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Sediments from a high-level nuclear waste plume were collected as part of investigations to evaluate the
potential fate and migration of contaminants in the subsurface. The plume originated from a leak that
occurred in 1962 from a waste tank consisting of high concentrations of alkali, nitrate, aluminate, Cr(VI),
137Cs, and 99Tc. Investigations were initiated to determine the distribution of viable microorganisms in the
vadose sediment samples, probe the phylogeny of cultivated and uncultivated members, and evaluate the ability
of the cultivated organisms to survive acute doses of ionizing radiation. The populations of viable aerobic
heterotrophic bacteria were generally low, from below detection to �104 CFU g�1, but viable microorganisms
were recovered from 11 of 16 samples, including several of the most radioactive ones (e.g., >10 �Ci of 137Cs/g).
The isolates from the contaminated sediments and clone libraries from sediment DNA extracts were dominated
by members related to known gram-positive bacteria. Gram-positive bacteria most closely related to Arthro-
bacter species were the most common isolates among all samples, but other phyla high in G�C content were
also represented, including Rhodococcus and Nocardia. Two isolates from the second-most radioactive sample
(>20 �Ci of 137Cs g�1) were closely related to Deinococcus radiodurans and were able to survive acute doses of
ionizing radiation approaching 20 kGy. Many of the gram-positive isolates were resistant to lower levels of
gamma radiation. These results demonstrate that gram-positive bacteria, predominantly from phyla high in
G�C content, are indigenous to Hanford vadose sediments and that some are effective at surviving the extreme
physical and chemical stress associated with radioactive waste.

As a result of World War II and the subsequent Cold War,
a large nuclear complex was developed in the United States,
including large land tracts in Nevada, Idaho, and Washington
state. Over a 40-year period, approximately 104 metric tons of
plutonium was extracted from irradiated uranium at various
sites within this complex. The result of the fuel chemical re-
processing at the Hanford Site, near Richland, Washington,
and the Savannah River Site, near Aiken, South Carolina, was
an accumulation of approximately 90 million gallons of high-
level radioactive waste (HLW). Most of the waste was stored in
tanks of various sizes and designs at Hanford and Savannah
River, with lesser amounts at other sites across the United
States.

At Hanford alone, approximately 107,000 tons of nuclear
fuel was irradiated in nine reactors. Pu was extracted from the
irradiated fuel by three different reprocessing schemes: reduc-
tion-oxidation process, bismuth-phosphate, and plutonium-
uranium extraction process (27). Much of the waste from irra-
diated fuel processing was stored in 177 single-shell and
double-shell underground storage tanks that now contain ap-
proximately 55 million gallons of poorly characterized but
highly radioactive waste. The tanks are below ground and are
covered with approximately 3 m of soil and gravel. The earliest
tanks, used since 1944, had a design life of 10 to 20 years; leaks
were first suspected in 1956 and were confirmed in 1959. The
amount and distribution of waste leakage from the Hanford

tanks is unknown, but present estimates range from 0.6 to 1.5
million gallons. This waste contains approximately 1 million Ci
of radiation, primarily from 137Cs, but the HLW soon after
reprocessing contained high levels of short-lived radionuclides,
including 106Ru, 144Ce, 147Pm, and others (28). The wastes
leaked from these tanks have been in contact with surrounding
soils and vadose sediments for decades and have undergone
significant geochemical and radiological transformations.
Wastes also contained an estimated 870 tons of chemicals.

Microorganisms in terrestrial subsurface environments play
a major role in the cycling of elements as well as weathering of
rocks and sediments and can affect the geochemical properties
of groundwater (25) by modifying the fate and transport of
organic and inorganic contaminants. While the vadose region
of the subsurface generally does not support robust microbial
populations, particularly in arid regions, there have been nu-
merous reports of viable microorganisms associated with un-
saturated zone soils and sediments (15, 21, 31, 33), including at
the Hanford Site (9, 24, 30). Water potentials in the vadose
zone generally do not directly restrict microbial activity, be-
cause many microorganisms are relatively tolerant to the ma-
tric water potentials typical of vadose sediments (30). Rather,
it is relatively thin, discontinuous water films that retard the
diffusion of solutes, including nutrients and metabolic waste
products that restrict microbial metabolism (41).

During the summer of 2000, a slant borehole was drilled
beneath tank SX-108 at Hanford’s S-SX tank farm that inter-
cepted a vadose zone contaminant plume of high-level nuclear
waste. The purpose of this sampling effort was to assess the
distribution of contaminants and to obtain scientific informa-
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tion regarding processes that may influence the fate and trans-
port of the contaminants. The plume was characterized by high
concentrations of radionuclide and chemical contaminants, el-
evated temperature, and low moisture content. Some samples
exhibited the highest levels of radioactivity (�50 �Ci g�1) of
any soils or sediments yet collected at Hanford. As part of this
effort, core samples were analyzed for viable microbial popu-
lations, and DNA from the isolates and sediments was sub-
jected to phylogenetic analysis to identify the microorganisms.
The main objectives of this research were to analyze the mi-
crobiological properties of SX-108 sediment samples in rela-
tion to sediment properties and contaminant distributions and
to assess potential biogeochemical effects on contaminant fate
and transport.

MATERIALS AND METHODS

Sampling location and procedures. During late July and early August of 2000,
core samples were collected from the vadose zone beneath the SX-108 tank
located within waste management area S-SX on the U.S. Department of Energy’s
(DOE’s) Hanford Site. Tank SX-108 first received waste from Hanford Site
nuclear fuel reprocessing operations in 1955, and the first leaks were believed to
have occurred around 1962. The leaked wastes contained high solute concentra-
tions as a result of self boiling and evaporation in the tank induced by the decay
of short-lived radioisotopes. The geology at this location has been described
elsewhere (45).

Percussion (cable tool) drilling was used to advance the borehole, and core
samples were collected by using split-spoon techniques (42). The borehole was
drilled at a 30° angle to intercept the subsurface at locations directly below
leaked tank SX-108 (Fig. 1). Subsurface vadose samples were collected by pro-
cedures that do not use circulating drilling fluids that can promote core contam-
ination (26). Due to regulatory requirements to accurately define contaminant
distributions without artifacts, considerable care was taken to prevent cross-
contamination of core samples.

In an effort to assess the effect of HLW contamination on the native vadose
microbial population, two core samples from an adjacent uncontaminated bore-
hole (299-W22-48) were obtained. These samples, designated RG1 and RG4,
were collected from the same stratigraphic position as the SX-108 slant borehole
cores. RG1 was from 25 m and RG4 from 27 m beneath the surface.

