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Abstract: Sepsis can lead to multiple organ dysfunction, including the Acute Respiratory Distress Syndrome (ARDS), 
due to intertwined, dynamic changes in inflammation and organ physiology. We have demonstrated the efficacy 
of Chemically-Modified Tetracycline 3 (CMT-3) at reducing inflammation and ameliorating pathophysiology in the 
setting of a clinically realistic porcine model of ARDS. Here, we sought to gain insights into the derangements that 
characterize sepsis/ARDS and the possible impact of CMT-3 thereon, by combined experimental and computational 
studies. Two groups of anesthetized, ventilated pigs were subjected to experimental sepsis via placement of a 
peritoneal fecal clot and intestinal ischemia/reperfusion by clamping the superior mesenteric artery for 30 min. 
The treatment group (n = 3) received CMT-3 at 1 hour after injury (T1), while the control group (n = 3) received a 
placebo. Multiple inflammatory mediators, along with clinically relevant physiologic and blood chemistry variables, 
were measured serially until death of the animal or T48. Principal Component Analysis (PCA) and Dynamic Bayesian 
Network (DBN) inference were used to relate these variables. PCA revealed a separation of cardiac and pulmonary 
physiologic variables by principal component, and a decreased rank of oxygen index and arterial PO2/FiO2 ratio in 
the treatment group compared to control. DBN suggested a conserved network structure in both control and CMT-3 
animals: a response driven by positive feedback between interleukin-6 and lung dysfunction. Resulting networks 
further suggested that in control animals, acute kidney injury, acidosis, and respiratory failure play an increased 
role in the response to insult compared to CMT-3 animals. These combined in vivo and in silico studies in a high 
fidelity, clinically applicable animal model suggest a dynamic interplay between inflammatory, physiologic, and blood 
chemistry variables in the setting of sepsis and ARDS that may be dramatically altered by pleiotropic interruption of 
inflammation by CMT-3.
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Introduction 

Acute respiratory distress syndrome (ARDS), 
with approximately 200,000 annual cases in 
the United States, is one of the leading causes 
of death in young adults and a major concern in 
victims of combat trauma in the military [1]. The 
accompanying cost for each case is roughly 
$150,000 [2]. The pathophysiology of ARDS 
causes death in 30-60% of affected patients, 
despite treatment with the standard of care low 
tidal volume (LTV) ventilation strategy [3]. 

Diagnostically, the principal feature of ARDS, 
according to the 2011 ESICM “Berlin” defini-
tion, is a PaO2/FiO2 ratio of less than 300 
mmHg. Additionally, respiratory symptoms must 
be new (< 1 week), lung imaging must indicate 
bilateral opacities, and alternative causes of 
acute hypoxemic respiratory failure must be 
ruled out.

ARDS, resulting from heterogeneous etiologies, 
is a common endpoint of sepsis, hemorrhagic 
shock, and trauma. In the hospital setting, 
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ARDS often occurs concurrently with Multiple 
Organ Dysfunction Syndrome (MODS). Bio- 
logically, ARDS results from the systemic mani-
festation of the acute inflammatory response in 
conjunction with local mechanical trauma deliv-
ered to lung tissue by inappropriate mechanical 
ventilation, which our group has shown to be 
critical in ARDS pathogenesis [1, 2]. Unchecked 
inflammation causes barrier failure and subse-
quent accumulation of fluid in the alveoli of the 
lungs, leading to reduced gas exchange [4].

ARDS poses a significant challenge for the clini-
cian and to our knowledge, there are no medi-
cations approved by the U. S. Food and Drug 
Administration to treat this condition. By the 
time ARDS appears, the current standard of 
care treatment is only supportive in the form of 
mechanical ventilation, which is only minimally 
effective [3]. Furthermore, mechanical ventila-
tion, while necessary in the short term, contrib-
utes to ARDS pathology via a secondary, venti-
lator-induced lung injury (VILI), thus significantly 
increasing mortality [5]. 

