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Human immunodeficiency virus (HIV)-infected and viremic
individuals exhibit elevated levels of plasma cytokines. Here
we show that most cytokines are not in free form but appear
associated with exosomes that are distinct from virions. Puri-
fied exosomes were analyzed to determine the levels of 21 cyto-
kines and chemokines and compared with exosome-depleted
plasma. Most cytokines were markedly enriched in exosomes
fromHIV-positive individuals relative to negative controls and
to plasma.Moreover, exposure of naive peripheral bloodmono-
nuclear cells to exosomes purified from HIV-positive patients
induced CD38 expression on naive and central memory CD4+

and CD8+ T cells, probably contributing to inflammation and
viral propagation via bystander cell activation.
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Chronic immune activation is one of the strongest predictors
of human immunodeficiency virus (HIV) disease progression,
associated with chronic levels of detectable cytokines and ele-
vated expression of activation markers on the surface of T lym-
phocytes [1–3]. Despite extensive studies highlighting direct
and indirect viral induction of chronic immune activation, the
mechanisms underlying the chronically activated immune state
during HIV infection are not fully elucidated. Exosomes are
small membrane delimited vesicles released both constitutively

and on stimulation from a variety of cell types [4]. They are
found in a number of biological fluids and are known to carry
a variety of proteins and nucleic acid molecules [4]. Although
they were originally thought to be little more than reservoirs
for cellular debris, their role in regulating biological functions
as well as disease is increasingly appreciated [4]. In this study,
exosomes isolated from the plasma of HIV-infected individuals
were analyzed for cytokine and chemokine content compared
with exosomes from uninfected controls and assessed for im-
munomodulatory potential on bystander CD4+ and CD8+

T cells.

EXPERIMENTAL METHODS

Human Subjects
Samples were obtained from the Hope Clinic of Emory Univer-
sity (HIV-1 seronegative [n = 15]) and from the Infectious Dis-
ease Program of Grady Health System (antiretroviral naive
HIV-1 seropositive [n = 10]). Plasma viral loads of the HIV-
infected volunteers ranged from 1423 to 536 436 HIV-1 RNA
copies/mL, with an average viral load of 205 957 HIV RNA
copies/mL. All participants gave written informed consent,
and the study was approved by the institutional review boards
of Emory University and Morehouse School of Medicine.

Isolation of Exosomes From Human Plasma
Data from our laboratory and others have shown Nef to be se-
creted from infected cells in exosomes (exNef), and it is present
in the plasma of infected individuals at nanogram levels [5–8].
Optiprep (Sigma-Aldrich) velocity gradients were found to be
efficient in purifying exosomes from infected human plasma
[9] (Figure 1D). Exosomes from plasma of infected donors, in-
cluding exNef, were found to segregate in the low-density/upper
fractions of the iodixanol gradient, whereas virus particles seg-
regated in the high-density/lower fractions. Subsequently, viri-
on particles were identified by p24 analysis of gradient fractions,
and exosomes were identified using multiple protein markers
AChE, CD9, CD63, and CD45. The very upper low-density
fractions were collected for exosomes, because they were found
to have no p24 contamination. Plasma collected from whole
blood in ethylenediaminetetraacetic acid tubes was subjected
to differential centrifugation at 30 000 g for 30 min and at
100 000 g for 2 hours. The 100 000 g pellet was resuspended in
1 mL of ×1 phosphate-buffered saline, loaded onto Optiprep ve-
locity gradients, and subjected to flotation centrifugation at
250 000 g for 2 hours. Eleven fractions were collected from each
gradient and assayed for acetylcholinesterase (AChE) activity or
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CD63, markers for exosomes, and p24, a marker for viral parti-
cles (Figure 1D). Fractions with peak exosome content (fractions
2 and 3) were pooled, diluted 1:3 with phosphate-buffered saline,
centrifuged for 2 hours at 400 000 g, and stored at 4°C.

Exosome Characterization
Purified exosomes were assayed by Western analysis for exoso-
mal markers CD9, CD45, and CD63, and immunolabeled with
anti-CD63 and examined via electron microscopy to confirm
the quality of the purified exosome preparations. Purified exo-
somes and whole plasma were analyzed for proinflammatory
cytokine and chemokine expression using a human cytokine/
chemokine 21-plex magnetic bead kit (Affymetrix; Table 1).
Data were acquired using a luminex-200 system and analyzed
using Bio-Plex Manger software, version 6.0 (Figure 1B and
1C; Table 1).

