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The formal approach in the field of causal inference has enabled epidemiologists to clarify several complications

that arisewhen estimating the effect of an intervention on a health outcome of interest.When the outcome is a failure

time or longitudinal process, researchers must often deal with competing events. In this issue of the Journal,
Picciotto et al. (Am J Epidemiol. 2015;181(8):563–570) use structural nested failure time models to assess

potential population effects of hypothetical interventions and censor competing events. In the present commentary,

we discuss 2 interpretations that result from treating competing events as censored observations and how they

relate to measures of public health impact. We also comment on 2 alternative approaches for handling competing

events: an inverse probability weighting estimator of the survivor average causal effect and the parametric g-

formula, which can be used to estimate a functional of the subdistribution of the event of interest. We argue that

careful consideration of the tradeoff between the interpretation of the parameters from each approach and the

assumptions required to estimate these parameters should guide researchers on the various ways to handle com-

peting events in epidemiologic research.

causal inference; comparative effectiveness research; competing risks; implementation science; intervention;

principal strata

The formal approach in causal inference enables researchers
to identify whether (and how) a given data set and modeling
strategy can be used to estimate the effect of an intervention
that would yield some change in the exposure’s value. This ap-
proach clarifies several complications that arise when aiming
to infer causation. When the outcome is a failure time or lon-
gitudinal process, researchersmust often deal with 2 complica-
tions that result in incomplete data for a subset of the sample:
right censoring, which occurs due to study termination or loss
to follow-up, and competing events, which arise when alterna-
tive events preclude the event of interest from occurring
altogether.

Though very distinct, competing events are often handled in
the same way as right-censored observations. This handling
leads to a “cause-specific” (1) or “death-blocking” (2) interpre-
tation involving what would be observed in a world in which
competing events were prevented from occurring. However,
when the aim of an analysis is to quantify public health effects,
removing competing events from the equation can lead to mis-
leading population average inferences.

In this issue of the Journal, Picciotto et al. (3) use struc-
tural nested failure timemodels to assess the public health im-
pacts of limiting exposure to oil-based metalworking fluids
on death due to various cardiovascular causes. With charac-
teristic insight and clarity, they highlight several strengths of
their approach and give due diligence to some of its limita-
tions. As they note, their handling of competing events leads
to a “somewhat odd interpretation” (Web Appendix in refer-
ence 3) of their cause-specific mortality results. In the present
commentary, we take the opportunity to build on why this is
the case and discuss alternative approaches that have been
used to make sense of intervention effects when competing
events are present.

CENSORING COMPETING EVENTS

Consider a failure time outcome Tδ that ends in 1 of 2 pos-
sible states: death due to an outcome of interest (δ = 1) or
death due to a competing risk (δ = 2). Consider further a binary
time-varying exposure A( j) and a (scalar or vector-valued)
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confounder W( j) that can take values for each of the j = 0 to t possible time points in a hypothetical cohort study, where t rep-
resents the largest integer value just before Tδ = 1. Often, the goal of an analysis is to estimate the parameter from a structural nested
failure time model, as follows:

T
�0 ¼

Z Tδ¼1

0
expfψCSAðuÞgdu;

where T�0 is the outcome that would be observed under no exposure and ψCS quantifies the relation between the time-varying
exposure A( j) and the cause-specific failure-time Tδ = 1. As previously illustrated (4), g-estimation of a structural nested failure
time model can be implemented by 1) choosing a set of candidate values for the true value of the structural nested model pa-
rameter; 2) using the observed failure time, observed exposure history, set of candidate values for ψCS (denoted ~ψ), and the struc-
tural nested failure time model to impute a set of potential outcomes under no exposure (denoted Tð~ψÞ; as described by Naimi
et al. (4)); and 3) testing whether, conditional on all measured confounders, the exposure is independent of the imputed potential
outcomes for each unique value in the candidate set.
For a binary exposure, step 3 is usually implemented via a pooled logistic regression model, such as:

logitfP½Að jÞ ¼ 1jWð jÞ;Að j� 1Þ; Tð~ψÞ; Yð j� 1Þ ¼ 0�g
¼ αj þ α1Wð jÞ þ α2Wð j� 1Þ þ α3Að j� 1Þ þ α4Að j� 2Þ þ α5Tð~ψÞ;