The lack of insight into the complex workings of 
the human acute inflammatory response has 
been a primary obstacle for developing effec-
tive treatments for ARDS. The inflammatory 
response comprises dynamic networks that 
can include hundreds of mediators derived 
from multiple cell types, all of which vary over 
time. Most variables are interrelated due to the 
feedback structure of the system, and this 
complexity is compounded by frequent pleiot-
ropy and redundancy, as well as the multiscale 
aspect inherent in a system that affects multi-
ple tissues and organs. The traditional reduc-
tionist experimental approach, in which a single 
variable is isolated and its role inferred from 
the results, has been insufficient in elucidating 
the workings of this system. We and others 
have gained insights into trauma and sepsis-
based on data from cells, animals, and humans-
using quasi-mechanistic data-driven computa-
tional modeling based on tools such as principal 
component analysis and various forms of 
dynamic network analysis [6-10]. 

Separately from challenges posed by the com-
plexity of critical illness, the lack of applicability 
of commonly-used rodent models to the pheno-
type and mechanisms of human ARDS has sig-
nificantly hindered the development of effec-
tive treatment [11]. We speculate that this 

discrepancy is due, at least in part, to the fun-
damental differences between the presenta-
tion of ARDS in rodents and in man and the fact 
that most rat models do not use mechanical 
ventilation, which is a large component of ARDS 
pathogenesis [1, 2]. Rodent ARDS can be char-
acterized as an “all-or-none” response, with the 
animal quickly transitioning from health to 
severe respiratory failure and death [12, 13]. 
Human ARDS, however, exhibits a wider spec-
trum of disease and a longer time-course [14]. 
A porcine ARDS model using standard of care 
mechanical ventilation presents many advan-
tages over rodent models. The anatomy and 
physiology of swine mirror man much more 
closely than rodents can. The increased size of 
swine compared to rodents allows for repeated 
measurements and the ability to perform 
experiments in a human clinical setting using 
standard human equipment and procedures. 
Finally, unlike rodents, swine do not exhibit an 
“all-or-none” response, but rather a human-like 
progression of pathology in the lung to ARDS 
[14]. The porcine model used in this work is one 
we have developed to reliably produce ARDS 
[15] and have used in numerous previous stud-
ies [1, 2, 16-18].

We have used this porcine model previously to 
test experimental therapies for ARDS. 
Chemically-Modified Tetracycline 3 (CMT-3) is a 
non-antimicrobial tetracycline that inhibits mul-
tiple inflammatory mediators, including TNF-α 
and IL-6 [19, 20]. This drug has been reported 
to prevent ARDS in our porcine model both 
before and after insult [16]. Herein, we sought 
to leverage these studies in order to gain fur-
ther insights into human ARDS pathophysiolo-
gy, using a combination of 1) our clinically-rele-
vant porcine model, including perturbation with 
CMT-3; 2) extensive time course measure-
ments of biochemistry, physiology, and inflam-
mation; and 3) computational analysis aimed at 
discerning principal characteristics and inter-
connected networks.

Because CMT-3 has demonstrated efficacy in a 
clinically relevant timeframe (1 h after insult) in 
our porcine model, we chose to investigate the 
effect of this drug on the development of ARDS 
using in silico methods, with the hypothesis 
that this combined experimental/computation-
al approach will define dynamic networks of dis-
ease as well as how a beneficial treatment 
affects those networks. Indeed, we demon-
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strate that networks combining inflammation, 
physiology, and blood chemistry data, with the 
novel use of PCA as a filter for variable inclusion 
in Dynamic Bayesian network (DBN) inference, 
help us define novel and possibly therapeutical-
ly-relevant interactions.

Materials and methods

The animal experiments generating the data for 
the mathematical analysis were previously pub-
lished [17]. Thus, the comprehensive and spe-
cific description of animals used and procedur-
al methods can be found in this publication 
[17]. An overview of these methods has been 
restated below as reference for the mathemati-
cal analysis. At the time of the aforementioned 
work, a subset of three randomly selected ani-
mals in both the control and treatment groups 
were selected to have inflammatory mediators 
measured. Thus, only those six animals are 
analyzed in the work presented herein. The 
experiments were performed in compliance 
with the National Institutes of Health’s 
Guidelines on the Use of Laboratory, and the 
Committee for the Humane Use of Animals at 
Upstate University Hospital approved the study 
protocol. 

Animals

The animal model protocol has been described 
in full detail in earlier studies [15] and specifi-
cally in the study in which we tested CMT-3 [17]. 
Briefly, female Yorkshire pigs (Keystone Farms, 
Ithaca, NY) weighing between 25 and 35 kg 
were pretreated with glycopyrrolate, tiletamine 
hydrochloride and zolazepam hydrochloride, 
and xylazine prior to intubation. Anesthesia 
after intubation was maintained using a con-
tinuous infusion of ketamine/xylazine. Animals 
were monitored for 48 h or until death. 