Sediment treatments. Sediment was aseptically removed from the inner por-
tion of core liners and was placed in sterile Whirlpak bags. Viable aerobic
heterotrophic bacteria in untreated sediment were enumerated by dilution plate
count methods (see below). Sediment was also used to directly inoculate liquid
enrichment cultures. In addition, uncontaminated sediment (50 g) was irradiated
at doses of 5 and 10 kGy with a 60Co source (MDS Nordion Inc., Kanata,
Ontario, Canada) immediately prior to analysis by dilution plate count on pep-
tone-tryptone-yeast extract-glucose (PTYG) agar medium (22). Sediment (50 g)
was also placed inside an airtight vessel with desiccant (Drierite) to determine
the effects of desiccation on the population of viable organisms. Moisture con-
tent (wt/wt) for both sediment samples decreased from 4.7% (RG1) and 9.0%
(RG4) to 0.2% after 28 days, at which point the populations of viable aerobic
heterotrophic bacteria were enumerated.

Culturing. Untreated and treated vadose sediments were subjected to a variety
of microbiological cultivation methods to determine the size and diversity of
viable microbial populations. Based on the results of previous research involving
vadose samples from the Hanford Site (5, 9, 24, 30), we focused our cultivation
efforts on aerobic chemoheterotrophic bacteria but included enrichments for
select physiological groups of anaerobic bacteria because of their potential for
influencing contaminant chemical behavior. To this end, several types of agar
and broth media were inoculated with each of 16 sediment samples obtained
from the SX-108 borehole. Targeted microbial functional groups included aer-
obic heterotrophic bacteria, ammonia- and nitrite-oxidizing autotrophic bacteria,
denitrifying bacteria, fermentative bacteria, Fe(III)-reducing bacteria, and sul-
fate-reducing bacteria. Details of these cultivation methods have been reported
elsewhere (22, 38). Briefly, both dilution plate count and broth enrichment
approaches were used. Broth media were inoculated directly with �1 g of
sediment each. For dilution plates, sediment was suspended in the sterile pyro-
phosphate buffer, mixed vigorously, diluted, and spread on agar plates (22). Agar
plates and enrichment broth were incubated at room temperature in the dark
unless otherwise noted.

Agar plates were examined over a period of several months, but the number
of bacterial colonies was determined at 14 days. Distinct colony types based on
color, size, and morphology were noted, picked, and streaked onto fresh medium
for isolation. For some core samples, bacterial colonies failed to develop on agar
plates but growth was evident in broth enrichments. In these situations, a small
volume of enrichment broth was transferred to fresh medium, including agar
plates, in an attempt to isolate additional microorganisms. The cultures were
preserved by freezing in 40% glycerol at �80°C. Culture stocks are maintained
at Pacific Northwest National Laboratory and were also deposited with the DOE
Subsurface Microbial Culture Collection at Florida State University (3).

Isolate 16S rRNA gene (rDNA) restriction fragment length polymorphism and
phylogenetic analyses. Bacterial cultures (isolates) were subjected to phyloge-
netic analysis by sequencing the 16S rRNA gene. The phylogenetic positions
were analyzed by using distance matrix, maximum likelihood, and parsimony
methods. Distance matrix analysis was performed with the PHYLIP group of
computer programs (19). Distances were calculated with the method of Jukes
and Cantor (29), and phylogenies were estimated with the FITCH option, which
uses the Fitch-Margoliash criterion (20), and some related least-squares criteria.
Maximum likelihood analysis was performed with the fastDNAml program (40).
Parsimony analysis was carried out with the PAUP software package (PAUP*
4.0, beta version 4c) (47). A heuristic search was done first (using the standard
program defaults), after which a bootstrap analysis (19) was used to assess the
branch points of the resulting phylogenetic trees. A consensus tree was generated
by bootstrapping at the greater-than-50% confidence limit, with 1,000 replica-
tions.

Community 16S rDNA analysis. DNA was purified from sediment samples 3a,
5a, 6a, 8a, 12a, and 17a (Table 1). Ten 0.5-g aliquots of each sediment sample
were processed using the FastDNA Spin kit for soil (Qbiogene), and the 10 50-�l
eluants were pooled. PCR mixtures (50 �l) contained 1 �l of template, 1� PCR
buffer, 1.5 mM MgCl2, 250 �M each deoxynucleoside triphosphate, 500 nM each
primer, and 0.25 �l (1.25 U) of HotStar Taq (QIAGEN). Template (1 �l) was
added to separate reaction mixtures at full strength and at 1:5, 1:15, 1:50, and
1:150 dilutions. rDNAs were amplified with universal primers 8f (5�-AGAGTT
TGATCCTGGCTCAG-3�; 34) and 1390r (5�-ACGGGCGGTGTGTRCAA-3�;
50) and Archaea primers 21f (5�-TTCCGGTTGATCCYGCCGGA-3�) and 958r
(5�-YCCGGCGTTGAMTCCAATT-3�) (18). Reaction mixtures were incubated
in a Quadra thermal cycler (MJ Research) at 95°C for 10 min, followed by 35
cycles at 94°C for 1 min, 53°C for 45 s, and 72°C for 2 min and then a final
extension of 10 min at 72°C. In some cases, 1 �l of amplified product was used
as template in a seminested PCR with 518f (5�-CCAGCAGCCGCGGTAAT-3�)
and 1390r primers. PCR products were verified by agarose gel electrophoresis,
purified by using the QIAquick kit (QIAGEN), and ligated into pCR4-TOPO
(Invitrogen). Ligations were shipped to the DOE Production Genomics Facility,
where transformants were prepared and inserts were sequenced using standard
protocols (http://www.jgi.doe.gov/Internal/prots_index.html). Sequence reads
were analyzed against the Ribosomal Database Project database by blastN.

Ionizing radiation resistance. Select isolates were analyzed for resistance to
ionizing radiation from a 60Co source (MDS Nordion Inc.).

Cultures (50 ml) were grown in a medium of isolation, typically PTYG me-
dium (22), to about mid-log to early stationary phase, and 10 ml was dispensed
into triplicate 15-ml conical polypropylene tubes. Duplicate cultures were ex-
posed to 2.5, 5, or 20 kGy while a single unexposed culture was used as a control.
Cultures were kept on ice during irradiation to minimize growth. After exposure,
1-ml aliquots were removed from the tubes, diluted in sterile phosphate-buffered
saline, and plated on agar medium. Agar plates were incubated at 30°C and
examined for growth daily for up to 7 days. Percent survival was calculated as the
population of cells surviving a given exposure relative to the unexposed control.

