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Genomic DNA extracts from four sites at Kilauea Volcano were used as templates for PCR amplification of
the large subunit (coxL) of aerobic carbon monoxide dehydrogenase. The sites included a 42-year-old tephra
deposit, a 108-year-old lava flow, a 212-year-old partially vegetated ash-and-tephra deposit, and an approxi-
mately 300-year-old forest. PCR primers amplified coxL sequences from the OMP clade of CO oxidizers, which
includes isolates such as Oligotropha carboxidovorans, Mycobacterium tuberculosis, and Pseudomonas thermocar-
boxydovorans. PCR products were used to create clone libraries that provide the first insights into the diversity
and phylogenetic affiliations of CO oxidizers in situ. On the basis of phylogenetic and statistical analyses, clone
libraries for each site were distinct. Although some clone sequences were similar to coxL sequences from known
organisms, many sequences appeared to represent phylogenetic lineages not previously known to harbor CO
oxidizers. On the basis of average nucleotide diversity and average pairwise difference, a forested site supported
the most diverse CO-oxidizing populations, while an 1894 lava flow supported the least diverse populations.
Neither parameter correlated with previous estimates of atmospheric CO uptake rates, but both parameters
correlated positively with estimates of microbial biomass and respiration. Collectively, the results indicate that
the CO oxidizer functional group associated with recent volcanic deposits of the remote Hawaiian Islands
contains substantial and previously unsuspected diversity.

Aerobic carbon monoxide oxidation occurs ubiquitously,
with significant activity reported for a wide range of aquatic
and terrestrial systems, plant roots, and macroalgal tissues (10,
14, 20, 21, 26, 27). Nonetheless, past efforts to enrich CO
oxidizers have resulted in only 12 species in 11 genera (12, 20,
21). More-recent efforts, including genome studies, have iden-
tified at least 25 CO-oxidizing species in 10 genera (12, 13).
Although these results suggest that CO oxidizers may be as
diverse as the habitats in which they are found, essentially
nothing is known about in situ diversity.

Analyses of CO oxidizer diversity have been constrained by
several factors. High CO concentrations traditionally used for
enrichments inhibit growth of many newly recognized strains
(12). Thus, simple enrichment strategies based on high CO
concentrations may not be suitable for culture-based diversity
surveys. The diversity of known CO oxidizers has also pre-
cluded development of signature 16S rRNA gene oligonucle-
otides analogous to those used for phylogenetically coherent
groups, such as methanotrophs and ammonia oxidizers (3, 5, 7,
15, 31, 34).

However, primers developed for amplification of a portion
of coxL, the large subunit of carbon monoxide dehydrogenase
(CODH), have provided a new tool for assessing CO oxidizer
diversity (12). coxL PCR primers amplify a 1,260- to 1290-bp
fragment containing the CODH active site and sites for bind-
ing the molybdopterin cytosine dinucleotide (MCD) cofactor
(9, 28). Two sets of primers have been developed and evalu-
ated, one for each of two CO-oxidizing clades (12).

One clade, designated OMP, contains coxL sequences de-

rived from known CO oxidizers (e.g., Oligotropha carboxi-
dovorans, Mycobacterium tuberculosis, and Pseudomonas
thermocarboxydovorans) and newly recognized strains (e.g.,
Mycobacterium smegmatis, Silicibacter pomeroyi, and Stenotro-
phomonas strain LUP) (12). The second clade, designated
BMS, contains putative CODH sequences derived primarily
from newly recognized CO oxidizers (e.g., Burkholderia strain
LUP, Mesorhizobium loti, and Sinorhizobium meliloti) and from
taxa that possess both BMS and OMP coxL genes (Bradyrhi-
zobium japonicum, Burkholderia fungorum LB400, and Stappia
stellulata [12]).

We report here analyses of OMP coxL diversity based on
PCR amplification of DNA extracts from volcanic deposits at
four varied sites in and near the Kilauea Volcano caldera.
Deposits at all sites consume CO actively, and CO contributes
significantly to respiratory reducing equivalent flow at three
of the four sites. Phylogenetic and statistical analyses of se-
quences from clone libraries indicate that distinct and complex
CO-oxidizing populations occur at each site. Although some
clone sequences could be associated with known CO oxidizers
in proteobacterial and Actinobacteria and Firmicutes lineages,
most of the sequences appear to have been derived from novel
organisms with uncertain phylogenetic affiliations. These re-
sults represent the first molecular ecological analyses of CO
oxidizers and reveal a substantial and previously unsuspected
diversity.