where Y( j− 1) is an indicator of the event of interest and Tð~ψÞ is the imputed potential outcome for the event of interest. Fur-
thermore, overbars (e.g., Wð jÞ) denote variable histories that are often summarized by a few time points (e.g., W( j), W( j− 1)).
This logistic model is fit separately for each unique element in the set of candidate values ~ψ:The candidate value that renders a test
statistic for α5 equal to 0 is taken as a point estimate for the exposure effect (5).
When competing events are present, this procedure will yield a biased estimate of ψCS because it fails to account for the impact

of individuals who die from the competing event. To address this problem, researchers often use inverse probability of censoring
weights which, for g-estimation of a structural nested failure time model, are defined as:

swCSð jÞ ¼
QintðtÞ
k¼j

P½CðkÞ ¼ 0jCðk � 1Þ ¼ Yðk � 1Þ ¼ 0;Aðk � 1Þ�
P½CðkÞ ¼ 0jCðk � 1Þ ¼ Yðk � 1Þ ¼ 0;Aðk � 1Þ;Wðk � 1Þ� ; Cð jÞ ¼ 0

0; Cð jÞ ¼ 1

8><
>:

where C(k) is an indicator that the competing event occurred at time k (i.e., 1 if yes, 0 if no). One can then fit the pooled logistic
model weighted by swCS( j) and continue with step 3 of the g-estimation procedure, conditional on the added constraint that
C( j− 1) = 0. When using these weights, the test statistic for step 3 must be based on the robust variance estimator described
previously (6).
There are 2 possible interpretations of the parameter ψCS when it is estimated using the censoring weights described above. The

first (common) population average interpretation considers swCS( j) as an inverse probability weight for missing data in that it is
used to account for individuals not observed in the sample at time j. This interpretation corresponds to the typical “cause-specific”
interpretation described in the survival literature (1). When δ = 2 denotes being lost to follow-up (rather than being a competing
event), this interpretation would be unproblematic, and one could thus easily translate the estimate ofψCS into a measure of public
health impact. This would not be problematic because δ = 2 would represent a limitation of the study itself (e.g., not enough
resources to track down individuals lost to follow-up), rather than an inherent characteristic of the system under study. Public
health interventions aimed at reducing the exposure burden will have no impact on the distribution of censored observations
because those observations do not exist outside of the context of the study. Hence, using inverse probability of censoring weights
to address problems due to censored observations creates no complications for interpreting parameters.
However, when δ = 2 denotes a competing risk, then this variable represents an inherent characteristic of the system under

study. Any public health intervention aimed at reducing the exposure in a population will also affect the distribution of competing
events, which will change the number of life-years saved (even though ψCS can still be consistently estimated from the data). In
fact, using inverse probability weights to deal with competing events often leads to an interpretation involving what would be
observed under 2 interventions:

1. One that enables the modification of the exposure in the population, and
2. One that prevents competing events from occurring.

It will often be difficult to identify interventions that can altogether prevent the occurrence of competing events (such as death due to
acute myocardial infarction or cerebrovascular disease). Therefore, relying on this interpretation can lead to ill-defined counter-
factual outcomes and thus violations of counterfactual consistency (7–9). As a result, interpreting parameters causally when com-
peting events are censored has long been cautioned against (10).
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A second interpretation of ψCS when inverse probability of censoring weights are used was derived by Tchetgen Tchetgen et al.
(11) to avoid assuming that competing events could be prevented. Under additional no-confounding assumptions, this approach
leads to a causal interpretation in which the parameter is a combination of 1) the survivor average causal effect (discussed below)
of the exposure directly on the outcome and 2) a function of population average and survivor average causal effects of the ex-
posure through intermediate time-varying covariates (11). This framework permits a causal interpretation that does not require
identifying an intervention that prevents competing events from occurring. However, under this interpretation, the parameter no
longer represents a population average effect. In fact, the public health implications of this interpretation are not easy to articulate
without involving simplifying parametric assumptions (11) because of the complex combination of population average and sur-
vivor average causal effects that it entails.