RESULTS

Vadose sediment physical and chemical properties. The
chemical and physical properties of the cored sediments (Table
1) reflect the complex effects of waste leakage from Hanford
tank SX-108, subsequent migration of the tank liquor through
the vadose zone, and geochemical reaction with vadose sedi-
ments. The slant borehole successfully traversed and allowed
sampling of sediments beneath tank 108 that were contami-
nated with 137Cs and other chemical and radiological contam-
inants. Leaked wastes were very hot due to radioactive decay of
short-lived isotopes during waste storage in the 1950s and
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1960s and high concentrations of 137Cs associated with the
HLW. Heating of the vadose sediments altered water seepage
patterns in the subsurface and resulted in large-scale moisture
redistributions. Thermal modeling of the SX tank farm and the
SX-108 subsurface (43, 48) indicated that the temperature may
have exceeded 100°C as deep as 24 m beneath the tanks at the
time of the SX-108 leak (ca. 1962). At the time the samples
were collected (2000), the temperatures had cooled from the
estimated maximum (100°C) and ranged from near ambient
(�37°C) to 75°C (Fig. 1). The maximum subsurface tempera-
ture occurred near the lower depth of 137Cs penetration (e.g.,
�19 m). The effects of the thermal load were evident in the
moisture contents of the various sediment samples as sedi-

ments were desiccated to depths of �20 m beneath the tanks
(Table 1 and Fig. 1).

The pH of the sediments varied from 7.2 near the base of the
borehole to �9 for several of the sediment samples collected
from the upper region of the profile (Table 1). The moderately
alkaline pH indicated that significant waste-sediment reaction
had occurred that neutralized the high pH (�14) of the orig-
inal waste from the reduction-oxidation process. The samples
that were higher in the profile also contained the greatest
concentrations of 137Cs, with sample 6a exceeding 50 �Ci g�1

(Table 1 and Fig. 1 and 2). These high 137Cs concentrations
resulted from the sorptive concentration of Cs� by the abun-
dant micaceous fraction of the sediment. These samples rep-

FIG. 2. Porewater concentrations of Na, NO3, and 99Tc [Tc(VII)O4
�] in the borehole samples determined by water extraction (46) and

laboratory water content measurements. Also shown for reference is the sorbed concentration of 137Cs determined by high-resolution gamma
energy analysis. (Reprinted from reference 46 with permission of the publisher.)

TABLE 1. Chemical and physical characteristics of vadose samples from beneath Hanford waste tank SX-108c

Sample Vertical depth
(m)

Water content
(%) pH Conductivity

(mS cm�1)

Detected amt of:

137Cs (nCi g�1) Cra (�g g�1) NO3
�a (mg liter�1) NO2

�a (mg liter�1)

1a 16.6 4.3 9.2 0.40 3.06 � 103 0.02 7.0 BDb

3a 20.5 2.8 9.6 0.70 1.95 � 104 0.98 29.1 0.4
4a 21.8 2.8 9.5 0.58 1.38 � 103 0.86 23.5 0.3
5a 23.1 4.7 9.8 0.88 6.52 � 103 3.64 92.8 0.3
6a 24.4 3.7 8.0 16.71 5.31 � 104 483.83 11,740 BD
7a 25.6 6.2 9.6 54.62 2.14 � 104 309.73 46,640 BD
8a 26.9 6.0 7.9 49.01 5.55 � 102 829.76 39,710 87.5
9a 28.2 2.4 7.9 31.76 0.17 512.62 22,850 57.1
10a 29.5 1.9 8.2 25.56 0.45 398.13 18,990 59.0
11a 30.8 3.2 8.4 13.93 0.91 0.90 9,520 �10
12a 32.0 21.4 8.0 2.36 0.34 0.29 1,530 �1
13a 34.5 7.6 8.0 29.78 0.52 430.95 22,200 72.5
14a 37.0 12.0 7.8 30.24 0.84 297.83 21,500 46.3
15a 39.5 17.4 7.5 40.01 0.59 336.50 34,600 34.4
16a 41.9 7.5 7.2 5.80 0.01 0.11 4,190 �10
17a 43.9 19.7 7.2 3.74 0.18 0.09 2,390 �1

a Concentration in 1:1 water extract.
b BD, below detection (0.1 mg liter�1).
c Reprinted from reference 46 with permission of the publisher.
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resent some of the most highly radioactive sediment samples
yet collected at the Hanford Site. The highest concentrations
of water-extractable Cr and nitrate are coincident and gener-
ally occur deeper in the profile than Cs, except in the cases of
samples 6a to 8a. These differences result from the relative
mobility of Cs� and the negatively charged chromate and ni-
trate ions (for examples see references 36 and 49). The nitrate
concentration in many of the samples was strikingly high, ex-
ceeding 10 g liter�1 in 1:1 water extracts in 50% of the samples.
Computed pore water concentrations of NO3

� based on the
measured water contents of the sediments ranged between 5
and 15 mol liter�1 in the core of the plume (e.g., 24.4 to 29.5 m
and 34.5 to 39.5 m; Fig. 2). Nitrite concentrations were sub-
stantially lower than those of nitrate but nonetheless exceeded
30 mg liter�1 in 1:1 water extracts in 6 out of 16 samples.

Technetium-99, the other major radiologic contaminant in
the SX-108 vadose zone plume, existed deeper in the profile
than 137Cs (Fig. 2). 99Tc is a long-lived mobile radionuclide
(t1/2 	 2.13 � 105 years) that decays by beta emission in the
form of the pertechnetate anion [Tc(VII)O4

�]. The distribution
of 99Tc was nearly identical to that of NO3

� and defined the
extent of the HLW vadose zone plume. The sorption status of
137Cs and 99Tc was distinct. 137Cs was strongly adsorbed as a
high-affinity exchange complex on micaceous minerals that re-
sist desorption except in saline electrolytes (35). In contrast,
99Tc was not adsorbed and existed as a solute in pore waters
and as salt in air-filled pores.

Viable microbial populations. In general, the populations of
aerobic heterotrophic bacteria as determined by dilution plate
counts were low, ranging from below detection to �104 CFU
g�1 in the deepest sediment collected (17a) (Table 2). Of the
three different agar media used in this study, PTYG yielded the
highest populations of aerobic heterotrophic bacteria while
R2A yielded fewer or no colonies for three samples; however,
it provided for growth of a few colonies on two samples (10a
and 15a) where PTYG agar did not.