Assay for Immunomodulatory Potential
A total of 3.0 × 106 peripheral blood mononuclear cells
(PBMCs) were cultured at 37°C in Roswell Park Memorial In-
stitute 1640 medium supplemented with 20% heat-inactivated
exosome-depleted fetal bovine serum and exposed to either pooled
exosomes isolated from the plasma of 3 HIV-1–seropositive
or HIV-1–seronegative individuals, while parallel untreated
cultures and cultures treated with concanavalin A (ConA; 5
µg/mL) served as negative and positive controls, respectively.
At 48 hours after exposure, naive (CD45RA+/CD62L+), central
(TCM; CD45RA−/CD62L+), and effector (TEM; CD45RA−/
CD62L−) memory CD4+ and CD8+ T-cells were analyzed for
CD38 expression with flow cytometry. Exosome preparations
were normalized by total protein and added at a concentration
of 1 µg/mL. Statistical analysis was performed, and graphs were
generated using SigmaPlot 10 or GraphPad Prism 6.0 software.
All tests were set at a P level of < .05.

Antibodies
The following antibodies were used in this study: rabbit poly-
clonal anti-CD63 (Santa Cruz), rabbit polyclonal anti-CD9
(Santa Cruz), rabbit polyclonal anti-CD45 (Abcam), rabbit
polyclonal anti-p24 (ImmunoDiagnostic), murine monoclonal
anti-AChE (EMD Millipore), and goat anti-mouse or anti-
rabbit immunoglobulin G (IgG) (H+L) labeled with horseradish
peroxidase (Thermo Fisher Scientific). The following fluoro-
chrome-conjugated monoclonal antibodies were used for flow
cytometry analyses: Alexa Fluor 700–labeled anti-CD3
(UCHT1; BD Bioscience), allophycocyanin (APC)/cyanine 7
(Cy7)–labeled anti-CD4 (OKT4; Biolegend), peridinin chloro-
phyll protein complex-labeled anti-CD4 (RPA-T4; BD Bio-
science), V450-labeled anti-CD8 (RPA-T8; BD Bioscience),
biotin-labeled anti-CD45RA (HI100; BD Bioscience), phycoer-
ythrin (PE)/Cy7–labeled anti-CD62L (DREG-56; Biolegend),
PE/cyanine 5 (Cy5)–labeled anti-CD38 (HIT2; Biolegend),

APC/CY7-labeled anti-HLADR (L243; Biolegend), PE-Texas
Red–labeled anti-streptavidin (BD Bioscience), PE/Cy5-labeled
mouse IgG1K isotype control (MOPC-21; Biolegend), and
APC-Cy7–labeled mouse IgG2aK isotype control (MOPC-
173; Biolegend).

RESULTS

Exosomes purified from the plasma of HIV-1–seropositive and
seronegative individuals were characterized for AChE activity,
the presence of CD45, CD9, and CD63 (Figure 1A–C), and
the absence of HIV p24 (Figure 1D) to ascertain their purity.
They were then compared for levels of 21 cytokines/chemokines
by multiplex assay (Table 1). In the exosomes isolated from
HIV-positive individuals (n = 10; Table 1), all 21 cytokines/
chemokines were detected. In addition, their levels were also
found to be significantly elevated (Figure 1E ) relative to both
their corresponding plasma levels and when compared with
exosomes isolated from HIV-negative controls (n = 15; Table 1,
Figure 1E ). Only interleukin 1α, interferon α, and CXCL10
were elevated in the plasma of HIV-1–viremic individuals com-
pared with controls (Figure 1F; Table 1).

To test the potential clinical relevance of exosome cytokine
content, PBMCs from uninfected human donors were exposed
to pooled exosomes isolated from 3 HIV-positive individuals or
HIV-negative controls for 48 hours and assessed for induction of
CD38 and HLA-DR, markers for activation, on CD4+ and CD8+

T cells via flow cytometry. PBMCs exposed to ConA and untreat-
ed PBMCs were used as positive and negative controls, respective-
ly. A significant increase in cell surface expression of CD38 was
observed on both naive and central memory CD4+ and CD8+

T cells exposed to HIV positive exosomes compared with cells
exposed to HIV-negative exosomes and untreated controls
(Figure 1G), but, interestingly, HLA-DR was not significantly
up-regulated by coculture with exosomes (data not shown).