Surgical procedures

An open tracheostomy was performed, and the 
animal was connected to a Galileo ventilator 
(Hamilton Medical, Reno, NV) with initial set-
tings during the surgical preparation as follows: 
tidal volume of 12 mL/kg, respiratory rate of 15 
breaths/min, FiO2 of 21%, and positive end-
expiratory pressure of 3 cm H2O. Respiratory 
rate was titrated to maintain PaCO2 within the 
reference range (35-45 cm H2O); FiO2 was 
titrated to maintain O2 saturation of greater 
than 88%.

Under sterile conditions, a carotid arterial cath-
eter and two external jugular central venous 
catheters were placed. A Foley catheter was 
inserted directly into the bladder. 

A midline laparotomy was performed for place-
ment of a gastrostomy tube and induction of a 
two-hit injury, peritoneal sepsis and ischemia/
reperfusion, described in detail in prior publica-
tions from this model [21]. The superior mesen-
teric artery (SMA) was clamped for 30 min to 
induce intestinal ischemia. During the 30 min 
ischemic time, 0.5 mL/kg of feces was harvest-
ed from a cecotomy and mixed with 2 mL/kg of 
blood to create a fecal clot. After releasing the 
clamp on the SMA, reperfusion was confirmed 
by the appearance of the mesenteric pulse and 
return of normal color to the bowl. The clot was 
then implanted into the lower portion of the 
abdominal cavity. The abdomen was closed 
with a running monofilament fascial suture and 
skin staples.

Ringer’s lactate was used for fluid resuscitation 
and maintenance. Maintenance fluid require-
ments were calculated on a per-kilo basis 
according to clinical guidelines. Fluid boluses 
were given as indicated by deteriorations in 
hemodynamic parameters or decreases in 
urine output less than 0.5 mL/kg per hour. 
Broad-spectrum antibiotics were delivered 
intravenously following closure of the abdomen 
(ampicillin 2 g i.v. and metronidazole 500 mg 
i.v.). This antibiotic regimen was repeated at 12, 
24, and 36 h after injury.

Measurements

Baseline (BL) measurements were taken follow-
ing vascular access before injury. Time 0 (T0) 
measurements were taken immediately after 
the induction of injury (i.e., removal of SMA 
clamp and placement of fecal clot) upon clo-
sure of the abdomen.

Hemodynamic parameters were measured 
(CMS-2001 System M1176A, with Monitor 
M1094B; Agilent, Bobingen, Germany) using 
Edwards transducers (Pressure Monitoring Kit 
[PXMK1183]; Edwards Lifesciences, Irvine, 
CA). Measurement of blood gases and chemis-
tries was made with a Roche blood gas analyz-
er (Cobas b221; Basel, Switzerland). Pulmonary 
parameters were measured or calculated by 
the Galileo ventilator (Hamilton Medical). After 
centrifugation at 15°C for 10 min, plasma fluid 
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inflammatory mediators IL-1β, IL-6, IL-4 (Affy- 
metrix, Santa Clara, CA), IL-10 (R & D Systems, 
Minneapolis, MN) were measured using 
enzyme-linked immunosorbent assay accord-
ing to the manufacturer’s recommendation and 
NO3

-/NO2 was measured by the nitrate reduc-
tase method using a commercially available kit 
(Cayman Chemical, Ann Arbor, MI).

Variables and time points

The following physiologic variables were mea-
sured at baseline (BL) and each hour from 0 
(T0) to 48 h (T48): heart rate (HR); mean arte-
rial pressure (MAP); pulmonary artery pressure 
(PAP); central venous pressure (CVP); cardiac 
output (CO); peak airway pressure (Ppeak); pla-
teau pressure (Pplat); mean airway pressure 
(Pmean); static compliance (Cstat); tidal vol-
ume (Vt); respiratory rate (RR); positive-end 
expiratory pressure (PEEP); body temperature 
(Temp). 