MATERIALS AND METHODS

Site description and sampling. Surface deposits (0 to 2 cm depth of four sites
in or near Kilauea Volcano caldera were sampled in April 2002. The sites range
in age, water availability, plant community development, and organic contents,
among other parameters (11). The Halema’uma’u and Caldera Rim sites occur
in a region of the caldera with relatively limited water availability, based on water
contents (11). Both sites consist of ash and tephra overlying weathered lava flows
and support limited patchy growth of pioneering ferns, shrubs, and the Ohia tree,
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Metrosideros polymorpha (11). The youngest site, Pu’u Puai, consists of coarse
tephra and cinders deposited in 1959 and supports patches of Ohia and an
invasive tree, Myrica faya (32). The oldest site, Forest, consists of ash deposits
overlying lava that is about 300 years old and contains mixed stands of Ohia and
M. faya trees, with a limited litter layer (4).

DNA extraction and coxL PCR amplification. Surface samples from each site
were obtained with a sterile trowel and transferred to sterile Whirlpak sample
bags. Within 1 to 2 h, samples were frozen and held at �20°C until transport on
dry ice (�80°C) to Maine. Samples were held at �20°C until DNA extraction.
DNA from each site was extracted from triplicate samples 10 g [fresh weight] by
a bead-beating method with an Ultraclean Mega Soil DNA extraction kit (Mo-
Bio Labs, Inc., Carlsbad, Calif.). DNA quality and size distribution were deter-
mined by electrophoresis in 0.7% agarose.

Bacillus schlegelii and Pseudomonas carboxydohydrogena were obtained from
Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (German
Collection of Microorganisms and Cell Cultures) and grown as recommended.
coxL sequences were obtained by extraction of DNA from pure cultures by a
bead-beating technique (MoBio Labs, Inc.) and PCR as described below. The
nucleotide sequences of the PCR products were determined by the University of
Maine Sequencing Facility with primers OMPf and O/Br and an ABI model 377
sequencer (Applied Biosystems, Foster City, Calif.).

A 1,260- to 1,290-bp fragment of coxL was amplified with primers OMPf
(5�-GGCGGCTT[C/T]GG[C/G]AA[C/G]AAGGT-3�) and O/Br (5�-[C/T]TCG
A[T/C]GATCAT CGG[A/G]TTGA-3�) (13). CO oxidizers that yield an OMP
coxL product include classic carboxydotrophs, such as Oligotropha carboxy-
dovorans and Hydrogenophaga pseudoflava, and newly recognized CO oxidizers,
such as Bradyrhizobium japonicum, Mycobacterium smegmatis, Stappia aggregata,
and Silicibacter pomeroyi (12).

PCR mixtures (50 �l) contained 5 �l of 10� PCR buffer, 10 �l of Eppendorf
Taqmaster buffer, 100 �M concentrations of each deoxynucleoside triphosphate,
3.5 mM magnesium ion, 0.1 �M concentrations of primers, and 1.25 U of
MasterTaq DNA polymerase (Brinkmann, Inc., Westbury, N.Y.). PCR was car-
ried out in an Eppendorf Mastercycler thermocycler (Brinkmann, Inc.), with an
initial denaturation step of 3 min at 94°C and a Taq DNA polymerase “hot start”
addition at 80°C. The reaction continued with 30 cycles of 45 s at 94°C, 60 s at
58°C, and 90 s at 72°C, with a final extension for 20 min at 72°C. Approximately
1 to 2 ng of culture DNA extracts was used as PCR templates. Concentrations of
volcanic extract DNA were varied to optimize yields for each of the sites. The
presence and size of PCR products were determined by electrophoresis in 1%
agarose and ethidium bromide staining. PCR products were stored at �20°C
overnight.