DISCUSSION

In this report we describe evidence of active and selective en-
richment of most screened cytokine and chemokines in plasma
exosomes of HIV-seropositive individuals. The levels of these
factors were significantly increased compared with both the
soluble plasma levels, and the levels in exosomes in the plasma
ofHIV-seronegative individuals.We usedAChE normalization to
get a real comparison of cytokine levels between the exosomal
vs the soluble plasma fraction, confirming that the increase of
cytokine/chemokines levels in exosomes is real and significant.
Finally, we found that the exosomes from HIV-seropositive indi-
viduals was biologically active inducing increases in the activation
marker, CD38, on the surface of naive and central memory CD4+

and CD8+ lymphocytes. There was no comparable effect on the
same cell subtypes due to exosomes from HIV-seronegative
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Figure 1. Exosomes are efficiently purified from human plasma, analyzed for cytokine content, and examined for immunomodulatory potential. Plasma
collected from whole blood in ethylenediaminetetraacetic acid tubes was subjected to differential centrifugation at 30 000 g for 30 minutes and 100 000 g
for 2 hours. The 100 000 g pellet was resuspended in 1 mL of ×1 phosphate-buffered saline, loaded onto Optiprep velocity gradients, and subjected to
flotation centrifugation at 250 000 g for 2 hours. A–C, Fractions from individuals seropositive (n = 10) or seronegative (n = 10) for human immunodeficiency
virus (HIV) were subjected to an enzymatic assay for acetylcholinesterase (AChE), a marker for exosomes (A) and Western blot analysis for exosomal markers
CD9, CD45, and CD63 (B) and were immunolabeled with anti-CD63 and examined with electron microscopy to confirm preparation of purified exosomes (C).
D, Plasma viral loads of HIV-infected volunteers ranged from 1423 to 536 436 HIV-1 RNA copies/mL, with an average viral load of 205 957 HIV RNA copies/
mL. Representative fractions from an HIV-1–seropositive individual were assayed for exosomal markers and HIV-1 viral particles via Western blot analysis to
confirm purification of exosomes from HIV-1 viral particles. Purified exosomes and whole plasma from individuals seropositive (n = 10) or seronegative
(n = 15) for HIV-1 were analyzed for proinflammatory cytokine and chemokine expression using a 21-plex multiplex array. E, All 21 proinflammatory cytokines
and chemokines measured (interleukin 1α [IL-1α], interleukin 2 [IL-2], interleukin 2Rα [IL-2Rα], interleukin 4 [IL-4], interleukin 5 [IL-5], interleukin 7 [IL-7],
interleukin 9 [IL-9], interleukin 12p70 [IL-12p70], interleukin 15 [IL-15], interleukin 16 [IL-16], CD40L, granulocyte colony-stimulating factor (G-CSF), interferon
[IFN] β and α2, CXCL10, CCL2, CCL3, CCL4, soluble Fas ligand [sFasL], soluble intracellular adhesion molecule 1 [sICAM], and tumor necrosis factor [TNF] α)
were associated with and significantly elevated in the exosomes of HIV-1–seropositive individuals compared with seronegative controls (a selection of
representative cytokines comparing HIV-1–seropositive and seronegative controls is displayed). F, Alternatively, IL-1α, IFN-α2, and CXCL10 were signifi-
cantly elevated in the corresponding plasma of HIV-1–seropositive individuals compared with seronegative controls. Error bars represent mean and standard
error of the mean (SEM) from independent donors. Difference between groups were tested for statistical significance with the Mann–Whitney U test.
*P < .05; †P < .01; ‡P < .001. G, CD38 expression was increased on the surface of naive and central memory CD4+ and CD8+ T-cells. A total of 3.0 × 106

peripheral blood mononuclear cells (PBMCs) from 6 HIV-1–seronegative individuals were exposed to either pool exosomes isolated from the plasma of 3

1714 • JID 2015:211 (1 June) • BRIEF REPORT



individuals. Although HLA-DR was up-regulated with ConA
stimulation, expression of this activation marker surprisingly
was not significantly up-regulated during coculture with the
HIV-seropositive exosomes (data not shown). Although both ac-
tivation markers are often associated, they also have been shown
to undergo distinct regulation in HIV-infected patients [10].

