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Abstract
Recent advances in genetics have spurred rapid progress towards the systematic identification of genes involved in complex
diseases. Still, the detailed understanding of the molecular and physiological mechanisms through which these genes affect
disease phenotypes remains a major challenge. Here, we identify the asthma disease module, i.e. the local neighborhood of the
interactome whose perturbation is associated with asthma, and validate it for functional and pathophysiological relevance,
using both computational and experimental approaches. We find that the asthma disease module is enriched with modest
GWAS P-values against the background of random variation, and with differentially expressed genes from normal and
asthmatic fibroblast cells treated with an asthma-specific drug. The asthma module also contains immune response
mechanisms that are shared with other immune-related disease modules. Further, using diverse omics (genomics,
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gene-expression, drug response) data, we identify theGAB1 signaling pathway as an important novelmodulator in asthma. The
wiring diagramof the uncovered asthmamodule suggests a relatively close link betweenGAB1 and glucocorticoids (GCs), which
we experimentally validate, observing an increase in the level of GAB1 after GC treatment in BEAS-2B bronchial epithelial cells.
The siRNA knockdown of GAB1 in the BEAS-2B cell line resulted in a decrease in the NFkB level, suggesting a novel regulatory
path of the pro-inflammatory factor NFkB by GAB1 in asthma.

Introduction
There is increasing evidence that disease genes in both mono-
genic and complex diseases are not distributed randomly on
the molecular interaction network (interactome), but they rather
work together in similar biological modules or pathways (1–3).
Moreover, gene products (e.g. proteins) linked to the same pheno-
typehave a strong tendency to interactwith each other (2,4,5) and
to cluster in the same network neighborhood (6). This suggests
the existence of a disease module, a connected sub-network that
can be mechanistically linked to a particular disease phenotype
(1–3,6–8). The accurate identification of such disease modules
could help uncover the molecular mechanisms of disease caus-
ation, identify new disease genes and pathways and aid rational
drug target identification. Currently, the accurate identification
of disease modules is hampered by the incompleteness of the
available cellular network maps and disease genes lists. There
is an increasing sense, however, that recent advances in interac-
tome mapping and disease gene identification have begun to
offer sufficient network coverage and accuracy to enable identifi-
cation of disease modules for some well-studied complex dis-
eases. The goal of this paper is to demonstrate the maturity
and the value of such an approach, through its application to
the study of asthma, a major complex disease with an estimated
economic burden of $56 billion in the USA for the year 2007 (9).

Despite the identification of many susceptibility alleles and
genes by GWAS and other technologies (10), our knowledge of
the underlying etiologic mechanisms responsible for asthma re-
mains limited. Given themany genes and environmental factors
linked to the disease, traditional single gene or single pathway-
based approaches have shown limited utility. In the past few
years, several attempts have been made to integrate the topo-
logical properties of protein interaction networks with different
types of ‘omics’ data to discover novel genes and pathways
(11–13). These approaches rely on the local impact hypothesis,
assuming that if a few disease components are identified, other
disease-related components are likely found in their network
vicinity (14,15). Therefore, each disease can be linked to a well-
defined local neighborhood of the interactome, called the disease
module. Yet, the existence of such a single neighborhood re-
mains a hypothesis that needs to be tested.

Our goal, here, is to determine whether a whole network-
based approach can enhance our understanding of the local net-
work neighborhood of a disease using asthma as an example
(Fig. 1A). We start by compiling a list of physical and experimen-
tally documented interactions in human cells from the literature,
as well as a set of known and well-established disease genes.
These seed genes allow us to pinpoint the position of the putative
diseasemodulewithin the interactome (Stage I). Next, we apply a
graph theoretic procedure to identify the localization of potential
asthma genes that may belong to this disease module (Stage II).
In Stage III the obtained diseasemodule is validated for function-
al and pathophysiological relevance using several asthma-
specific biological datasets. We further explore the overlap and
the difference between the asthma module and other immune-
related disease modules. Finally, in Stage IV we explore the
pathways within the module that contain promising therapeutic

targets. In particular, we confirm the relevance of the newly
identified GAB1 pathway using in vitro experiments.

Results
Disease module identification

Asthma seed genes in the human interactome
Using five complementary data sources, we compiled a list of 144
asthma-associated seed genes (Supplementary Material,
Table S1), 129 (89.5%) of which are represented within our
human Interactome. Though obviously incomplete and prone
to false positives, this list reflects our current knowledge of the
molecular underpinning of asthma.

If both the interactome and the seed gene list were complete
and accurate, according to the disease module hypothesis the
seed genes should form one (or a few) connected subgraph(s), de-
fining the diseasemodule(s). Consistent with this hypothesis, we
observe a cluster of 37 highly interconnected asthma seed genes,
which we call the proto-module (Fig. 1B). In order to test whether
such a proto-module could have emerged by chance, we mea-
sured the largest connected component for 129 genes randomly
drawn from the network. The resulting distribution (z-score =
10.6, empirical P-value < 10−6) in Figure 1C shows that on average
only 3–4 genes are connected in these random controls, suggest-
ing that the observed proto-module is at the core of an asthma
disease module. The proteins within this core reflect several
biological processes fundamentally implicated in asthma patho-
biology, including TH2-mediated (IL4 and IL13 cytokines),
immunoglobulin E- (IgE receptors FCER1A and MS4A2) and eo-
sinophil (CCL11-eotaxin)-mediated allergic inflammation, innate
immunity (TLR3, TLR4 and CD14) and vitamin D signaling (VDR).
Note that despite the existence of a proto-module with signifi-
cant size, most asthma seed genes are disconnected from it
and scattered throughout the interactome. They form nine
small isolated clusters of size two to four, and more than half
of the seed proteins (72/129, 56%) do not interact with other
seed proteins (Fig. 1B). Three factors likely contribute to this
fragmentation:

(i) Interactome incompleteness: current protein–protein interaction
maps cover <10% of all potential interactions (16–18). Hence
many more of the now isolated proteins could be part of a
single disease module, but the missing links have isolated
them.

(ii) False positives: not all genes in the seed gene list have a
mechanistic associationwith asthma. Hence, their isolation
from the giant component is real.

(iii) Missing disease genes: not yet identified asthma-related genes
could link currently isolated seed genes to the putative asth-
ma module.

Problem (i) is currently being addressed by several high-through-
put-mapping projects (19,20). Herewe focus on the localization of
asthma genes that will help us to refine the asthma disease
module.
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Expanding the proto-module
Locally dense neighborhoods of a biological network, called ‘topo-
logical modules’, can be uncovered using community detection
algorithms (21,22).We first tested whether these topologicalmod-
ules correspond to potential disease modules by implementing
three different widely used module-finding algorithms (23–25)
and inspecting the predicted topological modules for enrichment
with asthma-related genes. Our failure to find modules with

meaningful asthma association (see Supplementary Material,
Section VIII and Fig. S2) prompted us to choose a tool that simul-
taneously exploits the knowledge of the network topology and
the network position of the known asthma-associated genes to
identify the asthma disease module (26). The DIseAse MOdule
Detection (DIAMOnD) algorithm starts from the s seed genes
and prioritizes the other proteins of the interactome for their pu-
tative asthma relevance (see Fig. 2 and Supplementary Material,

Figure 1. Overview of the disease module approach for asthma. (A) The stages of mapping out and validating the asthma disease module. (I) Construction of the

interactome and compilation of the consensus disease gene list (seed genes). (II) Mapping the seed genes onto the interactome and identification of the disease module,

the sub-network that contains disease-associated components, via DIAMOnD. (III) Bioinformatics validation of the asthma disease module using gene expression

data, gene ontology, pathway information and comorbidity analysis. (IV) Detailed biological analysis and in vitro confirmation of novel asthma-related pathways with

potential therapeutic relevance. (B) Subgraph of the full interactome showing the connections among the asthma seed genes. The largest cluster (proto-module)

contains 37 seed genes, the rest is scattered in smaller fragments. The colors of the nodes indicate the source of each seed gene; the links are colored according to the

source of the interaction. (C) Size distribution of the largest connected component expected for 129 randomly distributed genes. The observed proto-module for asthma is

highly significant (z-score = 10.7, empirical P-value <10−6).
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Section IX fora descriptionof the algorithm). The key ingredient of
DIAMOnD is the selectionof proteins that have a significant fraction
of their interactions with seed proteins, while ignoring proteins

that interact with many seed proteins, mainly as a consequence
of their high degree (promiscuity), like the yellow protein at the
bottom of Figure 2A. Hence the proteins selected by the algorithm

Figure 2. DIAMOnDmethod for disease module identification and its validation: (A) Schematic network configuration with seed genes (red) and their neighbors (yellow).

