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Females typically develop higher antibody responses and experience more adverse reactions following vaccin-
ation than males. These differences are observed in response to diverse vaccines, including the bacillus
Calmette-Guerin vaccine, the measles, mumps and rubella vaccine, the yellow fever virus vaccine and influenza
vaccines. Sex differences in the responses to vaccines are observed across diverse age groups, ranging from
infants to aged individuals. Biological as well as behavioral differences between the sexes are likely to contribute
to differences in the outcome of vaccination between the sexes. Immunological, hormonal, genetic and micro-
biota differences between males and females may also affect the outcome of vaccination. Identifying ways to
reduce adverse reactions in females and increase immune responses in males will be necessary to adequately
protect both sexes against infectious diseases.
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Introduction
Sex (i.e., the biological differences between males and females)
and gender (i.e., cultural norms associated with being male or
female) impact acceptance of, responses to and the outcome of
vaccination.1 Adult females develop higher antibody responses to
vaccines than males. After either childhood or adult vaccination
against influenza, yellow fever, rubella, measles, mumps, hepa-
titis A and B, herpes simplex 2, rabies, smallpox and dengue
viruses, protective antibody responses can be twice as high in
females compared to males of all ages.1 Measures of cell-
mediated immunity following vaccination are also higher in
adult females than males for some vaccines.2–4 Females develop
more frequent and severe adverse reactions, including fever, pain
and inflammation to vaccines.1,5,6 Because information about
adverse events is often acquired through passive reporting, it is
assumed that this reflects a gender difference, in which females
might be more likely to report adverse side effects than males.
Alternatively, sex-based biological differences may also be
involved, in which inflammatory responses to vaccines are
higher in females and result in increased adverse biological reac-
tions to vaccines in females compared with males. The goal of
this review is to illustrate the breadth of sex differences in
response to diverse vaccines across different age groups and
suggest immunological, endocrinological and genetic mechan-
isms mediating these responses.

Evidence of sex-based differences in the
outcome of vaccination
Sex differences are reported in response to both childhood and
adult vaccination. Although numerous studies report that immune
responses and adverse side effects following immunization differ
between the sexes, the mechanisms mediating sex-based differ-
ences in response to vaccines have not been systematically exam-
ined and may differ based on the age of the recipient, the vaccine
used and the type of protective immune responses elicited.

Bacillus Calmette-Guerin (BCG) vaccine in children

The TB vaccine, BCG is recommended for children within the first
year of life in endemic regions. The efficacy of the BCG vaccine is
debated, with evidence that it protects against disseminated TB in
childhood, but not adulthood.7 In addition to protecting children
against TB, BCG vaccination offers non-specific effects by signifi-
cantly reducing all causes of mortality, especially in low birth
weight babies.8 There is some evidence to suggest that the non-
specific long-term protective effects of the BCG vaccine on overall
survival and reduced susceptibility to respiratory infections is
greater for girls than boys.9,10 How the BCG vaccine modifies
immune function to provide non-targeted beneficial effects, espe-
cially in girls, has not been determined.

# The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com.

R
EV

IE
W

Trans R Soc Trop Med Hyg 2015; 109: 9–15
doi:10.1093/trstmh/tru167

9



Measles, mumps and rubella (MMR) in children

The measles-mumps-rubella (MMR) vaccine consists of three virus
strains that have been attenuated for virulence and replication.11

While the precise vaccine schedules differ among countries, rates
of MMR vaccination are reportedly similar between girls and boys
in the United Kingdom,12 but not in countries where girls have
reduced access to health services compared with boys.13 A cross-
sectional study of children over 15 years of age, who received the
MMR vaccine at 12–15 months after birth, indicated that the
prevalence of serum IgG antibodies against measles, mumps
and rubella was significantly higher in girls than boys.14

Regression models indicate that age at the time of immunization
and female sex are the two most significant predictors of antibody
persistence following MMR vaccination.15 In a 9-year follow-up
study of children who received two doses of the MMR vaccine,
the geometric mean titers of anti-mumps antibodies were
equivalent in pre-pubertal girls and boys.16 A study of pre-pubertal
boys and girls who received two doses of the MMR vaccine showed
that rubella virus-specific antibody responses as well as lympho-
cyte proliferative responses to rubella virus peptides were transi-
ently higher in males compared to females 2–4 weeks after
vaccination, but this sex difference was no longer apparent
10 weeks post-vaccination.17 At later ages (14–17 years of age),
girls had higher anti-rubella IgG titers than boys, suggesting
that long-term protection against rubella is greater for girls.18

Whether memory responses to the MMR vaccine differ between
the sexes requires further assessment. Adverse reactions, includ-
ing fever, parotitis and joint and limb pain, are higher in females
than in males (6–13 years of age) up to 14 weeks after the second
immunization with the MMR vaccine,19,20 except for the risk of
immune thrombocytopenic purpura, which is higher in males.21

It has not been reported whether higher antibody responses in
girls compared to boys following receipt of the MMR vaccine
results in differential protection.