These data suggest a potentially interesting mechanism by
which HIV infection could indirectly recruit novel targets
through activation induction of naive CD4+ T cells and contrib-
ute to the continuous chronic viral replication in vivo. In addi-
tion, generalized activation of naive and memory CD8+ T cells
could contribute to dysfunction of this cell pool as a whole,

resulting in poor responses to HIV and other pathogens, ex-
haustion of antigen-specific T cells, and induction of chronic
immune activation.

Interestingly, this mechanism has remarkable similarity to a
host mechanism leading to immune privilege during pregnan-
cy. Multiple roles of extracellular vesicles have been examined in
the complex process of a successful pregnancy. Furthermore,
their involvement in the pathology of preeclampsia has been ex-
amined, where elevated circulating extracellular vesicles have
been implicated in contributing to exacerbated maternal
systemic innate immune cell activation and vascular dys-
function [11]. This same process has also been found to be

Table 1. Purified Exosomes and Whole Plasma From HIV-1–Seropositive (n = 10) and HIV-1–Seronegative (n = 15) Individuals Analyzed
for Proinflammatory Cytokine and Chemokine Expression Using a 21-Plex Multiplex Arraya

Cytokine

Exosome Cytokine Concentration, Median
(IQR), pg/mL

P Value

Plasma Cytokine Concentration, Median
(IQR), pg/mL

P ValueHIV Seronegative HIV Seropositive HIV Seronegative HIV Seropositive

IL-1α 0.333 (0.0–11.37) 33.22 (10.03–158.7) .008b 14.60 (9.250–71.35) 52.52 (24.70–114.5) .05c

IL-2 1.838 (0.0–4.382) 12.99 (4.424–47.22) .003b 7.040 (2.370–33.0) 15.85 (6.028–43.23) .13
IL-2Rα 21.49 (5.782–49.86) 172.1 (46.21–373.9) .006b 83.67 (48.75–124.7) 83.75 (72.25–108.8) .60

IL-4 2.930 (0.0–7.782) 27.86 (6.355–91.18) .01c 9.270 (6.050–34.0) 17.27 (8.965–42.99) .11

IL-5 34.19 (9.028–112.9) 227.4 (57.89–509.3) .008b 19.81 (14.50–42.16) 31.44 (20.02–63.13) .11
IL-7 26.85 (5.273–82.68) 217.9 (48.84–619.1) .01c 9.530 (7.620–50.10) 29.85 (7.458–84.45) .31

IL-9 71.79 (14.68–308.6) 686.3 (240.0–1529) .005b 37.85 (30.81–122.1) 68.24 (40.02–140.2) .11

IL-12p70 13.79 (2.812–41.35) 197.9 (39.47–459.5) .005b 6.200 (4.520–37.07) 16.02 (5.955–49.67) .27
IL-15 43.53 (6.533–121.0) 173.8 (75.65–881.8) .01c 29.88 (20.21–185.1) 90.27 (22.11–214.2) .39

IL-16 38.18 (5.550–72.10) 142.6 (74.56–442.1) .01b 335.3 (146.1–1405) 253.7 (151.0–450.5) .33

TNF-α 2.211 (0.555–6.778) 36.70 (6.687–95.20) .002b 24.81 (17.06–116.6) 66.30 (17.90–180.3) .42
IFN-α2 0.0 (0.0–15.93) 32.35 (14.76–122.6) .005b 18.02 (8.140–70.48) 55.96 (34.91–146.8) .01c

IFN-β 0.0 (0.0–0.9324) 44.14 (0.0–316.6) .005b 14.16 (5.400–55.91) 7.885 (0.0–90.70) .49

CXCL10 0.0 (0.0–27.15) 102.2 (17.91–268.9) .005b 57.82 (33.15–100.8) 118.7 (67.38–168.5) .02c

