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Epidemiologic studies utilizing source apportionment (SA) of fine particulate matter have shown that particles

from certain sources might bemore detrimental to health than others; however, it is difficult to quantify the uncertainty

associated with a given SA approach. In the present study, we examined associations between source contribu-

tions of fine particulate matter and emergency department visits for pediatric asthma in Atlanta, Georgia (2002–

2010) using a novel ensemble-based SA technique. Six daily source contributions from 4 SA approaches were

combined into an ensemble source contribution. To better account for exposure uncertainty, 10 source profiles

were sampled from their posterior distributions, resulting in 10 time series with daily SA concentrations. For each

of these time series, Poisson generalized linear models with varying lag structures were used to estimate the health

associations for the 6 sources. The rate ratios for the source-specific health associations from the 10 imputed

source contribution time series were combined, resulting in health associations with inflated confidence intervals

to better account for exposure uncertainty. Adverse associations with pediatric asthma were observed for 8-day

exposure to particles generated from diesel-fueled vehicles (rate ratio = 1.06, 95% confidence interval: 1.01,

1.10) and gasoline-fueled vehicles (rate ratio = 1.10, 95% confidence interval: 1.04, 1.17).

air pollution; ensemble method; fine particulate matter; pediatric asthma; PM2.5; source apportionment; uncertainty

Abbreviations: BURN, biomass burning; CI, confidence interval; DUST, construction and road dust; DV, diesel-fueled vehicles and

nonroad engines; ED, emergency department; GV, gasoline-fueled vehicles and other engine sources; PM2.5, fine particulate

matter with an aerodynamic diameter less than 2.5 µm; RMSE, root mean square error; RR, rate ratio; SA, source apportionment;

SOC, secondary organic carbon not otherwise apportioned.

There is strong evidence that fine particulate matter with an
aerodynamic diameter less than 2.5 µm (PM2.5) exacerbates
pediatric asthma (1). However, PM2.5 is a heterogeneousmix-
ture of particles, and some particles might be more harmful
than others (2–10). Despite this, the current regulatory strategy
treats all particles that contribute to particulate matter mass
equally. Epidemiologic studies of source-apportioned PM2.5,
rather than total PM2.5, might help identify the causal agents
that precipitate acute asthmatic events and ultimately lead to
more effective regulation.
Although source apportionment (SA) techniques offer much

promise for epidemiologic studies, each approach has its own
set of limitations when used in health studies (11). A challenge
with SA is that an accepted gold standard for quantifying source

concentrations does not exist (12), making quantification of
the uncertainty associatedwith each technique difficult. This in
turn might lead to biased health estimates and underestimated
standard errors.
One approach to mitigating the limitations of individual

SA models is to use an ensemble of SA estimates. Lee et al.
(11) showed that using an ensemble average of 5 different SA
models led to a predicted-to-observed PM2.5 ratio that was
closer to 1, fewer observed zero-impact days, and a reduction
in the reported day-to-day variability of the source contribu-
tion estimates compared with single SAmodels. Balachandran
et al. (13) built on this approach by propagating the uncertain-
ties of each SA approach in the ensemble average and then
using Bayesian techniques to obtain multiple realizations of the
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source profiles to further capture the day-to-day uncertainties
in the SA techniques. This Bayesian-based ensemble approach
has been shown to provide results that are more consistent with
independent observations and known emission sources than
other single SA methods (13).

To our knowledge, this is the first epidemiologic study in
which results from this novel Bayesian ensemble-based SA
technique have been applied. We examined the association
between ensemble-based PM2.5 source concentrations and
emergency department (ED) visits for childhood asthma. By
using daily data from an 8.5-year time series study in metro-
politan Atlanta, we were also able to examine cumulative
lagged associations.