Construction of coxL clone libraries and sequence analysis. Triplicate PCR
mixtures for each site were combined and cloned into E. coli with the use of a
TOPO TA cloning kit for sequencing (Invitrogen Life Technologies, Carlsbad,
Calif.) according to the manufacturer’s instructions. Arbitrarily selected trans-
formed colonies (n � 96) from each library were grown overnight in Luria-
Bertani broth. Plasmids were extracted with a PerfectPrep Plasmid 96 Spin
Direct kit (Brinkmann) according to manufacturer’s instructions. Plasmids were
screened for the appropriate insert size (about 1,260 bp) by comparison to a
super-coiled DNA marker (2 to 10 kb; Promega Corp., Madison, Wis.) by
agarose (1%) gel electrophoresis and ethidium bromide staining. Cloned PCR
products were sequenced by the University of Maine Sequencing Facility with
vector primer T7 and an ABI model 377 sequencer (Applied Biosystems).

Clone sequences were subjected to analysis by GenBank’s BLAST utility to
determine similarity to known coxL sequences. Sequences that were most similar
to CODHs were submitted to ExPASy (http://us.expasy.org/tools) to obtain in-
ferred amino acid sequences. The correct reading frames were determined from
the presence of diagnostic amino acid motifs, including the active site (CSFR)
and binding sites (HETT and SRS) (27) for MCD cofactor. Inferred amino acid
sequences containing the proper motifs were aligned with corresponding coxL
sequences from known CO-oxidizing bacteria by using ClustalX software version
1.8, with manual adjustments as necessary. A 163-residue region containing the
active site and two MCD-binding sites was chosen for further analyses.

Each of the clone sequences was unique and was defined operationally as an
operational taxonomic unit (OTU). Phylogenetic analysis of the clone libraries
was performed by using a neighbor-joining algorithm with 1,000 bootstrap rep-
licates implemented with PAUP 4.0b (Sinauer Associates, Inc., Sunderland,
Mass.). A putative coxL sequence from the archeal species Pyrobacalum aerophi-
lum was used to root the neighbor-joining tree. Statistical comparisons of the
clone sequence libraries for each of the sites were accomplished with LIBSHUFF
(30) and Arlequin version 1.1 (29).

LIBSHUFF estimated homologous and heterologous coverages of clone li-
braries as a function of evolutionary distance for pairwise reciprocal comparisons

of libraries. A bootstrap procedure was used to estimate the significance of
differences in coverage versus evolutionary distance between libraries. Differ-
ences in coverage as a function of evolutionary distance (�c) were considered
significant for P values of �0.05.

Arlequin estimated the significance of differences in population pairwise fix-
ation index (FST) values and average pairwise difference among libraries by using
analysis of molecular variance (AMOVA), and the software calculated nucleo-
tide diversity, average pairwise differences, and mismatch distributions for each
library. FST values were derived from the genetic diversity within a library and the
total diversity of a pair of pooled libraries (23, 29, 35). Nucleotide diversity was
estimated from the number of variable positions for aligned sequences in a given
library; average pairwise differences were estimated from comparisons within a
library of the number of sequence differences between a given clone and all other
clones; and mismatch distributions were derived for each library from the fre-
quency of pairwise differences.

A P-test was used to determine the significance of covariation between the
distribution of unique sequences within libraries and phylogeny (18, 22). Briefly,
PAUP 4.0b was used to generate 1,000 random trees from the combined clone
libraries. The lengths of maximum parsimony trees for the clones were compared
by P-test to the 95% lower confidence limit of the random tree lengths obtained
by maximum parsimony with a heuristic search algorithm.

Nucleotide sequence accession numbers. The sequence of the volcanic depos-
its identified in this study have been deposited in GenBank under accession
numbers AY463248 to AY463356.