Based on previous investigations, we anticipated relatively

low population densities of aerobic heterotrophic bacteria in
the contaminated vadose sediments. Therefore, liquid enrich-
ments were included in the microbiological analyses. For a
number of sediment samples, including highly radioactive sed-
iments 3a, 5a, 6a, and 8a, positive broth enrichments were
obtained where populations were below detection by dilution
plate count techniques. Although most transfer attempts from
the enrichments into fresh broth medium were unsuccessful, a
number of isolates from the original enrichments were ob-
tained by streak plate purification on agar medium, including
several from the highly radioactive sediments. Many of the
sediments that yielded successful enrichments at pH 7 also
exhibited growth in the same medium where the pH was ini-
tially adjusted to 10. It is not possible from these analyses to
establish whether the organisms that grew in the pH 10 en-
richments were similar or distinct from those that grew at pH
7. Regardless, these results indicate the presence of organisms
in the contaminated vadose sediments that were able to grow
at alkaline pH values.

Because we anticipated elevated temperatures of the sedi-
ments beneath SX-108, replicate PTYG and R2A broth en-
richments were also incubated at 50°C. Similar to the pH 10
enrichments, growth was common in many of the original en-
richments but only a few of the cultures were successfully
transferred (Table 2). Interestingly, the cultures that success-
fully transferred originated from some of the same samples for
which the 21°C enrichment cultures also were successfully
transferred; these included samples 1a, 9a, and 12a. A temper-
ature of 50°C was selected for incubation of enrichment cul-
tures, because it was estimated (e.g., Fig. 1) that this would
approximate the in situ temperature for most of the sampled
depths, although for some of the samples the temperatures
were found to be higher (Fig. 1).

Because NO3
� was a common tank waste constituent and the

concentrations were remarkably high in a majority of the sed-
iments examined, we initiated enrichments for denitrifying
bacteria. Cores 12a and 17a were the only samples where the

TABLE 2. Viable aerobic heterotrophic bacteria in vadose samples from beneath Hanford waste tank SX-108

Sample Vertical depth
(m)

Viable plate counts (log CFU g�1)a Growth in broth enrichments (PTYG/R2A) atc:

PTYG R2A Actino pH 7, 21°C pH 10, 21°C pH 7, 50°C pH 10, 50°C

1a 16.6 4.0 4.0 4.0 ��/�� ��/�� 
/�� �/��
3a 20.5 BDb BD BD 
/
 
/
 �/� �/�
4a 21.8 3.7 BD 2.9 ��/�� ��/�� 
/
 
/

5a 23.1 BD BD BD 
/
 
/
 
/
 ��/

6a 24.4 BD BD BD 
/
 �/
 �/� �/�
7a 25.6 3.2 3.1 3.2 
/� 
/
 �/� 
/�
8a 26.9 BD BD BD 
/
 
/
 
/� 
/�
9a 28.2 2.6 BD BD ��/� �/� �/�� ��/

10a 29.5 BD 1.8 BD �/� �/� 
/� 
/

11a 30.8 BD BD BD �/� �/� 
/� 
/�
12a 32.0 2.7 2.7 2.7 ��/�� ��/�� 
/�� 
/��
13a 34.5 BD BD BD �/� ��/
 
/� ��/�
14a 37.0 BD BD BD 
/� 
/� 
/� 
/�
15a 39.5 BD 1.8 BD �/� ��/� 
/� 
/�
16a 41.9 3.3 1.5 BD ��/� �/� �/� 
/�
17a 43.9 �4.3 �4.3 �4.3 ��/�� ��/�� 
/� 
/�

a Actino, growth on actinomycete isolation agar (DIFCO).
b BD, below detection or �1.8 log CFU/g.
c ��, growth in original enrichment and transfer; 
, growth in original enrichment but not transfer; �, no growth. The backslashes separate results from PTYG and

R2A enrichments.
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presence of viable denitrifying bacteria was confirmed. No
sulfate-reducing or fermentative bacteria were cultured from
any of the samples that were analyzed.

Uncontaminated vadose sediment microbial populations.
Two vadose samples were obtained from uncontaminated sed-
iments from a borehole adjacent to the SX-108 slant borehole
for comparison. These samples, designated RG1 and RG4,
were from the same depths as the SX-108 samples that had the
highest concentrations of 137Cs and, therefore, were strati-
graphically similar. The population of viable aerobic hetero-
trophic bacteria in sample RG1 (Fig. 3) was low (2.4 log CFU
g�1) but was comparable to the population size associated with
sample 7a (Table 2) from the SX-108 borehole obtained from
approximately the same depth. In contrast, the population
from untreated RG4 sediment was relatively high at 5.5 log
CFU g�1. This result is in considerable contrast to that for the
sediment from SX-108 collected at approximately the same
depth (8a), which exhibited no growth on PTYG agar even at
the lowest dilution.

In order to assess the potential effects of drying and ionizing
radiation on the population of viable vadose zone bacteria,
uncontaminated sediments were subjected to desiccation or
exposure to gamma radiation. The results from these experi-
ments revealed that desiccation decreased the population sizes
of aerobic heterotrophic bacteria in RG1 and RG4 by 2.5- and
10-fold, respectively (Fig. 3). Exposure to ionizing radiation
had a much greater effect on the population size of viable
aerobic bacteria, eliminating growth from the RG1 sample at
both doses and decreasing the population size in RG4 by 3 and
4 orders of magnitude for acute exposures of 5 and 10 kGy,
respectively.

Phylogeny and radiation resistance of isolates. More than
110 cultures of aerobic heterotrophic bacteria were isolated
and purified from the various enrichments and dilution plates
(Table 3). To obtain insights into the genetic diversity and
phylogeny of the isolates, the cultures were subjected to 16S
rDNA gene sequencing.

The genera represented among the isolates from the SX-108

samples included gram-positive bacteria high in G�C content
that are typical inhabitants of soil and vadose sediments. Iso-
lates whose closest match was a member of the genus Ar-
throbacter were the most common for cultures from both SX-
108 and 299-W22-48 boreholes (Table 3). Other gram-positive
genera commonly represented among the isolates included
Staphylococcus and Nocardia in addition to relatives to several
unclassified bacteria high in G�C content. Gram-negative gen-
era were less common, but representatives included Pseudo-
monas and Sphingomonas as well as close relatives to a number
of unclassified �-, �-, and 
-Proteobacteria. Interestingly, sev-
eral isolates from sample 7a, one of the most radioactive sam-
ples collected, were closely related to Deinococcus radiodurans,
a bacterium that can withstand acute doses of ionizing radia-
tion to 15 kGy without lethality (17).