CCL2 49.90 (15.38–124.0) 232.6 (106.9–457.7) .002b 26.80 (22.47–51.15) 22.85 (21.13–42.18) .60

CCL3 0.0 (0.0–2.248) 2.928 (0.465–20.0) .02c 4.470 (1.220–8.940) 4.355 (1.225–16.42) .49

CCL4 0.0 (0.0–0.0) 11.76 (0.0–137.3) .02c 24.81 (17.06–116.6) 66.30 (17.90–180.3) .42
CD40L 1.877 (0.740–10.04) 31.89 (6.800–114.5) .01b 187.2 (100.2–634.4) 217.6 (123.1–342.5) .80

G-CSF 8.170 (0.0–58.81) 103.4 (20.90–435.4) .02c 9.760 (5.220–71.12) 25.24 (8.748–74.59) .21

sICAM 86.16 (51.02–167.5) 446.4 (145.4–1363) .01b 2433 (985.9–4633) 1489 (1288–1976) .56
sFasL 1.998 (0.348–6.099) 12.55 (6.914–52.34) .006b 5.370 (4.390–14.85) 8.415 (5.600–16.31) .26

Abbreviations: G-CSF, granulocyte colony-stimulating factor; HIV, human immunodeficiency virus; IFN, interferon; IL-1α, interleukin 1α; IL-2, interleukin 2; IL-2Rα,
interleukin 2Rα; IL-4, interleukin 4; IL-5, interleukin 5; IL-7, interleukin 7; IL-9, interleukin 9; IL-12p70, interleukin 12p70; IL-15, interleukin 15; IL-16, interleukin 16;
IQR, interquartile range; sFasL, soluble Fas ligand; sICAM, soluble intracellular adhesion molecule 1; TNF, tumor necrosis factor.
a All 21 proinflammatory cytokines and chemokines measured were associated with and significantly elevated in the exosomes of HIV-1–seropositive individuals
compared with seronegative controls. Alternatively, IL-1α, IFN-α2, and CXCL10 were significantly elevated in the corresponding plasma of HIV-1–seropositive
individuals compared with seronegative controls. The difference between groups was tested for statistical significance with the Mann–Whitney U test.
b P < .01.
c P < .05.

Figure 1 continued. HIV-1–seropositive (HIV+ Exo) or HIV-1–seronegative (HIV− Exo) individuals, left untreated, or treated with 5 µg/mL of concanavalin A
(ConA) as a positive control. 48 hours after exposure, Naive (CD45RA+/CD62L+), central (TCM; CD45RA−/CD62L+) and effector (TEM; CD45RA−/CD62L−)
memory CD4+ and CD8+ T cells were analyzed for CD38 expression using flow cytometry. Exosomes were normalized by total protein and added at a
concentration of 1 μg/mL. Error bars represent mean and SEM values from 6 independent donors. Differences between groups were tested for statistical
significance with 1-way analysis of variance. *P < .05; †P < .01; ‡P < .001.
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hijacked during carcinogenesis, leading to immunomodulation/
inflammation and ultimately allowing tumor growth [12]. It is
clear from the literature in this area that knowledge of the role
played by these extracellular vesicles would allow harnessing
their ability for immunotherapy [13].

One of the characteristics of chronic immune activation is
chronically elevated cytokine levels [3]. While cytokine levels
in the plasma of HIV-seropositive individuals have been the
subject of intense investigation, the results presented here dem-
onstrate that a significant amount of cytokines/chemokines is
not released in free form but is associated with and seemingly
enriched within exosomes. Given the increased stability of mol-
ecules carried by exosomes [14], it is plausible that association
of cytokines and chemokines within exosomes would imply
their increased half-life, as well as their wider distribution to
specific target cells distal from the producer cells. Although
there are several reports by our group and others of increased
exosome release from HIV-infected cells and Nef-transduced
cell lines [6–8, 15], the origin of cytokine-laden exosomes in
HIV-infected individuals remains to be fully elucidated. Conse-
quently, further investigations will be needed to ascertain the
respective contribution of infection, HIV proteins, and host
cell responses in the release of cytokine-laden exosomes into
the circulation. In summary, our results suggest a potentially
important mechanism that may contribute to chronic viral rep-
lication and chronic immune activation during HIV infection,
leading to exciting avenues for future inquiry.
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