The Schwarz measles vaccine is a low titer viral vaccine that is
only offered to infants from 9 months of age. Administration
of the Edmonston-Zagreb high titer measles vaccine to infants
,9 months of age was initiated by WHO in the late 1980s, in
regions of West Africa.22 A long-term follow-up study of over
3 000 children inoculated with the standard, medium and high
titer measles vaccines revealed that by at least 3 years of age,
mortality rates were twice as high for females than males in
response to the Edmonston-Zagreb high titer measles vaccine.22

The reduced survival related to the high titer measles vaccine
occurred almost solely in females and led to the termination of
the vaccine trials.

Yellow fever virus (YFV) vaccine in young adults

The YFV vaccine strain, 17D, is administered subcutaneously and
replicates extensively, generating a viremia but with markedly
reduced clinical symptoms of infection.23 Of considerable concern
to public health officials is the severity of adverse events following
17D vaccination. An analysis of reported adverse effects following
YF vaccination to the U.S. Vaccine Adverse Event Reporting System
(VAERS; 2000–2006) indicated that the majority of reported adverse
events occurred in adult females (61%).24 The most commonly
reported adverse side effects in females following YF vaccination
were fever, pain, pruritus, headache, injection site erythema,

urticaria, rash, nausea, dizziness, dyspnea and fatigue.24 Females
also reported more local inflammation than males. Because the
VAERS is a passive reporting system, whether females are more likely
to report adverse side effects than males must also be considered.

Sex differences in the humoral immune responses to YFV vac-
cination have not been reported, which is likely due to the robust
nature of 17D vaccine replication in the host and the choice of
high vaccine doses. Innate immune gene transcriptional profiles,
including the expression of toll-like receptors (TLR) and interferon
(IFN)-associated genes, immediately after vaccination with YF17D
predict subsequent adaptive immune responses,25,26 and the
expression of these TLR/IFN-associated genes is significantly
higher in females compared with males after vaccination.1

Whether the efficacy of the YFV vaccine is higher in females com-
pared to males has not been reported.

Influenza vaccine in adults and aged individuals

The intention of receiving either pandemic or avian influenza vac-
cines is reportedly 2–3 times lower for females than males, even
among healthcare providers.27–30 Receipt of seasonal trivalent
influenza vaccines in the United States and in several European
countries is consistently lower among both young and older
adult females compared with their male counterparts.31–34 A sys-
tematic review revealed that during the 2009 H1N1 pandemic
(pH1N1), receipt of the monovalent vaccine was higher in males
than females worldwide.4

Among both younger (18–64 years) and older (.65 years)
adults, females have higher hemagglutination inhibition (HAI)
antibody titers than males following seasonal trivalent influenza
vaccine (TIV). Receipt of either a full or half dose of seasonal TIV in
adults 18–49 years of age results in HAI antibody titers that are at
least twice as high in females compared to males.35 Among older
adults, receipt of TIV results in significantly higher HAI titers
among older females compared to males.6 Among older adults
that received the standard seasonal TIV, higher HAI titers were
associated with lower rates of hospitalization and mortality in
females compared to males, suggesting that the efficacy of TIV
in older adults might be higher for females.36,37 Among older
adults who receive the high-dose TIV, sex differences in HAI titers
are still apparent, in which antibody responses are significantly
higher in older females compared to males against each of the
three influenza antigens.38 Older females were also reported to
have higher HAI antibody titers against the monovalent pH1N1
inactivated vaccine than males, resulting in a 2–3 times higher
seroprotection and seroconversion rate in females compared to
males.39 Although older females produced higher antibody
responses to the pH1N1 vaccine, the avidity of their antibodies
after pH1N1 vaccination was significantly lower than that of
older males.40