The following blood chemistry variables were 
measured at BL and each hour from T0 to T6, 
then every 3 h from T9 to T48: arterial pH (pH_
art); arterial PCO2 (PCO2_art); arterial PO2 (PO2_
art); arterial oxygen saturation (SaO2); arterial 
hematocrit (Hct_art); arterial hemoglobin 
(Hgb_art); arterial base excess (BE_art); arteri-
al Na+ (Na+_art); arterial K+ (K+_art); arterial Cl- 
(Cl-_art); arterial Ca++ (Ca++_art); arterial glu-
cose (Glu_art); arterial BUN (BUN_art); arterial 
lactate (Lact_art); venous pH (pH_ven); venous 
PCO2 (PCO2_ven); venous oxygen saturation 
(SvO2). Additionally, two other calculated vari-
ables: P/F Ratio (PF, Arterial PO2/FiO2) and 
Oxygenation Index (OI, [Mean Airway Pressure x 
FiO2]/Arterial PO2) were included in the blood 
chemistry analysis, due to their blood chemis-
try component variables limiting the number of 
time points at which they could be calculated.

Inflammatory mediators were measured at BL 
and each hour from T0 to T6, then every 3 h 
from T9 to T 24, then every 6 h from T30 to T48: 
IL-6; IL-4; NO3

-/NO2; IL-1β; IL-10.

Treatment groups 

Animals were randomized into two groups. The 
treatment group (n = 3) received an orally active 
dose (200 mg/kg) of the modified tetracycline 
CMT-3 (6-demythyl-6-deoxy-4dedimentylami-
no- tetracycline; CollaGenex Pharmaceuticals 

Inc, Newton, PA) delivered per gastrostomy. The 
placebo group received the same dose of a 
vehicle (carboxymethylcellulose) for CMT-3 
delivered per gastrostomy. Doses were deliv-
ered one hour after injury for both groups.

Principal component analysis

PCA is a nonparametric statistical method of 
reducing the dimensionality of a dataset used 
to identify the subsets of variables (in the form 
of orthogonal normalized linear combinations 
of the original variables, called principal com-
ponents) that are most strongly correlated with 
overall variability of the dataset, and thereby 
might be considered principal drivers of each 
response [10, 22]. We have recently demon-
strated the utility of PCA for elucidating differ-
ences in inflammatory responses between a 
treatment and control group in the same por-
cine ARDS model used in this work [18], and 
have extensively used this method to study 
inflammatory networks in mouse [23], rat [24], 
and porcine [24, 25] models of sepsis. 

PCA was performed on physiologic and blood 
chemistry datasets obtained from each treat-
ment group. Additionally, for the physiologic 
dataset an initial PCA was performed on data 
from both groups combined. To perform PCA, 
the data were first normalized for each variable 
(i.e., a given value divided by the maximum 
value for that variable), so that all variable lev-
els were converted into the same scale (from 0 
to 1). In this way, any artifactual effects on vari-
ance due to the different ranges of concentra-
tion observed for different variables were elimi-
nated. Only sufficient components to capture at 
least 95% of the variance in the data were con-
sidered. From these leading principal compo-
nents, the coefficient (weight) associated with 
each variable was multiplied by the eigenvalue 
associated with that principal component. This 
product represented the contribution of a given 
variable to the variance accounted for in that 
principal component. The overall score given to 
each variable is the sum of its scores in each 
component. This gives a measure of a vari-
able’s contribution to the overall variance of the 
system. The variables with the largest scores 
are the ones who contributed most to the vari-
ance of the process being studied. More spe-
cifically, the overall PCA score was calculated in 
the following way: .

,j i i jiP e W= ; ;/ , where i is 
the index of component and j is the index of 
variable. Wi, j is the amount that the jth mediator 
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contributes to the ith component. The com-
plete MATLAB code for this analysis can be 
found as supplementary material to our previ-
ously published work [23].

PCA-based variable reduction

PCA results were compared between treatment 
and control groups, separately for physiologic 
and blood chemistry analyses. Variables that 
were revealed to provide little information con-
tent in the analyses for both groups were 
removed prior to proceeding with DBN infer-

the included physiologic and blood chemistry 
variables along with the complete set of inflam-
matory variables. Since inflammatory variables 
were measured at the fewest time points, only 
physiologic and blood chemistry data taken at 
the time points used for inflammatory variables 
were included in this analysis.