METHODS

Exposure data: Bayesian-based ensemble averaging

The Bayesian-based ensemble approach combines 4 inde-
pendent SAmethods, 3 of which were receptor-based (chemi-
cal mass balance using molecular markers (14), chemical mass
balance using gas-based constraints (15), and positive matrix
factorization (16)) and 1 that was a chemical transport model
(17). The receptor-based SA methods were conducted using
measurements from the Jefferson Street monitoring site in
downtown Atlanta (18). Ensemble averaging was conducted
iteratively. In the first step, estimates of the source concentra-
tions for each of the 4 SA methods were averaged with equal
weighting, as follows:

�S jk ¼
PL

l¼1 wjlk � S jlkPL
l¼1 wjlk

ð1Þ

and

wjlk ¼ 1
τNSljk

; ð2Þ

wherewjlk is theweight for source j frommethod l on day k and
Sjlk is the source concentration for source j from method l on
day k (13). The root mean square error (RMSE) was then cal-
culated between each method and the ensemble average, as
follows:

RMSE jl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 ðS jlk � �S jkÞ2
K

s
: ð3Þ

The RMSE can be viewed as an average estimate of uncer-
tainty of the SA methods; therefore, the inverse of the RMSEs
can be used asweights to calculate aweighted ensemble average
(19). However, the RMSEs themselves also have uncertainty.
To account for the uncertainties in the RMSEs, a Bayesian
framework was used in which the weights (inverse of the un-
certainties) were used as prior information and the RMSEs
were used as the updated parameter information. It was assumed
that each SA method’s source concentration was normally dis-
tributed around some unknown “true” source concentration
with a standard deviation of τ2jkl. Using a Bayesian framework,
we obtained posterior samples of τ2jkl (i.e., the uncertainty of
the RMSEs) and used these updated uncertainties as weights

to calculate the ensemble-averaged source concentrations
(equations 1 and 2). Greater detail is provided in theWeb Ap-
pendix (available at http://aje.oxfordjournals.org/).

This Bayesian ensemble method was applied to estimate
2 seasonal source profiles (winter and summer), which in turn
were used to estimate daily source concentrations for the
8.5-year time series (January 1, 2002–June 30, 2010) (13). Each
day, 10 realizations of the source profiles were sampled from
the seasonal source distribution and used in a chemical mass
balance equation to estimate the daily concentrations of each
source. As a result, for each source category that we identified,
there were 10 separate time series with daily SA concentra-
tions. Initially, 9 sources were identified, 5 of which were pri-
mary sources and 4 of which were secondary sources (11).
Primary sources included biomass burning (BURN), primary
PM2.5 from coal combustion, construction, and road dust
(DUST), diesel-fueled vehicles and nonroad engines (DV),
andgasoline-fueledvehicles and engine sources (GV). Second-
ary sources included ammonium bisulfate, ammonium sulfate,
ammonium nitrate, and secondary organic carbon (SOC) not
otherwise apportioned; however, only SOC was used in the
present analysis because of concerns that the other secondary
source concentrations might be biased (20). Thus, the epide-
miologic analyses included only 6 sources. In addition to the
source concentration estimates, daily concentrations of ambi-
ent ozone (8-hour maximum values) and total PM2.5 (24-
hour average values) were obtained from the same Jefferson
Street monitoring station.

Health data

Data on the number of daily ED visits were collected from
all hospitals in Atlanta for the 8.5-year time series (January 1,
2002–June 30, 2010). Individual visits were restricted to pe-
diatric patients (5–18 years of age) who lived in zip codes
within the 5-county metropolitan Atlanta area. We defined
ED visits for asthma as any visit with an International Clas-
sification of Diseases, Ninth Edition, code for asthma (493.0–
493.9) or wheeze (786.07) (n = 121,162 visits).

Statistical methods

We estimated associations between the various PM2.5

sources and ED visits for pediatric asthma using Poisson gen-
eralized linear models that accounted for overdispersion.
Exposure was modeled separately for each source (Sj), with
individual terms for the source concentration on lag 0 (Sj0)
through lag 7 (Sj7) in the model (i.e., an unconstrained distrib-
uted lag structure) (21). The following model was used to
estimate the logarithm of the expected daily count of ED
visits for pediatric asthma as a function of the PM2.5 source
and covariates (for greater model detail, refer to the Web
Appendix):