There are several interesting observations regarding the
phylogenetic distributions of the isolates in Table 3. Only
gram-positive and/or organisms high in G�C content were
cultured from the most highly radioactive sediments, 1a to 7a
(Table 1). In contrast, below sample 7a organisms related to
gram-negative bacteria were relatively common, representing
�45% of the isolates. Many of the same genera in the SX-108
vadose sediments were also present in the uncontaminated
vadose sediments from borehole 299-W22-48.

Nineteen of the 20 radiation-resistant isolates were gram-
positive bacteria high in G�C content, 13 of which were phy-
logenetically related to members of Arthrobacter and its close
relative Micrococcus. Only one (10c-1) of the 13 isolates re-
lated to gram-negative bacteria exhibited any resistance to 2.5
kGy of gamma radiation. Three of the four isolates with some
resistance to 5 kGy were most closely related to an uncultured
Micrococcus luteus-like bacterium identified in a clone library
obtained from a sludge sample from a recirculating two-stage
bioreactor (14). The two isolates (7b-1 and 7c-1) that exhibited
the highest levels of radiation resistance, with �0.2% of the
population of 7b-1 cells surviving exposure to 20 kGy, were
most closely related to D. radiodurans, one of the most radia-
tion-resistant organisms known. The source of these strains
was sample 7a, which had the second highest concentration of
137Cs at 21.4 �Ci g�1.

Community 16S rDNA analysis. The direct extraction of
nucleic acids from vadose sediments followed by PCR ampli-
fication, cloning, and sequencing allowed for a cultivation-
independent analysis of microbial phylogeny to complement
the characterization of sediment isolates. With the bacterial
primers, the 1:5-diluted DNA template produced the strongest
bands on agarose gels for samples 12a and 17a, with very weak
bands present with template at full strength and no bands
present at 1:50 and 1:150 dilutions. For samples 3a, 5a, 6a, and
8a, no PCR products were observed on gels regardless of
template level. Use of a seminested PCR produced visible
products in these samples, with the exception of 8a. The ar-
chaeal primers failed to produce a PCR product in any of the
sample extracts, regardless of template concentration. Com-
petitive PCR containing 1:5 dilutions of indigenous template
spiked with various amounts of Escherichia coli genomic DNA
showed (with the exception of sample 8) between 300 and 900
copies of indigenous 16S target in the reaction, equivalent to
150,000 to 450,000 copies on a per-gram-of-sediment basis
(data not shown). The extent to which PCR was able to sample

FIG. 3. Influence of acute doses of ionizing radiation (60Co) on
populations of viable aerobic heterotrophic bacteria in uncontami-
nated Hanford vadose zone sediments as determined by dilution plate
counts on PTYG agar medium.
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TABLE 3. Phylogenetic and gamma radiation resistance characteristics of isolates from contaminated (SX-108 slant borehole) and
uncontaminated (299-W22-48) Hanford vadose sediments

Core identity and sediment Isolate identity Nearest GenBank relative SimRank Accession no. Dosea (kGy) % Irradiation survival

SX-108
1a 1b-1 Arthrobacter globiformis 0.982 AY561524 2.5 0.24

1c-1 Arthrobacter sp. strain CF-46 0.970 AY561525 2.5 2.4 � 10�4

1c-2 A. globiformis 0.967 AY561526 2.5 9.4 � 10�3

4a 4a-1 Rhodococcus fascians 0.988 AY561527
4a-2 Clavibacter michiganense 0.816 AY561528
4a-3 Microbacterium oxydans 0.946 AY561529 2.5 0
4a-4 Nocardia corynebacteroides 0.991 AY561530 2.5 0
4b-1 N. corynebacteroides 0.983 AY561531 2.5 0
4b-2 Staphylococcus warneri 0.988 AY561532
4b-3 Nocardioides plantarum 0.907 AY561533
4c-1 N. plantarum 0.913 AY561534

5a 5L-1 Arthrobacter agilis 0.967 AY561535 2.5 2.5 � 10�4

5L-2 Agrococcus jenensis 0.939 AY561536 2.5 1.1 � 10�3

5L-3 Bacillus licheniformis 0.977 AY561537 2.5 0
7a 7b-1 D. radiodurans 0.980 AY561538 20 0.21

7c-1 D. radiodurans 0.978 AY561539 20 2.4 � 10�2

7L-1 M. luteus 0.942 AY561540 2.5 0.86
8a 8c-1 Unnamed �-Proteobacterium 0.871 AY561542 2.5 0

8b-1 Sphingomonas asaccharolytica 0.968 AY561541
9a 9c-3 Unnamed �-Proteobacterium 0.966 AY561544 2.5 0

9c-2 Arthrobacter sp. strain CF-46 0.991 AY561543
9c-4 Dermabacter hominis 0.966 AY561545
9c-5 Verrucosispora gifhornensis 0.904 AY561546

10a 10c-1 
-Proteobacterial clone G21 0.929 AY561547 2.5 1.7 � 10�3

10c-2 Unnamed �-Proteobacterium 0.877 AY561548 2.5 0
12a 12a-1 P. stutzeri 0.997 AY561549

12b-1 P. stutzeri 0.994 AY561550 2.5 0
15a 15a-1 Terrabacter tumescens 0.948 AY561551

15c-1 Azospirillum lipoferum 0.855 AY561552 2.5 0
16a 16b-1 Staphylococcus pasteuri 0.986 AY561553 2.5 4.1 � 10�2

16b-2 S. warneri 0.981 AY561554
16b-4 A. globiformis 0.969 AY561555
16b-5A S. warneri 0.999 AY561556
16b-5B S. warneri 0.989 AY561557
16c-1a A. globiformis 0.973 AY561558

17a 17a-1 Arthrobacter nicotinovorans 0.960 AY561559 2.5 5.6 � 10�3

17a-2 Arthrobacter sp. strain CF-46 0.959 AY561560 2.5 3.5 � 10�2

17a-3 P. stutzeri 0.994 AY561561 2.5 0
17a-4 P. stutzeri 0.990 AY561562
17a-5 Streptomyces sampsonii 0.932 AY561563
17b-1 Arthrobacter sp. strain CF-46 0.909 AY561564 2.5 6.7 � 10�4

17b-2 Pseudomonas sp. strain BRW1 0.998 AY561565
17c-1 Arthrobacter sp. strain CF-46 0.939 AY561566 2.5 0
17c-2 Pseudomonas sp. strain BRW1 0.998 AY561567