RESULTS

Phylogeny of clone libraries. PCR products of the appropri-
ate length (approximately 1,260 bp) were successfully amplified
from volcanic deposit DNA. A total of 109 coxL clones were
sequenced. BLAST analysis indicated that 108 of the clone se-
quences were most similar to OMP coxL genes, while one, HM-
12, was most similar to a BMS putative coxL gene. A majority
of Forest and Pu’u Puai clone sequences clustered with se-
quences from known CO oxidizers (Fig. 1). Sixty-two percent
of Forest clones clustered with known �-Proteobacteria se-
quences (e.g., Bradyrhizobium japonicum and Oligotropha
carboxydovorans) and 15% clustered with known 	/
-Pro-
teobacteria (e.g., Burkholderia fungorum and Pseudomonas ther-
mocarboxydovorans) (Table 1). Fifty-six percent of Pu’u Puai
clones clustered with known Actinobacteria and Firmicutes
(e.g., Mycobacterium and Bacillus schlegelii). In contrast, a ma-
jority of Caldera Rim (81%) and Halema’uma’u (97%) clone
sequences did not cluster with any known CO oxidizers. Few
of the Pu’u Puai, Caldera Rim, and Halema’uma’u clones
clustered with Proteobacteria (12, 4 and 0%, respectively),
while few Caldera Rim, Forest, and Halema’uma’u clones clus-
tered with Actinobacteria and Firmicutes (15, 11, and 0%, re-
spectively).

Phylogenetic analysis suggested that each of the libraries was
unique, and statistical analyses supported this notion. Pairwise
reciprocal comparisons of libraries by using LIBSHUFF re-
vealed significant differences among libraries (P � 0.04) (Table
2). Homologous coverage, a measure of the extent of similarity
within a given library, ranged from 0% for the Forest library to
25.8% for the Halema’uma’u library, with those for Pu’u Puai
(16%) and Caldera Rim (22.2%) between these percentages.
Heterologous coverage, a measure of the representation of a
given library in another, and vice versa, ranged from 0 to 6.65%.
In addition, a P-test indicated that lengths of maximum parsi-
mony trees for the clone libraries were significantly less than
the lengths of randomly generated trees (P � 0.05).

Statistical comparisons of clone sequences with Arlequin
revealed that the Forest library was most diverse, followed by
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FIG. 1. Neighbor-joining analysis (1,000 bootstrap replicates) of inferred amino acid sequences for nonredundant coxL clone sequences and
known CO-oxidizing isolates. A total of 109 clone sequences (163 amino acid residues each) from the Forest (FOR), Pu’u Puai (PP), Halema’uma’u
(HM), and the Caldera Rim (CR) libraries were analyzed. OMP and BMS clades are indicated based on known coxL gene sequences (13).
Phylogenetic lineages are designated based on affiliations with known CO oxidizers. Bootstrap values of �70% are not shown. The Pyrobaculum
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those of the Caldera Rim and Pu’u Puai; the Halema’uma’u
library was least diverse (Table 3). AMOVA comparisons re-
vealed significant differences (P � 0.05) among libraries for
pairwise fixation indices and average pairwise differences
(Table 4). Both values were lowest when Caldera Rim and
Halema’uma’u libraries were compared, followed by the
Pu’u Puai and Forest comparison. The highest FST values and
average pairwise differences were observed for comparison of
the Halema’uma’u library with that of either Pu’u Puai or
Forest.

Frequency distributions of sequence mismatches for For-
est and Caldera Rim libraries were multimodal, or ragged
(Fig. 2). In contrast, the mismatch distribution for Pu’u Puai
was largely unimodal, with the greatest frequency of mis-
matches occurring between 0 and 6 mismatches (Fig. 2B).
The Halema’uma’u library distribution was approximately bi-
modal, with a prominent peak at approximately 50 mismatches
and a smaller secondary peak between 0 and 4 mismatches
(Fig. 2B).

Plots of cumulative percentage of the total mismatch for
each library revealed unique patterns, the most unique of
which occurred for Pu’u Puai, where a large fraction of closely
related clone sequences (�10 mismatches) accounted for
nearly 70% of total cumulative mismatch (Fig. 3). The cumu-
lative percentage of total mismatch increased approximately
exponentially for the Forest library, with the majority of se-
quences having greater than 70 mismatches. The cumulative
percent of total mismatch increased approximately sigmoidally
with mismatch level in the Caldera Rim and Halema’uma’u
libraries, with the majority of sequences showing greater than
50 mismatches.

DISCUSSION

Recent enrichment and genomic studies have shown that
aerobic CO oxidation occurs among numerous lineages within
the �-, 	-, and 
-Proteobacteria and Actinobacteria and Firmi-
cutes (12). However, the extent of CO oxidizer diversity in situ
remains largely unknown, since the only information available

to date has been limited to culture descriptions. Molecular
studies have been precluded until recently due to the lack of
suitable CODH or 16S rDNA primers. Nonetheless, insights
from enrichments and cultures have indicated that CO oxidizer
diversity may parallel that of the wide range of systems in
which CO oxidation occurs.