log½EðYÞ� ¼ αþ β1S j0 þ β2S j1 þ � � � þ β8S j7

þ ½covariates]: ð4Þ

Two exposure windows were considered from these single-
source models: 1) lags 0–2 (same day and previous 2 days’
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exposure), which was our a priori exposure based on previous
analyses (22, 23), and 2) lags 0–7 (8-day exposure window
including the same day and previous week), which was mo-
tivated by previous published findings that suggested that
pollutant effects on asthma might be prolonged over a longer
period (24, 25). To calculate rate ratios for these 3- and 8-day
exposures, we exponentiated the sum of the betas for the rel-
evant source exposures. For example, the rate ratio for a 3-day
source exposure was calculated as RR0–2 = exp(β1 + β2 + β3),
whereas the rate ratio for an 8-day source exposurewas RR0–7 =
exp(β1 + β2+ � � � + β8). Because the same model was used to
calculate both rate ratios, the rate ratio for the 3-day source ex-
posure is the lag 0–2 association after controlling for exposure
to lags 3–7. Substantial correlation between day-to-day PM2.5

source concentrations for some sources (see Web Table 1)
will cause the regression model in equation 4 to have a high
degree of collinearity, leading to unstable estimates for βi.
Nonetheless, the sum of β1 to β8 should be an unbiased esti-
mate of the RR for cumulative exposure (21). Standard errors
were calculated using the estimated covariance matrix from
the genmod procedure in SAS (SAS Institute, Inc., Cary, North
Carolina). All associations were estimated as the rate ratio for
a cumulative 1-µg/m3 increase in the source concentration for
each exposure day.
Covariate control included a cubic spline with 8 knots per

year to account for long-term temporal trends. Separate cubic
terms were included for average maximum temperature lag
0–2 and lag 3–7. Similarly, 2 cubic terms were included for
average dew point lag 0–2 and lag 3–7. Indicators were in-
cluded for season, day of the week, federal holidays, and the
days after Thanksgiving and Christmas. To further control for
temporal and meteorological trends, we included product
terms between season and day of the week, as well as season
and the maximum temperature cubic terms (for lag 0–2 and
lag 3–7). Complete model formulation is available in theWeb
Appendix.
The single-source model analysis was conducted sepa-

rately for each source (BURN, COAL, DUST, DV, GV, and
SOC) and for total PM2.5. Because a strong association be-
tween ozone and pediatric asthma exacerbations has been

found previous epidemiologic analyses in Atlanta (23, 25–27),
we also ran the same models after controlling for ozone,
using the same unconstrained 8-day distributed lag struc-
ture for ozone. To account for potential confounding by
sources not included in the model, we created a multipollu-
tant model that included the 8-day moving averages of all
6 sources. To incorporate the uncertainty in the ensemble-
averaged SA concentrations, each analysis was performed
10 times, once for each of the 10 separate ensemble time
series runs. Multiple imputation methods were used to esti-
mate the combined point estimate and variance for each anal-
ysis. The summary regression coefficientQwas obtained by
averaging the regression coefficients from each run, where
m = 10, as follows:

�Q ¼ 1
m

Xm
i¼1

Q̂i: ð5Þ

Imputation-corrected variances were calculated according
to the method described by Rubin (28). The first step re-
quired calculating the average variance from the ensemble
runs (within imputation variance) (W ) and the variance of
the ensemble run coefficients (between imputation vari-
ance) (B), as follows:

�W ¼ 1
m

Xm
i¼1

Ŵi ð6Þ

and

B ¼ 1
m� 1

Xm
i¼1

ð�Q� Q̂iÞ2: ð7Þ

With these 2 quantities, the total imputation-corrected var-
iance (T ) is calculated as

T ¼ �W þ 1þ 1
m

� �
B: ð8Þ

Table 1. Summary Statistics for Fine Particulate Matter, Ozone, Meteorological Data, and Emergency Department

Visits for Pediatric Asthma in 5 Counties, Atlanta, Georgia, January 2002–June 2010

Variable
No. of
Daysa

Median Mean (SD) Minimum Maximum IQR

Pollutant

24-Hour max fine particulate matter, µg/m3 2,170 13.18 14.51 (7.33) 1.06 72.56 9.16

