of spectroscopic prop-
erties of rare earth ions in different hosts. The great ap-
peal of this theory is the ability to forecast the oscillator
strengths in absorption and to give information about
the luminescence branching ratios and lifetimes by using
only three parameters, Ωk (k = 2,4,6) [36-39].
For the particular Eu rare earth ion-doped materials,

the J-O intensity parameters are calculated with two dif-
ferent methods. The first method is based on the optical
absorption spectra. The second method is referred to
the analysis of emission spectra at room temperature. It
is noteworthy to mention that in the case of Eu3+-doped
nontransparent hosts, we are not always able to meas-
ure the absorption spectra [40,41]. Therefore, for



Figure 4 Energy dispersion spectrum (EDS) obtained from Gd2O3:Eu 2%.

Maalej et al. Nanoscale Research Letters  (2015) 10:215 Page 5 of 10
Gd2O3:Eu
3+ nanoplatelets, the second method allows

the calculation of J-O parameters.
Table 2 shows the type of transitions for Eu3+ ion. The

transition 5D0-
7F1 is the only allowed magnetic dipole transi-

tion. The transitions from 5D0-
7FJ′ (J′ = 0, 3, and 5) are for-

bidden according to electric and magnetic selection rules. In
other words, their magnetic and electrics dipoles (Aed and
Figure 5 Photoluminescence spectrum of Gd2O3 and Eu (2% to 10%) dop
Amd) are zero. However, these states are not pure and are
mixed with other states by crystal-field interaction, which
allow these transitions to be observed as is shown in Figure 5.
The transitions 5D0-

7FJ′ (J′ = 2, 4, and 6) are allowed electric
dipole transitions and depend solely onΩk (k = 2, 4, 6).
Since it is well known that magnetic dipole transitions in

rare earth ions are independent of the ion’s surroundings,
ing of Gd2O3.
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Figure 6 Schematic presentation of photoluminescence observed energy transitions.
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the magnetic dipole radiative transition rates Amd can be
evaluated using the following expression:

Amd
J−J 0 ¼

64π4ν3md

3h 2J þ 1ð Þ n
3Smd

Where n is the refractive index, (2J + 1) is the degen-
eracy of the initial state J and vmd is the transition energy
of the 5D0 → 7F1 transition (cm−1), h is Planck constant
(6.63 × 1027 erg s). Smd is the magnetic dipolar transition
line strength, which is independent of host matrix and is
equal to 11.26 × 10−42 (esu)2 cm2 [42]. From the defin-
ition of the Amd

J−J ′ , the refractive index can be calculated

to be 1.58.
For a particular transition, the intensity (I) of an emis-

sion transition is proportional to the radiative decay rate
A7FJ′

, of that transition, which equals the reciprocal of

intrinsic lifetime τ0. The intensity is also proportional to
the area under that emission curve [43]. Thus, the inten-
sity of an emission transition can be written as [44]
follows:
Table 1 Photoluminescence transitions observed for
Gd2O3:Eu

3+ nanoplatelets

label Wavelength (nm) Transition from To

1 580 5D0 →
7F0

2 593 5D0 →
7F1

3 612 5D0 →
7F2

4 652 5D0 →
7F3

5 708 5D0 →
7F4

6 538 5D1 →
7F1

7 554 5D1 →
7F2
I ¼ η
X

J
0 ¼0;1…6

A7FJ 0

The fluorescence lifetime of the nanoparticles is ap-
proximately 1 ms [45,46]. The values of A7FJ′

, shown in

Table 2 were determined by calculating the constant η.
The radiative branching ratio shown in Table 2 was cal-

culated using βJ−J 0 ¼ AJ−J 0X
J
0 ¼0;1…6

AJ−J 0

The electric dipole transitions 5D0-
7FJ′ (J′ = 2, 4, and

6) can be represented by using the three J-O parameters
Ωk (k = 2, 4, 6) as follows [47,48]:

Aed
J−J 0 ¼

64π4e2 ν3n n2 þ 2ð Þ2
27h 2J þ 1ð Þ

X

k¼2;4;6

Ωk ψJ U kð Þ�� ��ψ0J 0
�� ��2

where h is the Planck’s constant, ν is the transition energy
of electric dipole transition (in cm−1) and e is the charge
of an electron, and 〈5D 0 U kð Þ�� ��FJ ′〉j2

�� is the double-
reduced matrix element. All of the matrix elements for
5D0 → 7FJ′ transitions are zero [49-51], except those for
the 5D0-

7F2 transition (U(2) = 0.0028), the 5D0-
7F4 transi-

tion (U(4) = 0.002) and the 5D0 → 7F6 transition (U(6) =
0.0002). Thus, the values of Ωk can be calculated using
the emissions of 5D0 →

7FJ' (J' = 2, 4, 6). The results of our
calculations are shown in Table 3 together with the Ωk

values of Eu3+ ions in other hosts [41,51-57].
These intensity parameters follow the tendency Ω2 >Ω4 >

Ω6 found for other materials containing Eu3+ ions. It is
well known that Ω2 is most sensitive to the local structure
and its value is indicative the higher asymmetry and
higher covalence around the Eu3+ ions with their sur-
rounding ligands [58]. However, the parameter Ω6 is in-
versely proportional to the Eu-O band covalency, since it