The P-values next to the yellowgenes indicate how significant their respective number of links to seed genes are (see SupplementaryMaterial, Section IX for details). (B) At
each iteration step of the DIAMOnD algorithm the gene with the most significant number of connections to seeds and previously added genes is agglomerated into the

module. (C) Schematic depiction of the relationship between the disease module predicted by DIAMOnD and the seed proto-module. We call the proteins/genes selected

by the DIAMOnD algorithm DIAMOnD genes. The union of the DIAMOnD genes and the seed genes connected to them is the predicted disease module. (D) Validation of the

DIAMOnDgenes. Column 1 shows the numberof DIAMONnDgenes found in the different validation datasets, column2 the corresponding statistical significance. Column

3 identifies the considered datasets (see Supplementary Material Sections III–VII for details): (i) differentially expressed genes compiled from nine sources; (ii) 35 asthma-

specific pathways from GeneGO; (iii) MSIgDB pathways; (iv) gene ontology (biological processes); (v): genes associated with comorbid diseases. The values for the

DIAMOnD genes are show in orange, the values for seed genes and random expectation in red and green, respectively. In Column 2 we used a sliding-window

approach in order to compensate for the dependence of P-values on the underlying set size: At each iteration step i, we consider all DIAMOnD genes in the interval [i

−129/2, i + 129/2], thereby obtaining sets of the same size as the seed genes that can be compared to each other. Column 1 shows that DIAMOnD always performs

better than random expectation (orange line above green line), and in (i) and (ii) even better than the established seed genes themselves (orange line above red line).

(E) Comparison of the number of seed genes contained in the final DIAMOnD module with the number obtained in 105 random simulations. Connected sets that are

constructed completely at random contain on average 51.6 ± 4.9 seed genes, which is significantly lower than in the real disease module. (F) Same as E, but choosing

the connected genes not completely at random, but only from the immediate neighborhood of the seed genes. The random modules contain 76.0 ± 4.5 seed genes,

again significantly lower than in the real disease module. (G) Schematic illustration of the disease module, together with a 3D depiction of the actual asthma module

within the interactome, consisting of 441 genes (91 seed genes + 350 DIAMOnD genes). (H) Comparison of the enrichment of different gene sets with low P-value genes

from the EVE GWASmeta-analysis dataset. The seed genes (red) have the highest enrichment. When the 33 GWAS genes are removed from the seed genes (yellow), their

enrichment becomes comparablewith theDIAMOnDgenes (orange). The two randomcontrols of geneswith protein interactions to seed genes (green) and all interactome

genes (blue) have significantly lower fractions of low P-value genes.
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are not enriched in hubs, in line with the finding that disease
genes tend to avoid hubs (1). We call the genes encoding proteins
added by the algorithm ‘DIAMOnD genes’. The union of the seed
and DIAMOnD genes represents our putative ‘asthma disease
module’ (Fig. 2B and C). For a detailed characterization of
DIAMOnD and a critical comparison with other methods, see
Ghiassian et al. (26). Furthermore, to systematically estimate the
impact of potential noise in the interaction data, we repeated
our analysis on a set of modified networks with varying degrees
of artificial noise. The results indicate that our main findings are
robust over a wide range of noise (see Supplementary Material,
Section X).

Validation of the disease module

The DIAMOnD algorithm prioritizes the proteins in the network
based on their topological proximity to seed proteins. Hence, the
order in which the DIAMOnD proteins are selected can be inter-
preted as a network-based ranking criterion. Note, however, that
DIAMOnD ranks the entire network and we therefore need an
additional stopping criterion to define the boundary of the dis-
ease module. For this, as well as for a general bioinformatics val-
idation of the ranked genes, we use five different asthma-specific
validation data (see Materials and Methods and Fig. 2D). In all
five assessments, we observe greater enrichment for asthma-
relevant genes among the DIAMOnD genes than expected by
chance. Specifically we observe enrichment for differentially ex-
pressed genes in a survey of nine asthma gene expression data-
sets (Supplementary Material, Table S2, Fig. 2D (i)), for genes with
asthma-related GeneGO, MSigDB and GO pathways (Fig. 2D(ii),
(iii), (iv)), and in an asthma-related comorbidity analysis
(Fig. 2D(v)). The comorbidity analysis demonstrates that the DIA-
MOnD genes are enrichedwith genes associatedwith 85 diseases
that show significant comorbidity with asthma (relative risk
RR > 1). The top enriched comorbid diseases include immune
mechanism disorders (RR = 2.2, enrichment P = 3.5 × 10−4, Fish-
er’s exact test) and disorders of lipoid metabolism lipodystrophy
(RR = 2.14, P = 2.6 × 10−4). Across the five validation data presented
in Figure 2D we find that approximately the first 350 DIAMOnD
genes show the most significant asthma association, with min-
imal gains observed when further genes are considered. Hence
these 350 DIAMOnD genes together with 91 directly connected
seed genes represent our putative asthma disease module (441
genes in total) (Supplementary Material, Fig. S3). These 91 seed
genes include the 37 genes from the proto-module (Fig. 1B), as
well as 54 seed genes that were initially disconnected, thus in-
corporating 71% of the initial 129 seed genes. To test whether
the number of previously disconnected genes that were inte-
grated is higher than expected by chance, we compared it with
randomly chosen sets of connected genes: we find that con-
nected sets of the same size that were constructed completely
at random on average contain 51.6 ± 4.9 seed genes, which is sig-
nificantly lower than in the real disease module (Fig. 2E, z-score
= 6.9, empirical P < 10−6). Even when the random genes are cho-
sen only from the immediate neighborhood of the seed genes
we find that the resulting modules contain only 76.0 ± 4.5 seed
genes, which is again significantly lower as observed in the DIA-
MOnDmodule (Fig. 2F, z-score = 2.0, empirical P = 0.02). These dif-
ferences suggest that DIAMOnD successfully identifies the most
relevant local neighborhood within the interactome.