8-Hour max ozone, ppb, 2,090 39.34 40.61 (19.16) 0.52 116.37 28.09

Meteorology

Maximum temperature, °C 2,170 23 21.96 (8.37) −1 40 13

Dew point, °C 2,163 11 9.64 (9.34) −20 24 16

Health outcome

ED visits for asthma/wheezing 2,170 37 39.40 (18.78) 3 157 23

Abbreviations: ED, emergency department; IQR, interquartile range; SD, standard deviation.
a The analysis was restricted to days when information on all sources and fine particulate matter were nonmissing

for the 8-day lag.
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Confidence intervals were calculated based on a t-distribution
with degrees of freedom (ν) equal to

νm ¼ ðm� 1Þ 1þ
�W

ð1þ 1=mÞB
� �2

: ð9Þ

Analyses were conducted using SAS, version 9.3.

RESULTS

There were 2,170 days for which we had SA estimates for
lags 0–7 for all sources and for PM2.5. Table 1 summarizes the
pollutant, meteorological, and ED data during the study period.
There were 121,162 ED visits for acute asthma or wheezing
among children 5–18 years of age. The mean 24-hour aver-
age concentration of fine particulate matter was 14.51 µg/m3,
and the mean 8-hour maximum concentration of ozone was
40.61 ppb.

Summary statistics of the daily source concentrations from
each of the 10 ensemble runs are presented in Table 2. When
averaged across all ensemble runs, BURN had the highest
mean concentration (2.72 µg/m3) and greatest standard

deviation (2.64), whereas primary coal combustion had the
lowest (0.13 (standard deviation, 0.12) µg/m3). The mean
concentration of DV was greater than that of GV (1.04 vs.
0.80 µg/m3), with DV having greater average standard devia-
tions within each ensemble run (0.97 vs. 0.69). The last column
in Table 2 shows the average day-to-day correlation between
each of the 10 ensemble runs by source. DUST had the high-
est correlation between the runs (r = 0.98), whereas the other
5 sources had lower correlations, ranging from 0.74 to 0.76.
Between-source correlations ranged between −0.46 (SOC
and BURN) and 0.49 (SOC and PM2.5, SOC and ozone, and
DV and PM2.5) (Table 3). On average across all days, the
ensemble-averaged concentrations for the 6 sources constituted
49% of the total PM2.5 mass.

Figure 1 shows associations with pediatric asthma for
3 separate models: the single-source model (with the expo-
sure modeled using an unconstrained distributed lag), the
single-source model with the addition of ozone control, and
the all-sources model with simultaneous control for the other
sources. Results for exposure to total PM2.5 concentration are
presented for the single-source model and single-source model
with ozone control in Figure 2. For each model (Figures 1 and
2), 2 separate exposures were considered: cumulative exposure

Table 2. Mean and Standard Deviation Summary Statistics for the Pollutant Source Concentrations, Atlanta, Georgia, January 2002–June 2010a

Source Minimum Median Mean Maximum SD IQR
Correlationb

Between
Ensemble Runs

Biomass burning 0.000 (0.000) 1.894 (0.023) 2.723 (0.024) 32.103 (5.933) 2.643 (0.085) 2.600 (0.070) 0.752

Primary coal combustion 0.000 (0.000) 0.092 (0.001) 0.126 (0.001) 1.228 (0.173) 0.124 (0.001) 0.134 (0.003) 0.737

Dust/resuspended soil 0.000 (0.000) 0.252 (0.001) 0.378 (0.001) 7.045 (1.244) 0.463 (0.010) 0.273 (0.004) 0.981

Diesel-fueled vehicles 0.000 (0.000) 0.810 (0.014) 1.038 (0.005) 9.856 (0.916) 0.970 (0.015) 0.995 (0.033) 0.744

Gasoline-fueled vehicles 0.013 (0.009) 0.654 (0.011) 0.797 (0.006) 6.843 (0.675) 0.689 (0.010) 0.647 (0.009) 0.764

Secondary organic carbon 0.000 (0.000) 1.352 (0.009) 1.620 (0.013) 27.578 (1.071) 1.619 (0.013) 1.991 (0.055) 0.747

Abbreviations: IQR, interquartile range; SD, standard deviation.
a Averaged across 10 ensemble runs. All results are reported in µg/m3.
b Mean Spearman correlation calculated from all pairwise runs.