Passive reporting of local reactions (e.g., muscle pain, redness
and inflammation) to influenza vaccines is more frequent for
females than males among both younger and older adults.41

Measurements of local erythema and induration, both of which
are associated with inflammation, reveal that both younger and
older adult females have larger (≥6 mm) injection site reactions
to TIV than their male counterparts.42 Systemic reactions (e.g.,
fever, chills, nausea, headaches and body aches) to TIV also are
more commonly reported by females than males.43 Reports of
local and systemic adverse reactions, including immediate
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hypersensitivity reactions, also are more frequent among adult
females than males following receipt of the inactivated monova-
lent pH1N1 vaccine.44–46

Sex-based differences in immune responses
Both innate and adaptive immune responses differ between
males and females and likely contribute to sex differences in
the responses to vaccines. Whether sex differences in innate
and adaptive immune responses are apparent among children,
as has been reported for adults, has not been adequately studied.

Sex differences in innate immune responses

Pattern recognition receptors, including the Toll-like receptors, are
expressed by sentinel cells (e.g., macrophages and dendritic cells
[DCs]) and detect the presence of conserved microbial and viral
motifs to initiate the innate immune response not only to patho-
gens but also to vaccine antigens.47 The detection of lipopolysac-
charide (LPS), for example, involves TLR4, which is expressed on
immune cells including monocytes, macrophages and DCs.
Macrophages derived from males express higher levels of TLR4
compared to female-derived cells, both constitutively and follow-
ing activation.48 Macrophages from female mice, however,
express higher levels of MyD8849 and greater p38 MAP kinase
phosphorylation and, hence, activation following LPS challenge
than do macrophages from males.50 Peripheral blood mono-
nuclear cells (PBMCs) and plasmacytoid DCs from female patients
produce higher levels of type I IFNs in response to TLR7
ligands,51,52 but lower levels of IL-10 in response to ligands for
TLR8 or TLR953 than similarly challenged male-derived cells.

Sex biases exist at the level of inflammatory cytokine produc-
tion by antigen presenting cells, including macrophages and DCs.
Peripheral monocytes from male human subjects as well as periton-
eal macrophages from male mice produce significantly higher levels
of TNF-a, IL-1b, IL-6 and CXCL10 than cells from females.54–57

Peritoneal macrophages isolated from male rodents produce signifi-
cantly lower amounts of the anti-inflammatory prostanoids follow-
ing either LPS treatment57 or adjuvant administration58 compared
to female-derived cells. Female-derived splenic macrophages also
secrete higher levels of IL-10 than do cells derived from males.56

In response to TIV, females have higher levels of inflammatory
cytokines compared to males, which correlate with monocyte
phosphorylated STAT3 levels.4 In a humanized mouse model,
TLR7 ligand-induced IFN-a production by human plasmacytoid
DCs is higher in female than male hosts.52 Treatment of postme-
nopausal women or mice with estradiol markedly enhances TLR7
or TLR9-mediated IFN-a production by plasmacytoid DCs in an
estrogen receptor alpha (ERa)-dependent manner.52 Furthermore,
PBMCs derived from males produce less IFN-a in response to TLR7
ligands and more IL-10 after either exposure to TLR8 or TLR9
ligands or infection with herpes simplex virus 1.53 Whether sex dif-
ferences in innate immune cell activity results in differences in the
outcome of vaccination requires greater consideration, especially
for adjuvanted vaccines.

Sex differences in adaptive immune responses

Generally, females exhibit elevated humoral and cell-mediated
immune responses to vaccination compared to males.59 Clinical

studies reveal that males have lower absolute CD3+ cell counts,
absolute numbers of CD4+ T cells, CD4+:CD8+ cell ratios and
helper T cell type 1 (Th1) responses.60–63 Studies in mice further
reveal that cytokine responses of CD4+ T cells often differ between
males and females.64–66 For example, female mice have been
shown to produce higher Th2 cytokine responses (e.g., IL-4, IL-9
and IL-13) than males, at least following viral and parasitic infec-
tions.67,68 Polyclonal activation of PBMCs with an exogenous anti-
gen results in higher Th2 responses in female-derived cells
compared to male-derived cells.69 Female mice have higher pro-
portions of regulatory Tcells (Tregs) than males70 that may underlie
tolerance of fetal antigens in women during pregnancy.71