GWAS analysis
If the asthma disease module is enriched for asthma-causing
genes, then the module should also be enriched for disease-

susceptibility variants. To assess the significance of the 350 DIA-
MOnD genes for asthma-associated genetic variants, we used
data collected by two meta-analysis GWAS studies conducted
by the North American EVE (n = 15 000 subjects) and European
GABRIEL (n = 26 475) asthma consortia (27,28). We computed a
single P-value for each gene in the interactome using the
LDsnpR method (29). Figure 2G and H shows the respective frac-
tion of seed genes, DIAMonD genes, genes connected to seed
genes and the rest of the interactome that have a GWAS
P-value below a given threshold ϕ. The results indicate that the
seed list has the highest fraction of genes associated with asth-
ma, followed in order by the DIAMOnD list, genes with protein
interactions with seed genes and finally the rest of the interac-
tome. Once we remove four seed genes that were selected based
on their high GWAS significance (ORMDL3, IL33, IL1RL1 and
IL18R1), the DIAMOnD and the seed genes show comparable dis-
ease association P-values (Fig. 2H), implying that the DIAMOnD
genes are indeed enriched for disease-susceptibility variants.
Recently published associations of the DIAMOnD genes CDK2
(rs2069408, GWAS P-value = 1.0 × 10−10) and GAB1 (rs3805236,
GWAS P-value = 7.0 × 10−8) with adult asthma in an Asian ances-
try population provide further evidence for an elevated asthma
association among the DIAMOnD genes (30) (see Supplementary
Material, Table S6 for a list of all DIAMOnD genes with GWAS
P-value < 0.05).

Comparison with other methods
In recent years, a variety ofmethods have been developed to infer
disease genes from their connectivity patterns within the inter-
actome (31,32). These tools are based on the observation that
genes causing similar diseases tend to link to each other in the
interactome (14,15,33–36). For example, a study used GRAIL and
DAPPLE together with GWAS data to prioritize genes in inflam-
matory bowel disease (IBD) (14). Similarly, the clustering in pro-
tein interaction networks was used to identify true positive hits
in siRNA screens (15). To explore the performance of DIAMOnD,
we tested it against four different network-based algorithms
(see Materials and Methods): random walk (RW) (33), DaDa (36),
PRINCE (35), CIPHER (34) and one sequence-based candidate
gene prioritization tool: Endeavor (37). We find that with hetero-
geneous biological data (GO terms, MSIgDB, etc.) that are less
specific to asthma, DIAMOnD performs equally or slightly better
than the other algorithms (Fig. 3A). When using asthma-specific
datasets (GWAS, differential gene-expression, etc.), however,
DIAMOnD performs considerably better than the reference
tools (Fig. 3B). We further compared the genes identified by DIA-
MOnD with the genes from DaDa and RW, the two methods that
had the best performance for asthma.We find a large overlap be-
tween the predicted DaDa and RW genes, but only moderate
overlap with DIAMOnD genes (Fig. 3C). Indeed, 223 (64%) DIA-
MOnD genes are unique and were not identified by either RW or
DaDa. An analysis of the genes that are exclusive to eachmethod
uncovered two mechanisms that contribute to DIAMOnD’s dis-
tinct performance: first, we find that RW and DaDa genes are en-
riched in hubs, which is not the case for DIAMOnD (Fig. 3D).
Indeed, DIAMOnD selects proteins based on the statistical signifi-
cance of the number of links they have to seed proteins, rather
than their raw number. As a consequence, the average degrees
<k> in the two gene sets are <k> = 44 (DIAMOnD) and <k> = 57
(RW and DaDa), a highly significant difference (P < 3 × 10−3,
Mann–WhitneyU test). The absence of hubs among the DIAMOnD
genes is consistent with evidence that disease genes generally
tend to avoid hubs (1). Second, we find that DIAMOnD selects 55
genes that initially have no connections to seed genes, in contrast
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to eight and six genes selected by RWandDada, respectively. This
means that while RW and DaDa select mainly immediate neigh-
bors of the seed genes, DIAMOnD successfully identifies genes be-
yond a simple first order association.

Assessing disease heterogeneity, drug response and
inflammatory signature genes

Relation to other immune-related diseases
Asthma has an important immune-related component that
should also be represented in its disease module. We therefore
expect that the asthma module overlaps with modules of other
immune-related diseases. To explore this possibility, we com-
piled seed genes for 11 other immune-related diseases that
show extensive co-morbidity among each other as reported pre-
viously (38). We find that 9 out of 11 diseases exhibit a significant
proto-module (Supplementary Material, Fig. S4). For each of these
diseases we then determined a set of 350 DIAMOnD genes and
measured their overlap with the asthma module. The highest
overlaps were found for Crohn’s disease (202 genes), Hashimoto’s
disease (182 genes) andmultiple sclerosis (180 genes), indicating a
strong shared pathogenesis between these diseases. Indeed, as
shown in theVenndiagram in Figure 4A, the four diseasemodules

exhibit a common core of 72 genes. Most of the shared genes are
part of a few important immunological pathways: T-cell differen-
tiation, immune cell signaling, innate immune response and HLA
pathways (Supplementary Material, Fig. S5). This indicates that
the key components in regulating the immune response are
shared among many chronic immune-related diseases. Yet, be-
sides the overlap, the comparison also reveals genes that are spe-
cific to each disease. We find that 65 genes within the asthma
module do not appear in any other module. Interestingly, they
all interact with each other in a single connected component
(Fig. 4B), thus pointing towards a region of the interactome that
is highlyasthma specific (SupplementaryMaterial, Fig. S6A and B).

Asthma severity and disease module
We next explored the relation between the asthma module and
two important asthma phenotypes that are central to the classi-
fication and management of the disease: (i) asthma severity, de-
fined on the basis of lung function, disability and exacerbation
history; and (ii) poor asthma control, a critical harbinger of impend-
ing exacerbation characterized by symptom frequency (including
interference with sleep and activity limitation) and use of rescue
medication. Asthma severity varies widely between patients,
withmarkedly different clinical courses and responses to asthma

Figure 3. Comparison of DIAMOnD with other methods. (A) Enrichment of the gene sets obtained by five gene-prioritization methods and DIAMOnD with non-asthma-

specific validation data. For each method we use the 350 highest ranked genes. All tested methods show comparable performance. (B) Enrichment according to asthma-

specific data. Here, DIAMOnDclearly shows stronger enrichment andoutperforms the othermethods. (C) Venndiagramof the gene sets of the threemethodswith the best

performance in (A) and (B). While there is a significant overlap, each method also has a considerable number of unique genes. (D) Comparison of the degrees of the 232

unique DIAMOnD genes and the 267 combined unique genes from (C). The genes identified by the other two methods contain many network hubs that are absent in

DIAMOnD.
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Figure 4. Overlap between Asthma disease module and the 11 other immune-related diseases. (A) Venn diagram of the three immune-related diseases with the highest

overlap with the asthma module. Seventy-two genes are common among the four diseases. (B) Connected component in the interactome of the 65 genes unique to the

asthmamodule. (C) The largest connected component of the asthmamodulewith genes highlighted in purple that are differentially expressed between poorly and well-

controlled asthma subjects. (D) The three pathways that are fully embedded in the asthma diseasemodule (shown separately on the side). Seed genes are circled in red. (E)
Effect of GC treatment in fibroblast cells.We determined the differentially expressed genes from ‘normal-untreated versus normal-treated’ and ‘asthma-untreated versus

asthma-treated’ and mapped them to the interactome. The asthma module is significantly enriched with differentially expressed genes. These genes are highly

interconnected inside the module (z-score = 7.8 and 6.5 for normal and asthmatic; orange bars), whereas the differentially expressed genes that fall outside the

module are scattered and do not form significant clusters (blue bars). (F) Co-expression networks of GAB1 pathway genes in normal and asthmatic fibroblast cell lines.
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controller therapies. To understand the asthmamodule relation-
shipswith acute asthma control (AAC), we performed differential
expression analyses in a subset of 583 subjects from the Asthma
BioRepository for Integrative Genomic Exploration (Asthma
BRIDGE) cohort who had genome-wide gene expression data de-
rived from whole blood RNA (see Materials and Methods). AAC
was represented by a modified version of the clinically validated
Asthma Control Test (mACT) score. We observe that the 63 genes
differentially expressed between poor and well-controlled asth-
matics are enriched for DIAMOnD genes (P-value = 6 × 10−3, Fish-
er’s exact test). These genes are also significantly connected
(z-score = 2.4, empirical P-value = 0.016) within the asthma mod-
ule (Fig. 4C). Together, these data suggest widespread perturba-
tions of specific asthma disease module components across the
spectrum of asthma severity and control, and lend further cre-
dence to the biological and clinical importance of the identified
disease module in asthma pathogenesis.