Table 3. Spearman Correlations Coefficients for the Associations Among the Pollutant Sources, Fine Particulate

Matter, and Ozone, Atlanta, Georgia, January 2002–June 2010a

Pollutant BURN COAL DUST DV GV SOC PM2.5 Ozone

BURN 1.00

COAL 0.24 1.00

DUST −0.05 0.17 1.00

DV 0.04 0.21 0.25 1.00

GV 0.38 0.06 0.12 0.22 1.00

SOC −0.46 0.02 0.31 0.43 −0.10 1.00

PM2.5 0.15 0.21 0.41 0.49 0.29 0.49 1.00

Ozone −0.32 0.06 0.50 0.12 −0.11 0.49 0.47 1.00

Abbreviations: BURN, biomass burning; DUST, construction and road dust; DV, diesel-fueled vehicles and nonroad

engines; GV, gasoline-fueled vehicles and other engine sources; PM2.5, fine particulate matter with an aerodynamic

diameter less than 2.5 µm; SOC, secondary organic carbon not otherwise apportioned.
a Averaged across 10 ensemble runs.
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to lag 0–2 (controlling for lag 3–7) and cumulative exposure
to lag 0–7.
With the exception of the rate ratios for SOC, the rate ratios

for lag 0–7 were larger than the rate ratios for lag 0–2 in all
models (Figures 1 and 2). The single-source model resulted in

significant associations with ED visits for DV lag 0–7 (RR =
1.06, 95% confidence interval (CI): 1.01, 1.10), GV lag 0–2
(RR = 1.03, 95% CI: 1.00, 1.07) and lag 0–7 (RR = 1.10,
95% CI: 1.04, 1.17), and PM2.5 lag 0–2 (RR = 1.00, 95%
CI: 1.00, 1.01) and lag 0–7 (RR = 1.01, 95% CI: 1.00, 1.01).
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Figure 1. Rate ratios, plotted on the natural log scale, for the association of a 1-µg/m3 increase in source concentration with emergency depart-
ment visits for pediatric asthma, Atlanta, Georgia, 2002–2010. Results are for lags 0–2 (circles) and lags 0–7 (squares) for the following sources:
A) biomass burning, B) primary coal combustion, C) dust/resuspended soil, D) diesel-fueled vehicles, E) gasoline-fueled vehicles, and F) secondary
organic carbons not otherwise apportioned. The rate ratios and 95% confidence intervals corresponding to this figure are listed in Web Table 2.
Bars, 95% confidence intervals.
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Some associations were attenuated when ozonewas included in
the model (e.g., DV lag 0–7 and PM2.5 lag 0–2), whereas the
lag 0–7 rate ratios for GV and PM2.5 remained significant.
Controlling for all sources in the same model resulted in a de-
crease inmost point estimates, and onlyDV lag 0–7was signif-
icant (RR = 1.07, 95% CI: 1.00, 1.14). Results from both the
single-source model and the single-source model with ozone
control are suggestive of a higher association with BURN;

however, the confidence intervals included the null. The rate
ratios for the ozone associations from the single-source models
with ozone control are presented in Figure 3. Ozone alone
was strongly associated with ED visits for pediatric asthma
(for each 25-ppb increase, RR = 1.11, 95% CI: 1.03, 1.20).
The association with ozone was little changed when the mod-
els included control for a single source (Figure 3), with the ex-
ception of control for PM2.5, which attenuated the ozone
association. Tables containing the estimates shown in Fig-
ures 1–3 are provided in the Web Appendix.

In Table 4, we used the rate ratio estimates from the single-
source models for lag 0–7 cumulative exposure to demon-
strate how the 10 ensemble runs contributed to the combined
point estimates and their standard errors. The ratio of the
imputation-corrected standard error to the average standard
error shows the degree to which the confidence intervals were
inflated because of the propagation of error from the ensem-
ble runs. The degree of inflation ranged from 3% (DUST) to
76% (BURN). The individual unconstrained distributed lag
results from the single-sourcemodel are shown for the sources
and total PM2.5 in Web Figures 1 and 2, respectively, and in
tabular form in Web Table 3.