Primers based on sequences derived from a variety of rep-
resentative CO oxidizers (12) have been used to assess the
presence and diversity in volcanic deposits of coxL in a clade
(OMP) characterized by several well-known carboxydotrophs
(e.g., Oligotropha carboxidovorans and Pseudomonas thermo-
carboxydovorans) and a number of newly recognized CO oxi-
dizers (12). In addition to documenting greater diversity than
previously recognized in known lineages, results presented
here also document substantial diversity in yet-unidentified
bacterial lineages.

Since phylogenetic analyses of inferred amino acid se-
quences obtained from a variety of isolates have indicated that
the coxL phylogeny is congruent with 16S rDNA phylogeny
(12), it is possible tentatively to assign clones to major bacterial
divisions and, in some cases, subdivisions (Fig. 1; Table 1).
Accordingly, about 40% (44 of 109) of the clones overall clus-
ter with Proteobacteria and Actinobacteria and Firmicutes. How-
ever, 60% of the clone sequences cannot be associated with
bacterial divisions known to harbor CO oxidizers. This finding
suggests that aerobic CO oxidation is more widespread among
the bacterial domain than previously imagined and that CO
oxidizers may occur in common terrestrial divisions such as

aerophilum putative coxL sequence was used as an outgroup. The GenBank accession numbers for the following strains are given, with the clade
indicated in parentheses. Aminobacter strain (str.) COX, AY307908 (BMS); Bradyrhizobium japonicum USDA 6, AY307921 (BMS); Bradyrhizo-
bium strain CPP, AY307900 (BMS) and AY307913 (OMP); Burkholderia fungorum LB400, AY307901 (BMS), AY307916 (OMP); Burkholderia
strain LUP, AY307907 (BMS); Mesorhizobium strain NMB1, AY307906 (BMS); Mycobacterium smegmatis, AY307916 (OMP); Oligotropha
carboxydovorans, X82447(OMP); Pseudomonas thermocarboxydovorans, Y77931 (OMP); Stappia aggregata, AY307904 (BMS) and AY307918
(OMP); Stappia strain KB812, AY307898 (BMS) and AY307193 (OMP); Stappia strain KB902, AY307899 (BMS), AY307914 (OMP); Stappia
strain M4, AY307902 (BMS) and AY307916 (OMP); Stappia strain M8, AY307903 (BMS) and AY307917 (OMP); Stappia stellulata, AY307905
(BMS) and AY307919 (OMP); Stenotrophomonas strain LUP, AY307920 (OMP); and Xanthobacter strain COX, AY307911 (BMS).

TABLE 1. Phylogenetic distribution of coxL clone sequences based
on relationships with known CO-oxidizing isolates

Site of sample

Relative occurrence (%) of:

�-Proteo-
bacteria

	/
-Proteo-
bacteria

Actinobacteria �
Firmicutes Unknown BMS

Halema’uma’u 0 0 0 97 3
Caldera rim 4 0 15 81 0
Pu’u Puai 8 4 56 32 0
Forest 62 15 11 11 0

TABLE 2. LIBSHUFF comparisons of coxL clone librariesa

Comparison Covhom Covhet P

Caldera Rim (A) and Pu’u Puai (B) 22.0 0.0 (A vs B) 0.001
16.0 0.0 (B vs A) 0.001

Caldera Rim (A) and Halema’uma’u (B) 3.7 (A vs B) 0.001
25.8 6.5 (B vs A) 0.002

Caldera Rim (A) and Forest (B) 0.0 (A vs B) 0.001
0.0 0.0 (B vs A) 0.021

Pu’u Puai (A) and Halema’uma’u (B) 0.0 (A vs B) 0.001
0.0 (B vs A) 0.001

Pu’u Puai (A) and Forest (B) 0.0 (A vs B) 0.001
0.0 (B vs A) 0.017

Forest (A) and Halema’uma’u (B) 0.0 (A vs B) 0.001
0.0 (B vs A) 0.001

a Homologous coverage (Covhom) and heterologous coverage (Covhet) of li-
braries (as a percentage) for the comparisons indicated. Probability values (P)
are given for the significance of differences between homologous and heterolo-
gous coverages in a reciprocal comparison as a function of evolutionary distance.
See reference 30 for details.
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Acidobacterium and Verrucomicrobium (1, 2, 6, 8, 16, 17, 19,
25), representatives of which have been identified in Hawaiian
volcanic deposits by 16S rDNA sequence analysis (24; V.
Gomez-Alvarez, G. M. King, and K. Nuesslein, unpublished
data).