299-W22-48
RG1 RG-1 Arthrobacter sp. strain CF-46 0.970 AY561568

RG-2 Janibacter limosus 0.858 AY561569
RG-3 Variovorax sp. strain WFF52 0.927 AY561570
RG-4 Variovorax sp. strain WFF52 0.931 AY561571
RG-5 Arthrobacter sp. strain S2215 0.947 AY561572
RG-6 Mycobacterium hodleri 0.909 AY561573
RG-7 M. hodleri 0.908 AY561574 5 8.8 � 10�4

RG-9 Terrabacter sp. strain DPO 1361 0.840 AY561575
RG-59 A. globiformis 0.928 AY561618
RG-60 Alcaligenes sp. strain 05–51 0.803 AY561619
RG-61 A. globiformis 0.936 AY561620

RG4 RG-10 Streptomyces sp. strain 254 0.936 AY561576
RG-11 
-Proteobacterial clone JAP412 0.973 AY561577
RG-12 Arthrobacter sp. strain AC-48 0.905 AY561578
RG-13 Arthrobacter sp. strain S22215 0.951 AY561579
RG-14 R. fascians 0.965 AY561580
RG-15 A. agilis 0.952 AY561581
RG-16 Unnamed �-Proteobacterium 0.865 AY561582
RG-17 Bradyrhizobium sp. strain BDV 5840 0.874 AY561583
RG-18 Unnamed �-Proteobacterium 0.865 AY561584
RG-19 Unnamed �-Proteobacterium 0.867 AY561585
RG-20 Detolaasinbacter tsukamotoae 0.798 AY561586 2.5 0
RG-21 
-Proteobacterial clone JAP412 0.964 AY561587

Continued on facing page
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these low-biomass communities was poor because the detec-
tion level, determined to be 80,000 copies by spiking the 1:5
dilutions of indigenous template with known amounts of non-
indigenous 16S target into PCRs, was only two- to sixfold lower
than the indigenous template concentrations (data not shown).
Nevertheless, blastN analysis of sequences revealed between 2
and 11 genera per sample and 22 genera across all samples.

There was relatively good agreement, at the genus level,
between the bacterial phylogenies obtained by the cultivation-
independent cloning and sequencing approach and the sam-
ples from which isolates were obtained and characterized.
Gram-positive bacteria high in G�C content, including mem-
bers of Arthrobacter, Bacillus, Streptomyces, and Nocardioides,
were among the most common genera represented among the
cloned sequences (Table 4) and were also represented among
the isolates (Table 3), especially Arthrobacter. Among the
gram-negative genera represented in the clone libraries, Sphin-
gomonas and Pseudomonas were also present, including a se-
quence closely related to Pseudomonas stutzeri from sample
12a (Table 4), the same sample from which an isolate closely

related to P. stutzeri was obtained (Table 3). A P. stutzeri-like
sequence was also obtained from the 17a clone library that was
phylogenetically similar to three of the nine isolates from this
sample.

DISCUSSION

In spite of harsh chemical and physical conditions imposed
on vadose sediments by wastes leaked from tank SX-108 (Ta-
bles 1 and 2), viable aerobic heterotrophic bacteria were re-
covered from 11 of the 16 sediment samples. Due to low
population densities it is difficult to discern trends in either
population size or presence of aerobic heterotrophic bacteria
in relation to sediment properties such as pH, water content,
and contaminant concentration (Table 1). Several sediment
samples, 1a, 4a, and 7a, with relatively low water contents and
high radioactivity also contained moderate populations of het-
erotrophic bacteria. The highest viable populations were asso-
ciated with samples that had not been subjected to heating and
drying or severe contaminant exposure: 17a (�4.3 log CFU

TABLE 3—Continued

Core identity and sediment Isolate identity Nearest GenBank relative SimRank Accession no. Dosea (kGy) % Irradiation survival

RG-22 Arthrobacter sp. strain S22215 0.958 AY561588
RG-23 Arthrobacter oxydans 0.948 AY561589
RG-24 Arthrobacter sp. strain S22215 0.958 AY561590
RG-67 Stenotrophomonas maltophilia 0.964 AY561626 2.5 0
RG-68 S. maltophilia 0.965 AY561627 2.5 0

RG1-10kGyb RG-25 Staphylococcus epidermidis 0.985 AY561591 2.5 2.6 � 10�2

RG-26 Brevibacillus agri 0.965 AY561592 2.5 0
RG-64 M. luteus 0.960 AY561623 5 0.44
RG-65 M. luteus 0.896 AY561624 5 0.51
RG-66 Arthrobacter ramosus 0.955 AY561625

RG1-des RG-62 A. ramosus 0.918 AY561621
RG-63 Microbacterium oxydans 0.939 AY561622
RG-69 Pseudomonas migulae 0.958 AY561628 2.5 0
RG-70 P. migulae 0.957 AY561629 2.5 0

RG4-10kGyb RG-29 M. luteus 0.955 AY561593 5 0.46
RG-30 Brevibacillus agri 0.955 AY561594 2.5 0
RG-71 M. oxydans 0.940 AY561630
RG-72 Arthrobacter sp. strain CF-46 0.919 AY561631
RG-72A Arthrobacter sp. strain S21004 0.932 AY561632
RG-73 Arthrobacter sp. strain CF-46 0.922 AY561633

RG4-des RG-33 A. oxydans 0.958 AY561595
RG-34 Streptomyces griseus 0.936 AY561596
RG-35 Arthrobacter sp. strain CF-46 0.933 AY561597
RG-36 Streptomyces setonii 0.888 AY561598
RG-37 Pseudomonas migulae 0.943 AY561599 2.5 0
RG-38 Arthrobacter sp. strain CF-46 0.941 AY561600
RG-39 Arthrobacter globiformis 0.987 AY561601
RG-40 C. michiganense 0.778 AY561602
RG-43 Arthrobacter sp. strain 19B 0.953 AY561603 2.5 1.9 � 10�4

RG-45 Arthrobacter sp. strain S21004 0.947 AY561604 2.5 3.1 � 10�2

RG-46 Unnamed �-Proteobacterium 0.863 AY561605
RG-47 Streptomyces sp. strain 254 0.944 AY561606
RG-48 Rhodococcus sp. 0.922 AY561607
RG-49 A. agilis 0.975 AY561608
RG-50 Rhodococcus sp. 0.939 AY561609 2.5 0
RG-51 Streptomyces sp. strain 254 0.920 AY561610
RG-52 Unnamed �-Proteobacterium 0.912 AY561611
RG-53 Arthrobacter sp. strain 19B 0.948 AY561612
RG-54 A. agilis 0.921 AY561613
RG-55 Arthrobacter sp. strain CF-46 0.985 AY561614
RG-56 Arthrobacter sp. strain 19B 0.968 AY561615
RG-57 Pseudomonas migulae 0.973 AY561616 2.5 0
RG-58 Arthrobacter sp. strain 19B 0.946 AY561617

a Dose to cultures provided via 60Co irradiator.
b Before plating, sediment was subjected to 10 kGy of gamma radiation from a 60Co source.
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g�1) from SX-108 and RG4 (5.5 log CFU g�1) from the 299-
W22-48 uncontaminated borehole. RG4 was from an uncon-
taminated region of the vadose zone, and 17a was among the
least contaminated samples from SX-108. Because no attempts
were made to measure total microbial biomass in these sam-
ples, it was not possible to draw any conclusions regarding
relationships between total microbial biomass and sediment
properties.