DISCUSSION

Our results show variability in the extent to which specific
sources of fine particulate matter are associated with ED visits
forpediatricasthma.Traffic-relatedsources (DVandGV)were
associated with ED visits for pediatric asthma when the cu-
mulative 8-day exposure was considered, whereas sources of
biomass burning were suggestive of an association, though it
was not statistically significant. Exposure to gasoline-fueled
vehicles remained statistically significant after controlling for
ozone in the model. When all sources were included in the
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department visits for pediatric asthma, Atlanta, Georgia, 2002–2010.
Results for lags 0–2 are indicated by circles and lags 0–7 are indicated
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same model, only the association with 8-day exposure to die-
sel vehicles was statistically significant.
An important contribution of the present study is the use of

ensemble-based SA data in a health analysis. A concern when
applying SA outputs to epidemiologic analyses, rather than
directly measured pollutants, is the unaccounted for uncer-
tainty in exposures. Generally, the use of ensemble-averaged
results is expected to reduce measurement error compared
with individual SA methods, though this cannot be easily
validated because of the lack of a gold standard. Because the
ensemble averages that we used were estimated from a statis-
tical model, it was important to incorporate this additional
uncertainty, which led to higher standard errors around the
measures of association. To propagate the uncertainty, all re-
ported model results for the sources were the result of a com-
bination of 10 separate ensemble runs, with the net result of
inflating the summary confidence intervals by 3%–76%. The
relatively small increase in the confidence intervals for DUST
(3%) can be attributed to the strong correlation between the
ensemble runs (r = 0.98, Table 2), which in turn is a reflection
of the relative agreement between SA methods.
Thefinding that diesel- and gasoline-fueled vehicle sources

were associated with childhood asthma is well supported in
the literature. Studies have found that residential proximity to
roadways is associated with both incident asthma (29) and
asthma exacerbation (30). In a study in which the associations
between source apportioned PM2.5 and asthmatic children
were examined, Gent et al. (31) found that traffic-related
exposures were the most harmful and lead to a statistically
significant increase in symptoms of asthma. In particular, in-
vestigators in previous studies have found indicators of diesel
exhaust to be associated with hospital admissions for asthma
(32) and airway inflammation (33) in asthmatic subjects.
Although we typically conceptualize lagged exposures as

the cumulative association of an increase of 1 µg/m3 in each
of the lagged days examined (e.g., previous 8 days) with the
last days’ (e.g., lag 0) ED visits, for some sources such an ex-
posure might be unlikely. For example, the cumulative asso-
ciation of a 1-µg/m3 increase in biomass burning over 8 days
might not be realistic, given that most burn events occur spo-
radically and over short time intervals. An equivalent way to
conceptualize the rate ratio is the association of a single-day

1-µg/m3 increase in biomass burning sustained over 8 days
of ED visits. In the first conceptualization, the lag applies to
the cumulative exposure and a single-day health association,
whereas in the latter, a single-day exposure is associated with
cumulative lagged health association; for many source expo-
sures, this latter interpretation of the rate ratio might be more
realistic.
Our decision to control for ozone was driven by a concern

for confounding, given that ozonewas found to be strongly as-
sociated with pediatric asthma in previous studies in Atlanta
(23, 25–27, 34). The slight attenuation of rate ratios in Fig-
ure 1 for the single-source models with ozone control, as well
as the similarity between the results of the ozone-only model
and the single-source model that controlled for ozone shown
in Figure 3, suggested that confounding by ozone was un-
likely to be a major concern. There did, however, appear to be
some confounding of the association between ozone and PM2.5

that might have been caused by secondary PM2.5 sources not
examined in this analysis that were likely to be well-correlated
with ozone (35).
One should exercise caution when interpreting the results

from the single-source model, because these estimates might
be confounded by other pollutants.We created a model that in-
cluded a term for each source to account for potential between-
source confounding. Althoughmulticollinearitywas a potential
concern in the all-sources model, the confidence intervals did
not increase greatly relative to the single-source results, sug-
gesting that this was not a major issue. However, the results in
Figure 1 do suggest that there might be confounding or mea-
surement error present in the single-source results. This is par-
ticularly evident in the lag 0–2 and lag 0–7 associations with
GV, which were significant in the single-source model but
nonsignificant in the model in which we controlled for all
sources. Measurement error due to spatial misalignment is
a concern for this (and any) study in which SA results are ex-
trapolated from a single monitoring site to a greater metropol-
itan area. Some sources of particular matter are likely to be
more spatially homogenous than others (e.g., secondary or-
ganic carbons will be more homogenous than local vehicle
emissions), and these differences in spatial variation will
lead to differing degrees of spatial misalignment and will po-
tentially bias health estimates (36).