Identifying key pathways within the asthma module
Apathwayanalysis reveals 162 pathways that have at least half of
their genes in the asthma disease module (Supplementary Ma-
terial, Table S7). To single out the most relevant and novel path-
ways, we integrated the various validation data introduced
above, such as asthma-specific gene expression and GWAS
meta-analysis signals (see Supplementary Material, Section XI):
for each gene in the module, we first compute an integrated
score capturing the amount of available evidence for its asthma
relevance.We then used the average score of the genes in a path-
way to quantify its integrated biological relevance to asthma
(Supplementary Material, Table S5). Among the highest ranked
pathways are several whose asthma association is well es-
tablished in immune response, including the IL4, EGF and IGF1
signaling pathways (Table 1). We also find three additional
novel pathways that are fully embedded within the asthma dis-
ease module (Fig. 4D): the activation of the AP1 family of
transcription factors (2 in Table 1), Trka Receptor Signaling (1)
and GAB1 signalsome (4). Though not traditionally considered
‘asthma-associated pathways’, the relevance of each of these
for asthma pathogenesis has been at least superficially estab-
lished. Indeed, the promoters of asthma-associated cytokines
are enriched for AP-1 DNA-binding sites and inhibition of airway
AP-1 expression has been proposed as a therapeutic avenue to
control asthma (39). Activation of Trka receptor signaling is
involved in airway inflammation and remodeling–cardinal histo-
pathologic features observed in asthma (40). The potential rele-
vance of the GAB1 signalsome is supported by a recent GWAS
study identifying the GAB1 locus (GWAS P-value = 1.87 × 10−12) as
associated with adult asthma in subjects of Asian ancestry (30).
In the disease-connect database, we find thatGAB1 is not differen-
tially expressed in any of the other 11 immune-related diseases
(disease-connect.org; threshold used: P-value < 10−6). In Gene
expression omnibus (GEO), GAB1 is differentially expressed only
in multiple sclerosis (adjusted P-value = 1.1 × 10−3, t-test) and
Psoriasis (adjusted P-value = 5.9 × 10−6) (Supplementary Material,
Table S10). Interestingly, we do not find an expression change of
GAB1 in Crohn’s disease (SupplementaryMaterial, Table S10), em-
phasizing the importance of condition- and tissue-specific activa-
tion of common genes between the two disease modules.

Identifying new disease mechanisms and predicting drug targets in
the asthma module
To experimentally test whether the predicted asthmamodule of-
fers a perspective for identifying new therapeutic targets, we in-
vestigated steroid- and cytokine-induced gene expression in

fibroblast cells: if the diseasemodule is relevant to asthmapatho-
genesis, then treatment of asthma-specific cell lines by corticos-
teroids, an effective anti-inflammatory therapy for asthma, is
expected to lead to gene expression changes localized within
the module. Naturally, dampening the inflammation could be
achieved by either directly affecting the asthmamodule, but ster-
oids could also act through other pathways that limit airway in-
flammation. To experimentally test whether the impact of the
steroids is limited to the module, we compared the gene expres-
sion profiles between normal untreated fibroblast cells versus
normal fibroblasts treatedwith glucocorticoid (GC) and asthmatic
fibroblasts untreated versus asthmatic fibroblast cells treated
with GC (Fig. 4E). To check whether the observed enrichment
can be attributed to the GCR pathway alone, we re-analyzed the
data without GCR pathway genes. We found that the significant
enrichment of DIAMOnD genes with differentially expressed
genes persists, indicating that the module is indeed influenced
by GC response beyond the presence of theGCR pathway (Supple-
mentary Material, Table S8). Overall, three results stand out:

(i) In both normal and asthmatic fibroblast cell lines a statistic-
ally significant number of genes responding to GC treatment
are located inside the asthma module, but with a different
set of genes lighting up in normal and asthmatic subjects.
This supports our hypothesis that the module collects
genes of potential asthma relevance, where different re-
gions are activated in normal and asthmatics (Fig. 4E). For
example, for the normal and asthmatic fibroblast cells we,
respectively, find 49 and 44 differentially expressed genes
within the asthma module following GC treatment, com-
pared with random expectations of 7.8 and 6.5 (P = 1.67 ×
10−9 and 9.02 × 10−9, respectively, Fisher’s exact test). The
differentially expressed genes of both the normal and the
asthmatic state form significant connected components
(in both cases z-score = 6.0, empirical P-value < 10−5)

(ii) The enrichment of the DIAMOnD genes with differentially
expressed genes (38 in normal, and 34 in asthmatic samples,
corresponding to P-values 2.6 × 10−8 and 1.3 × 10−7, respect-
ively, Fisher’s exact test) is significantly higher than the en-
richment of the seed genes (11 differentially expressed
genes, P = 0.02). To correct for the different number of
genes in the compared gene sets, we also used equal size
windows of DIAMOnD genes, the results confirming this
conclusion (Supplementary Material, Fig. S8). Further, the
mean fold change of seed, asthma module and DIAMOnD
genes was significantly higher compared with the back-
ground (Supplementary Material, Fig. S9). In summary,
these results indicate that the cell’s response to GC treat-
ment is heavily localized in the gene set added by the DIA-
MOnD algorithm, rather than the consensus asthma genes
(seeds), thus supporting DIAMOnD’s ability to identify
genes relevant to therapeutic intervention.

(iii) We also observe significant enrichment among genes differ-
entially expressed by GCs within many of the top asthma
module pathways, particularly the IGF1and insulin pathways
(SupplementaryMaterial, Table S9). In linewith genetic asso-
ciation evidence described earlier, a particularly interesting
insight is the emergence of GAB1 as the highest ranked path-
way in the response of asthmatic fibroblasts to GC.

Co-expression connection between normal and asthmatic cells for
GAB1 pathway genes
Genes in the same biological pathway are more likely to be co-
expressed in order to synchronize an array of biochemical
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Table 1. The top 20 pathways enriched in asthma module

Pathways prioritized with seed genes
Pathway name All genes in

asthma module
all pathway
genes

coverage mean
score

Genes

ACTIVATION OF THE API FAMILY OF
TRANSCRIPTION FACTORS

10 10 1.00 0.72 MAPK14 MAPK3 MAPK1 MAPK8 MAPK9 MAPK11 MAPK10 FOS ATF2 JUN

IL2 PATHWAY 20 22 0.91 0.61 IL2RB JAK1 MAPK3 SYK GRB2 MAPK8 STAT5A SOS1 SHC1JAK3 IL2RA LCK ELK1
MAP2K1 CSNK2A1 RAF1 STAT5B HRAS JUN FOS

IL6 PATHWAY 21 22 0.95 0.61 CEBPB JAK2 JAK1 MAPK3 SRF STAT3 TYK2 SHC1JAK3 IL6ST ELK1 MAP2K1 SOS1 RAF1
PTPN11 HRAS JUN GRB2 FOS CSNK2A1 IL6