One of the caveats that must be recognized with a study of
this type is the limitation associated with using cultivation-
based methods exclusively for microbiological characteriza-
tion. In some environments, the population size of the cultured
prokaryotic community can be as much as 2 to 4 orders of

magnitude below the population size determined by direct
microscopic counting (2). In spite of their limitations, cultiva-
tion methods have previously been successfully applied to
characterizing subsurface microbial populations in saturated
(4, 23) and unsaturated (9, 24) nonradioactive subsurface sed-
iments. The use of cultivation-based methods over sequence-
based methods has the advantage that cultures can be used for
physiologic and metabolic analyses (1). In this study, we ap-
plied both methods to investigate the phylogenetic composi-
tion of the microbial populations associated with contaminated
subsurface sediments from the Hanford Site. We found the
results (Tables 3 and 4) of both methods to be in reasonably
good agreement, and they were consistent with previous find-

TABLE 4. Phylogenetic association of clones from vadose sediments recovered from the SX-108 slant borehole

Core identity Clone Nearest GenBank relative Identitya (%) Accession no.

3a RAY457.x1 Bacillus sp. strain YY 719/723 (99) AY579781
RAY473.x1 Unidentified eubacterium clone BSV05 from anoxic soil (likely Bacillus) 720/726 (99) AY579782
RAY479.x1 Uncultured soil bacterium clone 432-1 (likely Bacillus) 735/753 (97) AY579783
RAY516.x1 Achromobacter xylosoxidans strain 2002-55549 729/729 (100) AY579784
RAY554.x1 Uncultured bacterium clone 623-1 (likely Arthrobacter) 756/760 (99) AY579785
RAY592.x1 Arthrobacter sp. strain SMCC G968 593/600 (98) AY579787
RAY651.x1 Bacterium strain LMG 18435 (likely Bacillus) 736/741 (99) AY579788
RAY690.x1 Bacterium K2-24 (likely Bacillus) 543/553 (98) AY579789

5a RAZ387.x1 Methylobacterium extorquens ATCC14718 693/693 (100) AY579790
RAZ409.y1 Nocardioides plantarum DSM 11054T 612/621 (98) AY579791

6a RBA441.y1 Taxeobacter sp. strain SAFR-033 632/675 (93) AY579792
RBA464.x1 Achromobacter xylosoxidans CIP 7132t 652/654 (99) AY579793
RBA468.y1 �-Proteobacterium A0647 663/703 (94) AY579794
RBA471.y1 Sphingomonas phyllosphaerae FA2 740/741 (99) AY579795
RBA480.y1 Methylobacterium extorquens ATCC14718 563/563 (100) AY579796
RBA484.y1 Uncultured Alcaligenes sp. clone ON5 or Bordetella hinzii 620/625 (99) AY579797
RBA486.x1 Bacterium strain 86356 (likely Sphingomonas) 620/627 (98) AY579798
RBA505.x1 Uncultured �-Proteobacterium clone pA42B412 638/638 (100) AY579799
RBA669.x1 Uncultured bacterium clone cvf122070 (CFB group) 578/582 (99) AY579800
RBA761.y1 Sphingomonas paucimobilis ATCC 29837 431/440 (97) AY579801

12a RBB389.x1 Achromobacter xylosoxidans strain 2002-55549 710/713 (99) AY579802
RBB392.y1 Streptomyces sp. strain KN-1220 598/603 (99) AY579803
RBB399.y1 Streptomyces sp. strain VTT E-99-1326 (A4) 711/711 (100) AY579804
RBB431.x1 Saccharothrix tangerinus strain MK27-91F2 623/625 (99) AY579805
RBB518.x1 P. stutzeri strain ASK-1 657/657 (100) AY579806
RBB541.y1 A. globiformis JCM 1332 361/362 (99) AY579807
RBB579.x1 S. paucimobilis strain ATCC 29837 652/753 (99) AY579808
RBB612.x1 A. agilis strain WED2.2 705/705 (100) AY579809
RBB674.y1 Arthrobacter sp. strain Fa21 538/549 (97) AY579810
RBB697.x1 Nocardiodes sp. strain NCFB3005 or Aeromicrobium sp. strain GWS-BW-H252 604/614 (98) AY579811
RBB732.x1 Stenotrophomonas maltophilia strain 6B2-1 621/624 (99) AY579812

17a RBC394.x1 Arthrobacter sp. strain pfB10 547/554 (98) AY579813
RBC400.x1 Arthrobacter sp. strain 19503 717/717 (100) AY579814
RBC407.x1 Geodermatophilus sp. strain 4S 594/607 (97) AY579815
RBC412.y1 Kocuria erythromyxa ATCC 187T 565/568 (99) AY579816
RBC413.y1 Achromobacter xylosoxidans strain 2002-55549 676/676 (100) AY579817
RBC423.y1 Uncultured earthworm cast bacterium clone c276 (likely Amycolatopsis) 661/681 (97) AY579818
RBC435.x1 Uncultured actinobacterium clone APe4_57 (likely Arthrobacter) 663/666 (99) AY579819
RBC437.x1 Uncultured actinobacterium clone APe4_57 (likely Actinobispora) 597/606 (98) AY579820
RBC439.x1 Nocardioides sp. strain NCFB3007 646/651 (99) AY579821
RBC450.x1 Arthrobacter crystallopoietes DSM 20117 555/564 (98) AY579822
RBC489.x1 P. stutzeri strain ASK-1 675/676 (99) AY579823
RBC620.x1 Blastococcus aggregatus strain DSM 4725T 562/566 (99) AY579824
RBC630.x1 Arthrobacter sp. strain An5 632/632 (100) AY579825
RBC645.x1 A. agilis strain WED2.2 666/666 (100) AY579826
RBC716.x1 Streptococcus sanguis ATCC 10556 611/614 (99) AY579827
RBC738.x1 Phenanthrene-degrading bacterium 70-2 (likely Janthinobacterium) 661/673 (98) AY579828
RBC759.x1 Arthrobacter aurescens 685/688 (99) AY579829

a Nucleotides identical to nearest Genbank relative/total nucleotides of clone sequence.
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ings (24, 30), supporting the idea that viable populations in
Hanford vadose sediments are sparse but are typically higher
in regions where the moisture contents are elevated.