Females exhibit higher cytotoxic T-lymphocyte activity than
males, including upregulated expression of antiviral and proin-
flammatory genes in T cells isolated from women as compared
with T cells isolated from men.72 Treatment-naı̈ve women chron-
ically infected with HIV-1 show higher levels of CD8+ T-cell activa-
tion than men when adjusted for viral load.51 Several non-specific
indicators of cell-mediated immunity are also elevated in females,
with females having higher mitogen-stimulated lymphocyte prolif-
eration, faster wound healing, and increased immunological
intolerance to foreign substances than males.73–75

In general, females demonstrate greater antibody responses
than males.1,4,76,77 Both basal levels of immunoglobulin,78 as
well as antibody responses to vaccines, are consistently higher
in females than males.77 There are, however, reports of higher
humoral responses in males than females following some vacci-
nations, which seem to depend on the vaccine type, age and soci-
etal status of the recipient.77

Mechanisms implicated in mediating sex-based
differences in immune responses

Sex steroid hormones

Estradiol, progesterone and testosterone affect the effector func-
tions of immune cells. The estrogen receptors, ERa and ERb, for
example, are expressed in various immune cells including T and
B cells, natural killer cells, macrophages, DCs and neutrophils indi-
cating responsiveness to estrogens. Activation of their cognate
receptors by progesterone and testosterone also modulates the
functions of T and B cells, DCs, macrophages and natural killer
cells. The effects of these sex hormones are dose-dependent.
This is especially relevant for estrogen and progesterone where
their concentrations vary during different stages of the menstrual
cycle, during pregnancy and after menopause. For example, low
doses of estrogen during the luteal phase of the menstrual
cycle influences Tbet expression, associated with a Th1 response,
namely increased IFN-g production, whereas higher doses of
estrogen, such as during the follicular phase, down-regulate
IRF1 expression, leading to Th2 polarization and IL-4, IL-5 and
IL-10 cytokine production.58 Estrogens drive expansion of Tregs
and increase their suppressive effects, most notably early during
pregnancy, whereas increasing progesterone levels in the second
trimester lead to diminished Treg numbers.79 Dose-dependent
estrogen effects on Tregs contribute to down-regulation of the
pro-inflammatory effects of Th17 cells. Recent studies have iden-
tified that human T cells exhibit a sex difference in IFN-g and
IL-17A production, i.e., Th1 vs Th17 bias, based on androgen
effects on peroxisome proliferator-activated receptors (PPAR)a
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and g, with androgens increasing PPARa and decreasing PPARg,
thereby limiting IFN-g production and increasing IL-17A
production.80

Estrogens and progesterone/androgens likewise exert oppos-
ing effects on B cells, with estrogens implicated in promoting anti-
body production by B cells, mediated by Th2 associated cytokines
IL-4 and IL-5 driving B cell proliferation and differentiation to
plasma cells, and progesterone and androgens exerting inhibitory
effects on antibody production by B cells.4,81

Both estradiol and testosterone are associated with enhanced
functional responses by DCs,82,83 whereas progesterone exerts
immunosuppressive effects on DCs.84 The estrogen/progesterone
balance differentially affects macrophage TNF-a and NO produc-
tion and estradiol exerts anti-inflammatory effects on macro-
phages in vitro but pro-inflammatory effects on macrophages in
vivo.85 Accumulating evidence suggests that testosterone sup-
presses pro-inflammatory cytokine secretion by macrophages.86

Genetic and epigenetic regulation

In addition to hormonal influences, genetic and epigenetic factors
contribute to sex-based differences in an immune response to
vaccination. Specifically, the sex-based immune response differ-
ences observed between pre-pubertal boys and girls, and
post-menopausal women and elderly men, suggest other contri-
butions beyond sex hormones. A large number of immune-related
genes encoding proteins, including IL-2 receptor-g chain, IL-3
receptor-a chain, IL-13 receptor-a chains, TLR7, TLR8, GATA1,
IRAK1, CD40 ligand and FOXP3 are located on the X chromo-
some.59 A number of critical transcriptional and translational con-
trol effectors, which function downstream of activated cytokine
receptors, are encoded on the X chromosome. The implications
are that X-linked genes are determinants of immunocompetence.
Given that males are XY and females XX, any damaging mutations
or polymorphisms to X-linked genes are more likely to have an
immune consequence in males compared to females.87 There is
evidence that X chromosome inactivation, the process whereby
gene dosage is addressed in XX females, is not entirely random,
but that skewed X chromosome inactivation may favor elimin-
ation of mutant genes and the persistence of intact genes by clo-
nal maintenance.88 The androgen receptor is encoded on the X
chromosome.89 Both estrogen and androgen receptors bind to
hormone response elements upstream of target genes and recruit
methyltransferase and histone acetyltransferase enzymes that
regulate gene transcription. The combined effects of hormones
influencing the epigenetic regulation of gene expression, and
gene composition on the X chromosome potentially differing
between XX females and XY males, will determine an immune
response to vaccination.