EGF PATHWAY 28 31 0.90 0.61 JAK1 PIK3R1 PIK3CA SRF PLCG1 JUN GRB2 RAF1 RASA1 STAT5B MAP2K1 EGFR HRAS
EGF STAT6 MAPK3 PRKCB PRKCA MAPK8 STAT5A SOS1 SHC1 STAT1 STAT2 ELK1
STAT3 CSNK2A1 FOS

EPO PATHWAY 18 19 0.95 0.61 JAK2 STAT5B MAPK3 EPOR GRB2 MAPK8 STAT5A SOS1 SHC1 ELK1 MAP2K1 CSNK2A1
HRAS PLCG1 FOS RAF1 JUN PTPN6

TPO PATHWAY 21 24 0.88 0.60 CSNK2A1JAK2 PIK3R1 MAPK3 PRKCB PRKCA STAT3 STAT5A STAT5B SHC1 PIK3CA
RAF1 MAP2K1 SOS1 HRAS STAT1 FOS GRB2 PLCG1 JUN RASA1

CDMAC PATHWAY 13 16 0.81 0.59 MAPK3 MAPK1 PRKCB PRKCA FOS MAP2K1 HRAS MYC RAF1 JUN TNF RELA NFKB1
TRKA PATHWAY 12 12 1.00 0.59 NGF PRKCB AKT1 PRKCA NTRK1 GRB2 SHC1 PIK3CA SOS1 PLCG1 HRAS PIK3R1
GLEEVEC PATHWAY 20 23 0.87 0.58 JAK2 STAT5B MAPK3 AKT1 GRB2 MAPK8 BAD STAT5A PIK3R1 PIK3CA FOS HRAS

MAP2K1 BCR SOS1 RAF1 STAT1 CRKL MYC JUN
AKT PHOSPHORYLATES TARGETS IN THE

CYTOSOL
13 14 0.93 0.57 CDKN1B PDPK1AKT3 CASP9 AKT1 AKT2 GSK3B MDM2 TSC2 GSK3A CDKN1A BAD

CHUK
IL3 PATHWAY 13 15 0.87 0.57 JAK2 STAT5BMAPK3GRB2 STAT5A SOS1 SHC1CSF2RBMAP2K1HRAS FOSRAF1 PTPN6
PDGF PATHWAY 27 32 0.84 0.57 JAK1 PIK3R1 PIK3CA PDGFRA SRF PLCG1 JUN GRB2 RASA1 STAT5B HRAS FOS STAT6

PRKCA MAPK3 PRKCB MAP2K1 MAPK8 STAT5A SOS1 SHC1 STAT1 STAT2 ELK1
STAT3 CSNK2A1 RAF1

IGF1 PATHWAY 19 21 0.90 0.56 IRS1 SOS1 MAPK3 SRF MAPK8 IGF1R PIK3R1 SHC1 PIK3CA RAF1 ELK1 MAP2K1
CSNK2A1 HRAS PTPN11 FOS GRB2 JUN RASA1

GAB1 SIGNALOSOME 11 11 1.00 0.56 GRB2 PXN GAB1 PIK3R1 PIK3CA PAG1 CSK EGFR PTPN11 SRC EGF
NGF PATHWAY 16 18 0.89 0.55 CSNK2A1 NGF MAPK3 GRB2 MAPK8 PIK3R1 SHC1 PIK3CA ELK1 MAP2K1 SOS1 HRAS

PLCG1 JUN RAF1 FOS
SIG IL4RECEPTOR IN B LYPHOCYTES 23 27 0.85 0.55 JAK1 AKT3 BCL2 BAD PIK3R1JAK3 PIK3CAMAP4K1 GRB2 SOCS1IRS1 AKT1AKT2 GSK3B

GSK3A RAF1 MAPK3 IL4R MAPK1 SOS1 SHC1 IRS2 STAT6
IL4 PATHWAY 9 11 0.82 0.55 IRS1JAK1 IL4R AKT1 GRB2 IL4 SHC1JAK3 STAT6
INSULIN PATHWAY 19 22 0.86 0.54 IRS1 SOS1 MAPK3 MAP2K1 MAPK8 PIK3R1 SHC1 PIK3CA ELK1 SRF CSNK2A1 RAF1

PTPN11 HRAS JUN GRB2 FOS INSR RASA1
GH PATHWAY 23 28 0.82 0.54 JAK2 SOS1 MAP2K1 PIK3R1 PIK3CA SRF PLCG1 GRB2 SOCS1 IRS1 HRAS INSR PTPN6

MAPK3 MAPK1 PRKCB PRKCA STAT5A STAT5B SHC1 RPS6KA1 RAF1 GHR
RACCYCD PATHWAY 20 26 0.77 0.52 MAPK3 CDKN1B CDKN1A CCND1 CHUK AKT1 PIK3R1 PIK3CA RAF1 CDK4 RB1 IKBKB

PAK1 CDK2 HRAS E2F1 CDK6 RELA NFKB1 MAPK1
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Table 1. Continued

Pathways prioritized without seed genes
Pathway name Only DIAMOnD

genes
all pathway
genes

coverage mean
score

Genes

ACTIVATION OF THE AP1 FAMILY OF
TRANSCRIPTION FACTORS

8 10 0.80 0.59 MAPK3 MAPK1 MAPK9 MAPK11 MAPK10 FOS ATF2 JUN

IL6 PATHWAY 20 22 0.91 0.58 CEBPB JAK2 JAK1 MAPK3 SRF STAT3 TYK2 SHC1JAK3 IL6ST ELK1 MAP2K1 SOS1 RAF1
PTPN11 HRAS JUN GRB2 FOS CSNK2A1

EPO PATHWAY 17 19 0.89 0.57 JAK2 STAT5B MAPK3 EPOR GRB2 STAT5A SOS1 SHC1 ELK1 MAP2K1 CSNK2A1 HRAS
PLCG1 FOS RAF1 JUN PTPN6

AKT PHOSPHORYLATES TARGETS IN THE
CYTOSOL

13 14 0.93 0.57 CDKN1B PDPK1AKT3 CASP9 AKT1 AKT2 GSK3B MDM2 TSC2 GSK3A CDKN1A BAD
CHUK

IL3 PATHWAY 13 15 0.87 0.57 JAK2 STAT5BMAPK3GRB2 STAT5A SOS1 SHC1CSF2RBMAP2K1HRAS FOSRAF1 PTPN6
CDMAC PATHWAY 12 16 0.75 0.55 MAPK3 MAPK1 PRKCB PRKCA FOS MAP2K1 HRAS MYC RAF1 JUN RELA NFKB1
TPO PATHWAY 19 24 0.79 0.53 CSNK2A1JAK2 PIK3R1 MAPK3 PRKCB PRKCA STAT3 STAT5A STAT5B SHC1 RAF1

MAP2K1 SOS1 HRAS FOS GRB2 PLCG1 JUN RASA1
GH PATHWAY 22 28 0.79 0.52 JAK2 SOS1 MAP2K1 PIK3R1 SRF PLCG1 GRB2 SOCS1 IRS1 HRAS INSR PTPN6 MAPK3

MAPK1 PRKCB PRKCA STAT5A STAT5B SHC1 RPS6KA1 RAF1 GHR
IL2 PATHWAY 17 22 0.77 0.51 JAK1 MAPK3 GRB2 STAT5A SOS1 SHC1JAK3 IL2RA LCK ELK1 MAP2K1 CSNK2A1 RAF1

STAT5B HRAS JUN FOS
TRKA PATHWAY 10 12 0.83 0.51 PRKCB AKT1 PRKCA NTRK1 GRB2 SHC1 SOS1 PLCG1 HRAS PIK3R1
IGF1 PATHWAY 17 21 0.81 0.50 IRS1 SOS1MAPK3 SRF IGF1R PIK3R1 SHC1 RAF1 ELK1 MAP2K1 CSNK2A1 HRAS PTPN11