Figure 7 The CIE coordinate for Eu3+-doped Gd2O3 upon excitation at 365 nm.
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is more strongly affected by the overlap integrals of 4f and
5d orbitals than Ω2 and Ω4 [58].
Table 3 J-O parameters of Eu3+ in several compounds

Compounds Ω2 (10
−20

cm2)
Ω4 (10

−20

cm2)
Ω6 (10

−20

cm2)
Reference
The MRI contrast enhancement
We have tested MR image enhancement properties of the
gadolinium nanoparticles and the Eu-doped nanoparticles
using the MRI scanner at King Fahd Specialist Hospital. We
also compared the MR images to commercially available
Table 2 Wavenumbers, transition rates, and branching
ratio for 5D0 →

7FJ'(J' = 0 − 6) of Eu3+ ions in Gd203
Transition Type Wavenumber

(cm−1)
Transition
rate (s−1)

Branching
ratio β (%)

5D0 →
7F0 Forbidden 17,241 19.1132 1.9109

5D0 →
7F1 Magnetic

dipole
16,863.4 66.5612 6.6548

5D0 →
7F2 Electric

dipole
16,339 876.9950 87.6820

5D0 →
7F3 Forbidden 15,337 10.0094 1.0007

5D0 →
7F4 Electric

dipole
14,124 27.0115 2.7006

5D0 →
7F5 Forbidden 13,422 0.4321 0.0432

5D0 →
7F6 Electric

dipole
12,422 0.0534 0.0053
MRI contrast agent (DOTAREM) using the same gadolin-
ium concentrations (Gd molar concentrations 0.05, 0.1, 0.2
and 0.4 mM). The gadolinium oxide nanoparticles provided
comparable MR image enhancement to the commercially
used contrast agent DOTAREM (Figure 8). The addition of
Gd2O3:Eu
3+

nanoplatelets
28.07 1.87 0.05 This work

KLTB:Eu3+ 14.20 ~0 2.40 Saleem
(2010) [54]

L4BE:Eu3+ 17.56 ~0 4.26 Babu (2000) [55]

LaOF:Eu3+ 56.3 13.9 - Grzyb (2011) [56]

Gd2O3:Eu
3+

nanocrystals
5.61 1.57 - Liu (2006) [57]

Eu0.08K0.075
Ba0.845TiO3

6.92 1.84 - Li (2008) [53]

Gd2(W0.5Mo0.5)
O6:Eu

3+
6.91 0.22 - Yue (2011) [41]

Fluorosilicate glass
ceramic

1.38 0.84 - Zhao (2007) [52]

Fluorophosphate
glass

3.24 5.11 2.89 Balda (1996) [51]



Figure 8 MRI of different concentrations (0.05 to 0.4 mM) of Gd2O3

and Gd2O3:Eu 2% to 10% compared to the same concentrations of
commercial contrast agent (Dotarem).

Figure 10 MRI relaxation time (T1) for Gd2O3 and Gd2O3:Eu (2% to 10%)
for molar concentrations from 0.05 to 0.2 mM.
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Eu reduced the MRI contrast due to the replacement of
gadolinium atoms by the Eu atoms in the material struc-
ture. Figure 9 shows the contrast relative to water due to
Dotarem, Gd2O3, and Gd2O3:Eu (2% to 10%) for Gd molar
concentration from 0.05 to 0.4 mM. Figure 10 shows the
variation of the T1 relaxation time for Dotarem, Gd2O3,
and Gd2O3:Eu (2% to 10%) for Gd molar concentration
from 0.05 to 0.2 mM.

Conclusions
We synthesized nanoplatelets of Gd2O3 and Gd2O3:Eu

3+

(2%, 5%, and 10%). The doping with Eu preserved the
crystalline cubic structure of the Gd2O3 matrix. The
MRI contrast of the Gd2O3 was comparable to the com-
mercial gadolinium-based contrast agent DOTAREM at
the same gadolinium concentrations. Doping the Gd2O3

with Eu exhibits very strong PL spectra especially in the
red region at 612 nm corresponding to the radiative
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Figure 9 The contrast relative to water due to Gd2O3 and Gd2O3: Eu
(2% to 10%) for Gd2O3 molar concentrations from 0.05 to 0.4 mM.
transitions from the Eu-excited state 5D0 to the 7F2 state.
The strongest red PL was obtained at 5% Eu doping con-
centration. The stimulated CIE chromaticity coordinates
and Judd-Ofelt analysis were used to obtain the radiative
properties of the sample from the emission spectra.
However, doping with Eu has decreased the MRI contrast
and increased the T1 relaxation time. The MRI contrast
enhancement decreased with increasing Eu doping con-
centration due to the replacement of the gadolinium
atoms with Eu. The synthesized nanoparticles can be used
as a contrast agent for magnetic resonance imaging. The
PL in the red region can be exploited in labeling biological
materials for fluorescence microscopy applications. The
synthesized nanoplatelets have to be coated or encapsu-
lated in biocompatible material such as polyethylene gly-
col to be used for in vivo MRI of cancer tissues with or
without targeting molecules.
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