Considerable attention has focused in recent years on the con-
tributions of non-coding microRNAs (miRNAs) to the control of
gene expression, by either repressing mRNA translation or trigger-
ing mRNA degradation. The X chromosome contains 10% of the
approximate 800 miRNAs in the genome; whereas the Y chromo-
some contains only 2 miRNAs.90 Accordingly, the prevalence of
miRNAs on the X chromosome that includes a large number of
immune-related genes inevitably influences sex-based differ-
ences in immune responses. Certainly, miRNAs are critical regula-
tors in immune cell development and function.91 Most notable
are the X-chromosome encoded miRNA-18 and -19, implicated

as miRNAs that have a role in sex-based differences in immunity,
specifically potentiating inflammatory responses through the
control of repressors of NF-kB signaling.92,93

Microbiome

Recent studies have provided insights into the relationship
between human microbiota and the host’s immunophenotype,94

with supporting evidence for sex-specific relationships.90 The
human microbiota is composed of microbial communities in dif-
ferent habitats including the skin, gut, oral cavity, genitals that
vary according to sex and time. Both diet and antibiotic use pro-
duces shifts in microbiota.95 Age-related gastric atrophy affects
the gastric microbiota, as do age-related vaginal changes pre-
and post-menopause. Notably, bacteria can metabolize sex hor-
mones, mediated by hydroxysteroid dehydrogenase enzymes
that regulate the balance between active and inactive steroids.96

Consequently, microbiome composition will directly influence an
immune response, in a sex-specific manner. Antibiotics use will
affect this bacteria-regulated hormonal metabolism.

Accumulating evidence indicates that hormonal status can
shape microbiome composition; the onset of puberty and con-
comitant hormone-specific changes result in sex-specific micro-
biome profiles.97 These sex-specific and hormonally directed
microbiomes appear to influence the immunophenotype because
in a spontaneous mouse model of type I diabetes the adoptive
transfer of male-enriched gut commensals into females resulted
in systemic hormonal changes and protected against disease.98,99

Viewed together, site-specific microbiome composition will
affect an immune response in a sex-specific manner. Data are
accumulating that site-specific microbiota have a role in modulat-
ing immune responses both locally and systemically. The impact
of the host microbiota on a vaccine response, therefore, necessi-
tates investigation.100 Differences in the immune response out-
comes, i.e., efficacy of oral vaccines against poliovirus, rotavirus
and cholera in different geographical locations were ascribed to
differences in gut microbiota.100,101 Other studies have shown
that probiotics enhanced antibody responses to oral vaccines
against rotavirus, poliovirus, Salmonella and Vibrio cholera.101

Likewise, probiotics improved immune responses in infants given
oral vaccines against diphtheria, tetanus, Haemophilus influenza B
and hepatitis virus B.101

Future directions
Males and females are biologically different and this likely contri-
butes to sex-specific vaccine outcomes. Among children, adults of
reproductive ages and older adults, females develop higher anti-
body responses and experience more adverse reactions to vac-
cines than males. Although there are distinct effects of sex
steroid hormones on immune responses, including responses to
vaccines,4 the lack of age-related changes in the sex differential
effects of vaccines suggest that genetic or other factors are likely
to be involved. Utilization of primary cell culture systems, including
immune cell subsets from males and females would be one way
to address hormonal versus genetic factors influencing vaccine
activation and effector functions. There is also growing interest
in how sex-based differences in the microbiome composition
affect immune responses to vaccines over time and during men-
strual cycle, pregnancy and menopause. While specific details
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about the mechanisms mediating how males and females differ
in response to vaccination are lacking, it is apparent that the
design of vaccines and vaccine strategies should be sex-specific,
to reduce adverse reactions in females and increase immunogen-
icity in males. A greater understanding of the biological factors
mediating sex differences in responses to vaccines may influence
gender-biased acceptance and uptake of some vaccines, both of
which are often lower in females compared to males.102
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