FOS GRB2 JUN RASA1
EGF PATHWAY 23 31 0.74 0.49 JAK1 PIK3R1 SRF PLCG1 JUN GRB2 RAF1 RASA1 STAT5B MAP2K1 EGFR HRAS MAPK3

PRKCB PRKCA STAT5A SOS1 SHC1 STAT2 ELK1 STAT3 CSNK2A1 FOS
SIGNAL ATTENUATION 10 11 0.91 0.48 IRS1 MAPK3 GRB10 GRB2 SOS1 SHC1 DOK1 IRS2 CRK INSR
GLEEVEC PATHWAY 17 23 0.74 0.48 JAK2 STAT5B MAPK3 AKT1 GRB2 BAD STAT5A PIK3R1 FOS HRAS MAP2K1 BCR SOS1

RAF1 CRKL MYC JUN
INSULIN PATHWAY 17 22 0.77 0.48 IRS1 SOS1 MAPK3 MAP2K1 PIK3R1 SHC1 ELK1 SRF CSNK2A1 RAF1 PTPN11 HRAS JUN

GRB2 FOS INSR RASA1
RACCYCD PATHWAY 18 26 0.69 0.48 MAPK3 CDKN1B CDKN1A CCND1 CHUK AKT1 PIK3R1 RAF1 CDK4 RB1 PAK1 CDK2

HRAS E2F1 CDK6 RELA NFKB1 MAPK1
SOS MEDIATED SIGNALLING 10 13 0.77 0.47 IRS1 MAPK3 MAPK1 GRB2 SOS1 IRS2 MAP2K1 RAF1 HRAS YWHAB
PDGF PATHWAY 23 32 0.72 0.47 JAK1 PIK3R1 PDGFRA SRF PLCG1 JUN GRB2 RASA1 STAT5B HRAS FOS PRKCA MAPK3

PRKCB MAP2K1 MAPK8 STAT5A SOS1 SHC1STAT2 ELK1 STAT3 CSNK2A1 RAF1
VDR PATHWAY 10 12 0.83 0.46 KAT2B NCOA2 NCOR1 NCOA3 TSC2 EP300 NCOA1 MED1 CREBBP RXRA
NGF PATHWAY 13 18 0.72 0.46 CSNK2A1 MAPK3 GRB2 PIK3R1 SHC1 ELK1 MAP2K1 SOS1 HRAS PLCG1 JUN RAF1 FOS

Gene names in bold are ‘seed genes’. Of the 20 pathways, Activation of AP1, TRKA and the GAB1 signalsome pathways are fully embedded in the asthma module.
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reactions (41). We investigated the connectivity pattern of GAB1
pathway genes in our normal and asthmatic fibroblast gene
expression data. We observe that in normals only 9 pathway
genes are connected with a Pearson correlation r > 0.5 (corre-
sponding P-value <0.05) compared with 11 genes in asthmatic
subjects. For example, PAG1 and EGF genes are not significantly
correlatedwith other pathway genes in normal subjects, whereas
in asthmatic patients they are negatively correlated with PTPN11,
EGFR, PIK3CA and PIK3R1 (Fig. 4F). Also, GAB1, PAG1 and PIKR1
were differentially expressed after the GC treatment in asth-
matics (Fig. 4F).

To assess the response of the asthma module to biological
perturbations central to the pathogenesis of asthma, we com-
pared the gene expression profiles in fibroblasts from healthy
and asthmatic subjects following treatment with either IL13 or
IL17. Interleukin-13 has been implicated in the pathogenesis of
asthma, and IL-13 blockade has demonstrated efficacy in asth-
matics (42). Similarly, Th17-cell-derived IL-17 expression modu-
lates the degree of Th2-mediated inflammation, and has been
implicated in the pathogenesis of asthma and other chronic air-
ways diseases (43). Similar to the GC response, the asthma mod-
ule is enriched for IL13 and IL17 responsive genes compared with
the random expectation (Table 2).

Interestingly, we find that the seed genes differentially ex-
pressed by the three perturbations, (GC, IL13, IL17) are virtually
all among the 91 seed genes that reside within the final asthma
module. Indeed, only one of the 53 seed genes outside the
module was differentially expressed in response to perturbation
(P = 0.002, Fisher’s exact test). Hence the DIAMOnD algorithm has
a unique record in separating pathophysiologically asthma-
relevant seed genes from spurious associations. Despite the
fact that these 53 genes were considered relevant to asthma
in the literature, this marked difference in responsiveness to
GC-relevant perturbations suggests that they may be false posi-
tives and not part of the asthma disease module.

Replication of GAB1 pathway genes enrichment in the CAMP cohort
after dexamethasone treatment
To differentiate the potential role forGAB1 in asthma susceptibil-
ity versus drug treatment response, we assessed GAB1 expression
in a microarray experiment involving dexamethasone (a gluco-
corticosteroid)-treated immortalized B-cells derived from 145
childhood asthmatics (44). We find that GAB1 is differentially ex-
pressed in dexamethasone-treated cells versus sham controls
(FDR-adjusted P-value 8.85 × 10−34). Using a Cox proportional ha-
zards model, higher basal (sham) GAB1 expression was signifi-
cantly associated with risk of severe asthma exacerbations
(hazard ratio 1.46, 95% CI: 1.02–2.11 for each standard deviation
of GAB1 expression). Moreover, increased cellular response of
GAB1 to dexamethasone resulted in significant protection from
severe exacerbations (hazard ratio 0.68, 95% CI: 0.46–0.99 for
each standard deviation of GAB1 expression change with dexa-
methasone). These results support the role of GAB1 in the GC-
signaling pathwayand as an asthma susceptibility and treatment
gene.

Inhibition of NFkB mechanism through GAB1
The topology of the disease module helps us identify potential
novel molecular pathways through which GAB1 is involved in
asthma, suggesting a relatively proximal link to GCs. Motivated
by the local impact hypothesis (45), indicating that the shortest
path between two molecules are the most predictive for disease
causation, we identified the shortest pathwithin the interactome
between the differentially expressed genes in the GAB1 pathway T
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andNR3C1, the GC receptor (Fig. 5A). The localmap of the asthma
disease module suggests that after the activation by GC, NR3C1
can activateMAPK8 (a seed gene) and severalMAPK family mem-
bers, like MAPK1, MAPK3, MAPK4 (DIAMOnD genes), that could
trigger GAB1. In addition to these indirect links, we also note
the presence of conserved GC response element (GRE) sequences
(46) in the promoter of the GAB1 gene (Fig. 5A, Supplementary
Material, Section XIII), suggesting GAB1 as a direct GC (dexa-
methasone) target. The other member of the family, GAB2, is al-
ready known to harbor GREs in neuronal cells (47).

To test these network-based predictions we reasoned that if
GC is affecting the level ofGAB1, thenGAB1 expression should in-
crease with dexamethasone treatment. To test this hypothesis,
we performed the in vivo experiment in BEAS-2B bronchial epi-
thelial cells (10 n, 2 h). As shown in Figure 5B and C, GAB1 levels
increase in the presence of dexamethasone, establishing the fact
that GAB1 is influenced by the GC treatment.