Isolates related to members of the gram-positive bacteria
high in G�C content dominated the cultures obtained from
both the contaminated and uncontaminated vadose sediments,
and they exclusively represented organisms isolated from ei-
ther highly radioactive SX-108 samples or irradiated uncon-
taminated sediments (Table 3). The same group also domi-
nated the phylogeny of cloned sequences obtained from
sediment DNA extracts (Table 4). In contrast to the highly
radioactive and gamma-irradiated samples, nearly half of the
isolates from sediment samples 17a and RG4 that had little or
no contamination and relatively high water contents were
gram-negative Proteobacteria. Although the results are not
quantitative, the phylogenetic diversity and the dominance of
gram-positive bacteria high in G�C content was greater in the
sequenced sediment DNA clones from samples 12a and 17a
(Table 4) than was represented among the isolates from these
same samples (Table 3). Desiccation alone did not eliminate
the isolation of gram-negative bacteria from RG1 or RG4, as
did gamma irradiation (Table 3), suggesting that ionizing ra-
diation, perhaps in combination with other contaminants, may
have had a significant effect on the phylogenetic composition
of the vadose microbial population.

Previous studies have indicated that, in general, gram-posi-
tive bacteria such as Arthrobacter spp. are more drought toler-
ant than gram-negative organisms like Pseudomonas spp. (13,
32, 44). In fact, Arthrobacter members appear to be well
adapted to life in arid soils (12), and some members are adept
at surviving for extended periods of desiccation (8). Members
of the genus Arthrobacter also appear to be well adapted to
vadose sediments of the Hanford Site, as approximately one-
third of the total isolates and a significant number of cloned
sequences (11 out of 48) from this study were related to mem-
bers of this genus. This is about the same proportion of total
viable aerobic chemoheterotrophic bacteria as was isolated
from pristine Ringold Formation sediments obtained from an-
other location on the Hanford Site (6). Arthrobacter spp. were
also common isolates in a third study of vadose zone sediments
at the Hanford Site (10). The phylogeny of the Ringold For-
mation Arthrobacter strains has been investigated in detail, and
many of the isolates appear to represent novel species within
the genus (16). Additional genera represented among the va-
dose zone cultures and sediment DNA-cloned sequences from
this study that were also found in previous analyses of uncon-
taminated subsurface sediments from the Hanford Site (6, 10)
include Rhodococcus, Staphylococcus, Streptomyces, Nocardio-
ides, Bacillus, and Sphingomonas.

One of the more intriguing results from this study was the
isolation of two cultures from core 7a (25.6 m) that were
resistant to extreme (20 kGy) laboratory doses of gamma ra-
diation. This sample was obtained from the highest 137Cs con-
centration region of the plume. Both of these isolates were
closely related to D. radiodurans, a bacterium that is well rec-
ognized for its remarkable ability to withstand high levels of
ionizing radiation. To our knowledge, this is the first time that
D. radiodurans-like strains have been isolated from a radionu-
clide-contaminated environment. It is possible that Deinococ-
cus is indigenous to Hanford soils and vadose zone sediments

and that the harsh environment of the SX-108 contaminant
plume led to conditions that selected for this highly stress-
resistant organism. The ecological habitat of deinococci is
poorly defined, but they do appear to be widely distributed in
soils (11, 39). Additional studies are presently under way to
determine if Deinococcus is a cosmopolitan inhabitant of Han-
ford Site soils. Mattimore and Battista (37) have shown that in
D. radiodurans some genes that are necessary to survive irra-
diation are also necessary for desiccation resistance. However,
a recent report (7) has shown the existence of genes in D.
radiodurans that affect desiccation resistance but not radiation
resistance, indicating that resistance to these conditions may
involve different mechanisms.

Although all the factors influencing the microbiological
characteristics of the SX-108 vadose sediments are unclear at
this time, finding viable aerobic heterotrophic bacteria in ra-
dioactive sediments beneath the SX-108 tank may have impor-
tant implications for the fate and transport of waste-associated
contaminants. Microorganisms, in general, have the capacity
for a wide range of biogeochemical transformations, including
various reactions with waste constituents. For example, micro-
organisms are capable of degrading a wide range of organic
compounds, oxidizing and reducing multivalent metals and
radionuclides, such as Cr, U, and Tc, oxidizing ammonium to
nitrite and nitrate, reducing nitrate or nitrite to ammonium or
N2, and for sorption and/or assimilation of a range of cations,
including Cs and Sr. An important consideration for microbial-
driven biogeochemical processes in the vadose sediments, in-
cluding interactions with contaminants, is the availability of
water. Assuming that the water contents measured on the core
sediment samples accurately reflect in situ water distributions,
it is clear that microbial processes in the upper 31 m are
presently of little consequence to contaminant fate and trans-
port because diffusion of solutes would be extremely limited
and microbial cells are sparse and will likely be inactive or
dormant. However, any future increases in moisture content
due to either episodic natural or artificial (24) recharge or
alteration in regional climate patterns could result in signifi-
cant increases in the size and activity of microbial populations
in vadose sediments. Indeed, moisture calculations for the
S-SX tank farm indicate that subsurface water contents are
increasing as the system slowly re-equilibrates from the ex-
treme thermal loads imposed through HLW waste boiling.
This high thermal load decreased in the early 1970s as the
decay of short-lived radionuclides declined.

We have confirmed the presence of viable bacteria in vadose
zone sediments contaminated with high-level radioactive waste
beneath waste tank SX-108 on DOE’s Hanford Site. The site
has experienced extreme geochemical, thermal, and radiolog-
ical conditions in the past and still represents a harsh chemical
and radiological environment. The culturable microbiota was
comprised predominantly of aerobic chemoheterotrophic bac-
teria, mainly gram-positive organisms, including several highly
radiation-resistant isolates related to D. radiodurans. Although
these organisms are likely inactive or dormant under present
environmental conditions, the ability of these organisms to
survive under extreme conditions for extended periods in va-
dose sediments indicates that they could influence contami-
nant fate and transport should moisture regimes be altered in
the future.
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