For the Forest and Pu’u Puai libraries, modest numbers of
the clones, 12 and 32%, respectively, clustered with unknown
lineages. However, the majority of clones from the Caldera
Rim (81%) and Halema’uma’u (96%) could not be assigned to
a bacterial phylum. This result may reflect differences in suc-
cessional state and various biological and abiological parame-
ters that distinguish the Caldera Rim and Halema’uma’u sam-
ples from the Forest and Pu’u Puai samples. In particular, the
latter sites occur within a well-vegetated, relatively moist area
of the caldera, while the former occur in a region with reduced
water availability and substantially less plant growth (11).

It should also be noted that one of the Halema’uma’u
clones, HM-12, clustered with BMS putative coxL sequences.
This occurrence likely results from the similarity between
OMP and BMS sequences in the regions targeted for primer
development (12). Nonetheless, the rare occurrence of a BMS-
like clone indicates that the primers used here are relatively
specific for environmental OMP sequences across a broad phy-
logenetic range.

Patterns for nucleotide diversity and average pairwise dif-
ference generally agree with clone phylogeny. For instance,
the lowest values for both parameters are obtained for the
Halema’uma’u library (Table 3), which also has the most-

limited phylogenetic distances among clones, while the Forest
site supports the most-divergent sequences and has the highest
nucleotide diversity and average pairwise difference. However,
it is also evident from results for the Pu’u Puai and Caldera
Rim libraries that similar levels of diversity can be obtained
from libraries with substantially different phylogenetic compo-
sitions (Tables 1 and 3). Therefore, without additional infor-
mation about population structure, such indices may have lim-
ited value.

Paired reciprocal comparisons performed using LIBSHUFF
indicate that each of the libraries differs significantly from the
others (Table 2), in general agreement with phylogenetic re-
sults. This result is true even for sites with similar nucleotide
diversity and average pairwise difference values, e.g., Pu’u Puai
and the Caldera Rim (Tables 3 and 4). Thus, LIBSHUFF
comparisons, which have thus far been used primarily for 16S
rDNA sequence data, appear to provide useful insights for
functional genes and to complement other analyses.

However, unlike the case for 16S rDNA sequence analyses,
it is not yet evident what level of nucleotide similarity should
be used for distinguishing coxL OTUs. For the study described
herein, only 100% identical sequences were considered equiv-
alent OTUs. This decision reflects the fact that essentially
identical coxL sequences have been obtained from taxonomi-
cally distinct cultures (e.g., Mycobacterium bovis, M. tuberculo-
sis, and M. microti) (13). Accordingly, LIBSHUFF data may
underestimate the true level of library coverage.

The unique distribution of taxa among sites is supported by
several other analyses. Fixation indices (FST) and corrected

TABLE 4. Corrected average pairwise differences (�[
], above
diagonal) and pairwise fixation indices (FST, below diagonal)

Site
Result for sample from:

Halema’uma’u Caldera Rim Pu’u Puai Forest

Halema’uma’u 11.2 94.1 98.9
Caldera Rim 0.067 57.2 72.3
Pu’u Puai 0.371 0.236 37.6
Forest 0.357 0.261 0.153

a All values are significant (P � 0.05).