NFkB controls a variety of processes in asthma, including
inflammation. Consequently, regulation of NFkB has been a
continued focus of study. GAB1 was shown to promote pro-
inflammatory cytokine production by enhancing NFkB activation
in macrophages (48). Recently, Vaughan et al. stressed the role of
NFkB as a downstream target of GAB1 (49), and it has been postu-
lated that GAB-mediated PI3-K activation has different conse-
quences, depending on the cell type studied (50). However, little
is known at themolecular level about the role of GAB1 in asthma.
To test whether GAB1 regulates NFkB in BEAS-2B cells, we per-
formed siRNA knockdown of GAB1. Interestingly, we observed
decreased expression of NFkB upon GAB1 silencing with or with-
out dexamethasone (Fig. 5D). This observation suggests a new

regulatory pathway of the pro-inflammatory factor NFkB by
GAB1 in human bronchial epithelial cells.

In summary, our experimental validation indicates that GAB1
positively regulates NFkB, offering a novel mechanistic insight
into the control of NFkB and inflammation. Most importantly,
this finding offers direct experimental evidence of the utility of
the disease module based approach to uncover pertinent novel
disease mechanisms.

Discussion
In this paper our goal was to extract the predictive value of the in-
teractome by identifying the localized gene neighborhood asso-
ciated with asthma. The starting point of our analysis was a list
of seed geneswith established asthmaassociation. As asthma in-
volves multiple genetic as well as environmental factors, its cau-
sal mechanisms are expected to be highly complex. Any list of
seed genes must therefore remain incomplete and preliminary.
Yet, despite this limitation, we find that the known seed genes al-
ready carry enough information to build a robust and predictive
disease module.

To date, only a few studies have applied network-based tools
to investigate asthma. A study using a protein interaction net-
work suggested hub nodes with high betweenness centrality,
such as BRCA1, as potential candidate genes (51). Lu et al. (52),
on the other hand, demonstrated that nodes with high connect-
ivity (hubs and superhubs) show little expression variations in
asthma, which is consistent with the observation that disease
genes tend to be peripheral in the interactome (1). The disease
module detection algorithm used in this study avoids hubs by

Figure 5. Putative GC mechanism effect via GAB1 in the asthma module. (A) The consensus functional GC response element (GRE) in target genes reads 5′-
AGAACAnnnTGTTCT-3′. The probable GRE-binding site conserved in the GAB1 promoter region is 2742–2758 bp. (B) Expression of GAB1 and NFkB (p65) in Beas-2B cells

transfected with GAB1-targeted or non-target (NT) control siRNA, as detected by western blot. β-Actin was used as loading control. Band density was quantified using

Image J and then normalized to β-actin control. (C) Putative molecular mechanism for the downstream inhibition of NFkB after GC-treatment via the GAB1 signalsome

pathway in the asthma module. The activation of NR3C1 via GCs can trigger GAB1 through several MAPK family members. Alternatively, GAB1 may also be a direct GC

target as suggested by A. From the 11 genes in the GAB1 signalsome pathway, GAB1, PIK3R1 and PAG1 are differentially expressed both in normal and asthmatic cells.

(D) Illustration that GAB1 regulates NFkB regardless of the presence of GCs.
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design. Within the identified disease module, we find an inflam-
matory response signature that is shared with other immune-
related diseases, such as Crohn’s disease, multiple sclerosis,
rheumatoid arthritis and others (Supplementary Material, Sec-
tion SXIV) (53). This finding is in agreement with recent insights
suggesting that similar pathogenetic pathways operate in these
inflammatory diseases (54). At the same time, a considerable
part of the discovered asthma module is unique, suggesting the
existence of a specific region within the interactome that can
be used to investigate the functional molecular circuits active
only in asthma. In particular, the localization in the interactome
allows us to identify and explore high impact pathways that are
perturbed in the disease.We find that the GAB1 signalsome is en-
riched for genes responsive to GC-, IL13 and IL17 treatment. GAB1
variants were associated with asthma susceptibility in a recently
published asthma GWAS study conducted in a Japanese popula-
tion (30). Marginal associations with GAB1 variants in popula-
tions of European (GWAS P = 0.006) and Latino (GWAS
P = 0.0004), but not of African ancestry have been observed (low-
est P-value in the meta-analysis was 0.07) (27). Moreover, strong
association of GAB1 expression with risk of severe asthma ex-
acerbations and cellular response of GAB1 to dexamethasone in-
dicates GAB1 being both an asthma gene and a treatment
response gene. Abnormal steroid response is a cardinal feature
of asthma as exemplified by the identification of NR3C1 as one of
our seed genes and by the use of exogenous steroids as the pri-
mary drug for asthma treatment. It also suggests that genes for
asthma steroid response may also be genes for asthma. Linking
theGAB1 signalsome to theGCpathway is a novelfinding that em-
phasizes the importance of abnormal steroid response to asthma
development but also suggests possibilities for novel treatments.

The ability to identify specific disease neighborhoods in the
interactome opens a series of opportunities to understand the
complexity of heterogeneous immune-related diseases. It helps
us narrow the vast search space of the full interactome and
focus our search for potential disease mechanisms and disease
heterogeneity in a well-localized network neighborhood. In this
work, we chose to utilize thewide range of available biological in-
formation to identify the candidate genes carrying the most sig-
nificant asthma-associated signals. The cutoff for the selection of
the candidate genes is not exact, but the threshold of ∼350 DIA-
MOnD genes is supported by diverse data. In our view this
approachmore accurately reflects the diverse biologicalmechan-
isms underlying asthma compared with relying solely on the
network topology.Moreover, we have focused on a global interac-
tome that does not take tissue-specific interactions into account
(Supplementary Material, Section XV and Fig. S10). We expect,
however, that incorporating such context specificity can enhance
the predictive power of disease modules. The demonstrated suc-
cess of the approach presented provides a road map for the inte-
grated understanding of the interplay between a disease and the
underlying cellular network that can easily be extended to such a
scenario.

Materials and Methods
Compiling the interactome and seed genes

The human interactome
We assembled all known physical interactions potentially
present in a human cell from appropriate sources. As described
in Supplementary Material, Section I, our network contains
information from regulatory networks (protein–DNA interaction),
high-throughput protein–protein interactions, literature curated

protein–protein interactions, metabolic enzyme-coupled interac-
tions, protein complexes and kinase–substrate interactions. In
total, the resulting interactome consists of M = 101,032 links be-
tween N = 11,643 proteins (Supplementary Material, Fig. S1C).

Disease genes
The seed genes represent a consensus list of genes collected
based on their known association with asthma-related pheno-
types (26), asthma-related pathology (43), OMIM (19), Gene to
MeSH relationship (36) and GWAS data (33) (see Supplementary
Material, Table S1 and Section II).

Biological validation datasets

(i) Gene expression data: we selected nine expression data of dir-
ect asthma relevance from the Gene Expression database
(55). The selection criteria and the details of individual data-
sets are available in Supplementary Material, Section III.

(ii) Asthma-specific pathways: we selected 35 asthma-specific
pathways using the GeneGO Meta-Core software (see Sup-
plementary Material, Section IV and Table S2).

(iii) General pathways: for broad pathway annotations we used
MSIgDB (56) (Supplementary Material, Section V).

(iv) Gene Ontologies: to elucidate the biological processes asso-
ciated with the individual seed genes we used the Gene
ontology (GO) biological process category (57) (detailed in
Supplementary Material, Section VI).

(v) Comorbidity analysis: we used a large set of Medicare patient
medical history data (58) to identify a total of 85 diseases for
which asthma patients are at a significantly increased risk
(Supplementary Material, Section VII, Table S4). Genes asso-
ciated with these 85 diseases were considered as validation
dataset.