Table 4. Summary Statistics for the Mean and Standard Error of the Point Estimate From the Ensemble Runsa,

Atlanta, Georgia, January 2002–June 2010

Source
Mean
Point

Estimate

SE of
Point

Estimates

Mean
SE

Imputation-Corrected
SE

Ratio of
Imputation-Corrected

SE/Average SE

Biomass burning 0.017 0.009 0.006 0.011 1.758

Primary coal combustion 0.098 0.162 0.147 0.225 1.528

Dust/resuspended soil −0.020 0.008 0.034 0.035 1.027

Diesel-fueled vehicles 0.055 0.013 0.017 0.022 1.281

Gasoline-fueled vehicles 0.098 0.017 0.024 0.023 1.259

Secondary organic carbon −0.023 0.012 0.011 0.017 1.478

Abbreviation: SE, standard error.
a Each measure was computed from the mean of 10 ensemble runs using the single-source model to calculate the

rate ratio of a combined increase of 1 µg/m3 over lags 0–7.
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The availability of daily source concentrations over an
8.5-year period enabled us to examine different extended
lag structures. Many past studies have been limited in their
ability to examine the long lag structure of PM2.5 sources
and constituents because monitoring data were only available
for every third or sixth day (5, 8, 37, 38). Studies in which
investigators have looked at the temporal patterns of PM2.5

exposure and acute asthma exacerbations have consistently
found evidence of a lagged effect (24, 25, 32). In particular,
the lag pattern that we observed for total PM2.5 (Web Fig-
ure 2) is consistent with that from an earlier Atlanta-based
study by Peel et al. (25) in which they found PM2.5 lags 0
and 6 to have the strongest association with ED visits for
asthma. There is biological plausibility behind these findings
of a delayed association because particles have been shown to
penetrate deep into the lung (39), particularly in persons who
suffer from asthma (40), which over time could lead to in-
flammation in the alveolar region of the lungs (41).

With the exception of DUST and SOC, both of which were
found to have a null association, all sources and total PM2.5

showed greater associations of ED visits with lag 0–7 than
with lag 0–2. We chose to include lag 0–2 because it is com-
monly reported in both the asthma and SA literature (3, 22,
23, 31, 42, 43); however, we did so after controlling for
lags 3–7, which is not a common approach. If the true effect
of pollution from a particular source is distributed over 8
days, then failing to account for the effects at longer lags
(e.g., lag 3–7) will result in confounding of the estimated ef-
fects at shorter lags (e.g., lag 0–2) if the source concentrations
during lag 3–7 are correlated with the source concentrations
during lag 0–2. Although it would have been interesting to
consider even longer lags, our power to do so was limited be-
cause of days with missing values for the ensemble-based
source concentration results.

We found that fine particulate matter generated from diesel-
andgasoline-fueledvehicle sourceswas associatedwith a signifi-
cant increase in the number of ED visits for acute asthma-related
events among children 5–18 years of age. Our results, which
corroborate previous findings, suggest that for children, the
harmful effects from a single day’s exposure to these sources
are sustained throughout the week. The present study takes ad-
vantage of a novel Bayesian ensemble-based SA technique
that helps to minimize the potential for bias that results from
relying on any single SA method and provides a means for
inflating the confidence intervals around the point estimates to
account for the uncertainty in SA methods. As a result of this
latter feature, our results may be more conservative than those
from single SA studies. Nonetheless, we found associations
with traffic sources, which adds to previous findings regarding
the differential toxicity of sources and provides evidence to
support integrated air quality strategies focused on regulating
source emissions.
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