TABLE 3. Characteristics of coxL clone librariesa

Site No. of
clones

No. of variable
positions

Nucleotide
diversity �(
)

Halema’uma’u 31 334 0.28 (0.14)a 128.8 (63.2)a

Caldera Rim 27 339 0.37 (0.18)b 177.9 (87.6)b

Pu’u Puai 25 355 0.38 (0.19)b 179.7 (88.7)b

Forest 26 429 0.46 (0.23)c 221.5 (109.1)c

a Variable positions indicate the number of variable nucleotide sites (total n �
488) within each library. Values with different letters (superscripts) are signifi-
cantly different (comparisons with Halema’uma’u [P � 0.05] and Forest [0.05 �
P � 0.1] by a one-tailed t-test).
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average pairwise differences derived from paired library com-
parisons by AMOVA suggest that the most divergent popula-
tions occur in sites with distinct plant and water regimes (e.g.,
Halema’uma’u versus Pu’u Puai or Forest; Table 4), while the
least divergent populations occur in sites with more simi-
lar plant and water regimes (e.g., Forest and Pu’u Puai or
Halema’uma’u and Caldera Rim; Table 4). These observations
agree with results from LIBSHUFF and a P-test (17), which
show that sequence distributions within libraries covary signif-
icantly with phylogenetic position. Collectively, the various sta-
tistical analyses suggest that CO oxidizer population structure
responds to environmental (moisture and plant growth) and
historical (e.g., eruption and date of deposition) differences
among sites located within a radius of less than 2.5 km.

Mismatch distributions also varied among libraries (Fig. 2).
For the Forest and Caldera Rim samples, mismatch distribu-
tions are multimodal, reflecting a relatively even distribution of
closely and distantly related taxa. In contrast, mismatch distri-
butions for Pu’u Puai and Halema’uma’u samples are approx-
imately unimodal and bimodal, respectively. The shape of the
mismatch curves for the latter sites may result from recent
population expansions or constraints on diversity imposed by
limited ecosystem complexity. Curves for the former sites may
result from increased diversity accompanying greater deposit
age and successional development (11, 33). Similar results
have been obtained for analyses of the large subunit gene
for ribulose-1,5-bisphosphate carboxylase/oxygenase (rbcL)
(22).

Although distinct CO-oxidizing communities exist at each of
the sites, variations among sites in coxL diversity indices (e.g.,
nucleotide diversity and average pairwise difference) do not
correlate (r � 0.23) with variations in atmospheric CO uptake
rates (11). Indeed, atmospheric CO uptake rates are lowest for
samples from Forest, the site with the highest diversity. Simi-
larly, patterns of rbcL diversity for the same sites do not cor-
relate with CO and hydrogen uptake, even though these gases
likely support most, if not all, of the facultative lithotrophic
activity (22). Whether similar relationships exist between the
diversity of other functional genes and their activities in situ is
uncertain. However, the results presented here indicate that

diversity and function may be uncoupled in at least some sys-
tems.

In contrast to the weak correlation between coxL diversity
and CO uptake, both microbial biomass and respiration cor-
relate strongly (r � 0.99; Fig. 4) with average pairwise differ-
ence (and nucleotide diversity). One explanation for this cor-
relation is that ecosystem level changes that promote increased
microbial abundance and activity also increase opportunities
for niche differentiation and diversification of CO oxidizers.
Changes in the availability and diversity of organic substrates
with successional development may be particularly important
since almost all CO oxidizers function preferentially as hetero-
trophs (20, 21).

Of course, additional analyses, e.g., reverse transcription-
PCR, will be necessary to assess the diversity of populations
that actively express coxL and that may be involved with at-
mospheric CO consumption under in situ conditions. How-
ever, organic limitation in soils generally and volcanic deposits
specifically (11) may select for numerous taxa that use CO as
an energy supplement for growth with heterotrophic sub-
strates.

In conclusion, phylogenetic analyses of coxL sequences de-
rived from genomic extracts of recent Hawaiian volcanic de-
posits have revealed a substantial and previously unrecognized
level of CO oxidizer diversity. Some clone sequences cluster
with, yet are distinct from, sequences of known CO oxidizers in
Proteobacteria, Actinobacteria, and Firmicutes; the majority of
sequences occur in unidentified lineages. Phylogenetic and sta-
tistical analyses also show that distinct CO-oxidizing commu-
nities occur at sites differing in deposit age and ecosystem
development, but differences in community structure are not
correlated with estimates of atmospheric CO uptake. Remark-
ably, the level of CO oxidizer diversity observed in a limited
regional scale sampling of a remote island appears to exceed
reports of diversity for another major group of trace gas-uti-
lizing bacteria, the methanotrophs, which have been assayed
more extensively over a much broader range of habitats.
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