Disease Module Detection Method

The Disease Module Detection (DIAMOnD) algorithm is a topo-
logical method to identify the network neighborhood of the
seed genes. As documented in Figure 1B and C, seed genes
form larger clusters than expected by chance. A hypothesis that
can be formulated from this observation is that potential disease
genes interact with most of the known disease genes (Supple-
mentary Material, Fig. S1E). For example, IL8 forms 14 connec-
tions, of which 4 are known asthma seed genes. Yet, some
genes are promiscuous, i.e. they have a large number of interac-
tions to start with. For instance, BRCA1 has three links to asthma
seed genes, but 239 links to non-seed genes. For such promiscu-
ous genes, several links to asthma seed genes are not as strong an
indication of belonging to the disease cluster than for less con-
nected genes (Fig. 2A). To correct for such biases, we use an algo-
rithm that considers the significance of the number of connections
to seed genes as a criterion to prioritize the genes in the network
for their asthma relevance. Further details on the method can be
found in the Supplementary Material, Section IX.

Childhood Asthma Management Program (CAMP)
GCs data

One hundred and forty-five CAMP participants who were rando-
mized to the budesonide (a glucocorticosteroid) treatment arm
constituted the cohort in which the longitudinal response to GC
therapy was assessed. We focused on severe exacerbations, de-
fined as an emergency room visit or overnight hospitalization
due to asthma. Thirty-two of the tested CAMP subjects had at
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least one exacerbation during the 4-year follow-up. The gene ex-
pression analysis was done on immortalized B-cells directly de-
rived from the clinical subjects as described previously (44). We
tested the association of GAB1 expression with the time to first
severe exacerbations, using a Cox proportional hazards model.
All research involving data collected from the CAMPGenetics An-
cillary Study was conducted at the Channing Laboratory of the
Brigham and Women’s Hospital according to the appropriate
CAMP policies and regulations for human-subjects protection.

The Asthma BioRepository Genomic Exploration

The Asthma BRIDGE database is an open-access repository of im-
mortalized cell lines from 1435 subjects participating in genetic
studies of asthma, with an accompanying database consisting
of phenotype data and genome-wide genetic (SNP), genomic
(RNA expression) and epigenetic (CpG DNA methylation) data.
We performed a gene-set enrichment analysis (GSEA) of the
ranked associations using the GSEA2 software (http://www.
broadinstitute.org/), assessing whether each signature is signifi-
cantly enriched for genes in the other. We observed significant
enrichment (FDR < 0.25) of 288 MSigDB gene sets among genes
whose increased expression was associated with below-median
mACT and two gene sets associated with above-median mACT.

Identifying the most relevant asthma pathways within
the module

For all pathways in the KEGG, Biocarta and Reactome databases
inMSIgDBwe compute the enrichmentwith genes from the asth-
mamodule (Fisher’s exact test), as well as amean score that con-
siders all the different datasets used for the biological validation
(Supplementary Material, Section XI and XII). For the SNP to gene
annotation in the GWAS data, we applied the LDsnpR method
that is based on both the physical position of a SNP and its pair-
wise LD with other SNPs (29). Since the status of an individual
gene in differentially expressed gene sets, GWAS signals and
other biological datasets directly reflects its relevance to asthma,
the mean score of all genes in a pathway is a sensible choice to
quantify its overall relevance.

Comparison with other network-based methodologies

For a comparison of the performance of DIAMOnD to existing
candidate gene identification algorithms we implemented five
methods, four of which being network-based as well:

(i) We choose a method based on a randomwalk (RW) starting
from the seed genes (33), which was found to perform best
among several available network-based gene prioritization
tools.

(ii) DaDa (Degree-aware algorithms for Network-based Disease
Gene Prioritization), a set of methods that implement vari-
ous adjustments for the skewed degree distribution of pro-
tein interaction networks (36).

(iii) PRINCE (PRIortization and Complex Elucidation) (35), a
method that does not only use local information, but con-
siders global network properties as well.

(iv) CIPHER (Correlating protein Interaction network and
PHEnotype network to pRedict disease genes), which used
a regression model to evaluate the functional relatedness
of genes (34).

(v) As a final comparison, we tested DIAMOnD against the
Endeavour algorithm that uses a basic machine learning
approach to rank candidate genes (37). Endeavour is one of

the most widely accepted sequence-based candidate gene
prioritization tools.

For the general evaluation of these methods we used the same
seed genes and interactome, as well as the same validation
data as introduced above: (i) GeneGo pathways, (ii) MSIgDB path-
ways, (iii) Gene ontologies and (iv) comorbidity analysis. For the
asthma-specific validation we used (v) gene expression data from
the literature (Supplementary Material, Section III), (vi, vii) gene
expression data from fibroblast cells under GC treatment and
(viii) asthma GWAS data. Supplementary Material, Figure S3A ex-
emplarily shows the number of ‘hits’ of the differentmethods for
the generic gene expression data (compare also with Fig. 2D(i)):
for each gene in their respective ranked gene lists we determine,
whether it was found to be differentially expressed. While the
different methods show comparable performance, DIAMOnD
yields the highest number hits. At iteration step 350, correspond-
ing to the total number of DIAMOnD genes we use in the final
asthma module, the DIAMOnD genes include 117 differentially
expressed genes, the next bestmethod, RW, 111. Note that gener-
ally it is difficult to define strict benchmark sets of true positives
and true negatives for the disease association of genes. For a com-
parative analysis of the different algorithms, however, their abso-
lute values are not necessaryandwe can therefore simply use the
genes contained in the respective validation data (i)–(v) as true
positives, all others as true negatives.

Steroid and cytokines induced gene expression in
fibroblast cells

Bronchial fibroblasts cultured from 10 healthy and 5 fatal asth-
matic individuals were treated with fluticasone propionate
(20 n) (Supplementary Material, Tables S11 and S12), IL13
(10 ng/ml) (Supplementary Material, Tables S13 and S14) and
IL17 (10 ng/ml) (Supplementary Material, Tables S15 and S16).
RNA isolated from the cells was subject to microarray analyses.
Raw intensities from all samples were merged, normalized and
log2 transformed. We performed statistical t-test for differential
mRNA expression between treated and untreated controls and
asthmaticsfibroblast cells separately. Both controls and asthmat-
ic fibroblast cells (45 000 cells per well) were treated with 20 n
GCs, IL13 (10 ng/ml) and IL17 (10 ng/ml). Differentially expressed
mRNAs were defined as having a fold change >1.5 and a raw P-
value <0.05 (paired t-test comparisons) between the treated and
untreated groups.

GAB1 siRNA knockdown study

Depletion of GAB1 by RNAi transfection
To determine the regulation of GAB1 on the NFkb pathway, we
performed knockdown of GAB1 in Beas-2B cells, a human bron-
chial epithelial cell line using two individual siRNAs as we have
done previously (59). Briefly, 40% confluent Beas-2B cells were
transfected with 100 pmol/well of GAB1-specific siRNAs or a
non-targeting siRNA control (Life Technologies) using lipofecta-
mine 2000 (Life Technologies). Forty-eight hours post transfec-
tion; Beas-2B cells were treated with either sham or
dexamethasone (10 n) for 2 h before cells were being collected
for western blot. Knockdown efficiency of GAB1 siRNA was con-
firmed by western blot.

Immunological methods
Western blotting was performed as previously described (60).
Antibodies used were β-actin (Sigma, #A5441), GAB1 (Cell Signal-
ing, #3232), NFkB (Cell Signaling, #8242). Secondary antibodies
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were horseradish peroxidase-linked anti-mouse or anti-rabbit
IgG (GE Healthcare). Signals were detected using an enhanced
chemiluminescence kit (Perkin Elmer Life Sciences, Inc.) and
Imaging auto-developing system (Syngene Inc.). Band densities
were quantified by Image J software.

Supplementary Material
Supplementary Material is available at HMG online.
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