SURVIVOR AVERAGE CAUSAL EFFECTS

Instead of invoking either of these limited interpretations ofψCS, one can estimate the survivor average causal effectψSACE, which
is the exposure effect among a subgroup of the population that would not have died from a competing event irrespective of their
exposure history. The survivor average causal effect has recently been extended to time-varying exposures via a generalization of
standard inverse probability weighted marginal structural models (12). However, these results can be applied to structural nested
failure time models. To estimate ψSACE from a structural nested failure time model, one need only generate an alternative set of
inverse probability weights defined as:

swSACEð jÞ ¼
YintðtÞ
k¼j

P½CðkÞ ¼ 0jCðk � 1Þ ¼ Yðk � 1Þ ¼ 0;Aðk � 1Þ ¼ �1;Wðk � 1Þ�
P½CðkÞ ¼ 0jCðk � 1Þ ¼ Yðk � 1Þ ¼ 0;Aðk � 1Þ;Wðk � 1Þ� :

The numerator of each factor of swSACE( j) can be computed from a pooled logistic regression model such as:

logitfP½CðkÞ ¼ 0jCðk � 1Þ ¼ Yðk � 1Þ ¼ 0;Aðk � 1Þ;Wðk � 1Þ�g
¼ βk þ β1Aðk � 1Þ þ β2Aðk � 2Þ þ β3Wðk � 1Þ þ β4Wðk � 2Þ;

where the numerator factors of swSACE( j) correspond to pre-
dicted values from this logistic model in which both A(t− 1)
and A(t− 2) are set to 1 for all individuals in the sample. The
denominator of swSACE( j) can be obtained from the same
model, with predicted values obtained under each person’s ob-
served covariate values. One can then fit a pooled logistic
model weighted by swSACE( j) to implement step 3 of the
g-estimation procedure described above. When using these
weights, the test statistic for step 3 must be based on a bootstrap
(13) rather than a standard or robust variance estimator, which
does not appropriately acknowledge estimation of the weights.
Furthermore, one must bootstrap both the model for the numer-
ator and denominator of the weights and the model for the ex-
posure to obtain a consistent variance estimator for bψSACE.

The logic behind weighting to obtain the survivor average
causal effects is as follows: Assuming there is no person in
the population for whom the exposure is protective with re-
spect to the competing risk, unexposed individuals are over-
represented relative to exposed individuals in every risk set
given the harmful effects of exposure on survival. The mod-
ified weight is guaranteed to be 1 for individuals who are al-
ways exposed, but it will be less than 1 for an individual who
remains unexposed, thus down-weighting these individuals’
contributions to the analysis. This balances the risk of the
competing event across individuals with different exposure
histories, accounting for any bias due to competing events
and yielding an estimate of the exposure’s effect among
those would have survived irrespective of their exposure
history.

Using swSACE( j) to estimate the survivor average causal
effect requires that a number of assumptions hold, including
sequential monotonicity and the concordant survivorship

assumption for time-varying exposures (12). These assump-
tionsentail useof cross-worldcounterfactuals,whichhavebeen
the source of some controversy in a mediation analysis setting
(14). Moreover, although survivor average causal effects are
intuitively appealing (because causal effects are difficult to
define among individuals who do not survive to experience
the outcome), Joffe (2) has shown that they can sometimes
be misleading when the exposure has no overall effect on
the outcome.

THE PARAMETRIC G-FORMULA

A second approach that can be used to estimate intervention-
based effects for a failure time outcome is the parametric
g-formula. This approach can be used to estimate a parameter
ψSD corresponding to a contrast of subdistribution functions
under different exposure scenarios (15). Measures of occur-
rence based on subdistribution functions have often been use
to deal with the complications introduced by competing
events (1, 16).

Details on how to implement the parametric g-formula have
been published previously (15, 17–19). Rather than estimating
ψSD and then translating the estimate into a measure of public
health impact (such as the cumulative risk or number of life-
years saved), the parametric g-formula can be used to obtain
such an estimate directly (15, 20). Indeed, if the modeling as-
sumptions are correct, the g-formula can provide parameter es-
timates that closely align with questions about public health
impact (20). This close alignment, however, comes with the
(sometimes hefty) cost of requiring correct specification of
all models used to implement the approach (3, Web Appen-
dix). Moreover, when the time-varying exposure of interest
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has no effect on the outcome, the parametric g-formula may
provide biased estimates due to the g-null paradox (21).

BALANCING ASSUMPTIONS WITH INTERPRETATIONS

Several approaches in epidemiology are converging to-
ward the goal of estimating parameters for population impact
(20, 22, 23). These parameters are appealing because they
more precisely correspond to some action that might be
taken to improve population health. However, each approach
comes with its own strengths (public health relevance of the
interpretation) and limitations (required assumptions). Com-
peting events have long been recognized as difficult obstacles
to overcome in pursuit of this goal (10). Ultimately, the
choice of how to handle competing events should be based
on thoughtful consideration of the tradeoff between the as-
sumptions required and the interpretation permitted by each
approach.
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