Dynamic bayesian network inference

Given time-series data, DBN inference is a 
method for suggesting causal relationships 
among variables based on probabilistic mea-

Table 1. Summary of variable exclusion for Dynamic Bayesian Network analysis. PCA was used as an 
information content filter to determine which variables could be excluded from DBN analysis. Strategy 
1 excluded variables that for both control and CMT-3 groups were in the bottom tier of PCA results. 
Strategy 2 excluded variables that were both in either the bottom or second lowest tier of the PCA 
results for both groups. The percent reduction in variable count from the complete set of physiologic 
(n = 13) or blood chemistry (n = 20) variables is shown

Strategy 1 Strategy 2
ANALYSIS Variables excluded % reduction in variable count Additional variables excluded Additional/Total % reduction in variable count

Physiology Vt 15.4 RR 15.4/30.8

Temp PAP

Chemistry SaO2 25.0 K+_art 30.0/55.0

pH_art Ca++_art

pH_ven PCO2_art

Na+_art PCO2_ven

Cl-_art Hct_art

Hgb_art

Figure 1. Two-dimensional physiology Principal Component Analysis results 
for entire dataset. For each physiologic variable, contributions to the 1st and 
2nd principal components were plotted in an (x, y) format. In this 2-dimen-
sional view, the separation of cardiac and pulmonary variables by compo-
nent, and grouping of certain pulmonary variables, can be better visualized.

ence. Two strategies were 
employed when choosing cut-
offs: Strategy 1 only excluded 
variables shown by PCA to be 
of minimal importance, judged 
by being in the bottom tier of 
the PCA bar chart in both 
groups; Strategy 2 was more 
aggressive, also excluding 
variables that for both groups 
were in the bottom or second 
lowest tier. Tiers were chosen 
by the experimenters based 
on the relative magnitude of 
the contribution of a given 
mediator across all compo-
nents. A complete summary 
of variables excluded for each 
strategy is shown in Table 1, 
and PCA bar chart results can 
be seen in Figure 2.

For each strategy and for each 
treatment group, DBN infer-
ence (see below) was per-
formed on a combined set of 
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Figure 2. Principal Component Analysis by group and variable type. The control and CMT-3 group were treated in 
identical fashion, except 1 h after injury control pigs (n = 3) received a placebo, while CMT-3 pigs (n = 3) received 
chemically modified tetracycline 3. Physiology = only physiologic variables were included in the analysis. Blood 
Chemistry = only blood chemistry variables, and derived variables OI and PF, were included in the analysis. Vari-
ables are ordered by the sum of the absolute values of their contributions to all components, with contributions to 
individual components represented by different colored sections of the bars. Dashed lines represent cutoffs chosen 
for variable tiers used in determining exclusion from DBN analysis. In physiology, the separation of cardiac variables 
into the second principal component remains apparent after the dataset has been divided by group. The physiology 
analyses also revealed PEEP to be the lowest ranked variable in the CMT-3 group, compared to being ranked 6th of 
13 variables in control. In blood chemistry, the oxygen index (OI) and PF ratio decrease markedly in rank and tier 
from control to CMT-3.

sure. Unlike standard correlative approaches, 
DBNs consider the joint distribution of the 
entire data set when making inferences about 
the dependencies among variables or nodes in 
the network. In a DBN, variables are shown as 
nodes, and the interconnections are shown as 
edges. The values of each node are assumed 
to be distributed according to a chosen model 
(e.g., Gaussian), and the relationships among 
nodes are defined by the structure of the direct-
ed network and the corresponding conditional 
probability distributions of the interacting 
nodes. Network structure is inferred by a sam-
pling technique that iteratively proposes candi-
date structures and evaluates them based on 
how well they explain the observed data using a 
specified scoring criterion, until reaching con-
vergence on a network structure with the high-
est score.

Our analysis was carried out in MATLAB (The 
MathWorks, Inc, Natick, MA), using an algo-
rithm adapted from Grzegorczyk and Husmeier 
[26] and revised recently by our group [18, 27, 
28]. Briefly, the algorithm uses an inhomoge-
neous dynamic change-point model, with a 
Bayesian Gaussian with score equivalence 
scoring criterion. For each node, a new set of 
parent nodes was sampled directly from the 
posterior distribution, and the local scores 
computed using the Bayesian Gaussian with 
score equivalence scoring model. Each node 
was subject to a fan-in restriction of three par-
ent (i.e., effector) nodes. The marginal posteri-
or edge probability, the likelihood of observing 
each edge (interaction) in the network, was 
estimated by calculating the average occur-
rence of each edge in the highest scoring net-
works that were sampled. The inference proce-
dure was run individually for each pig, and the 
marginal edge probabilities averaged across all 
runs. The thickness of edges was weighted by 
this number, and only edges with an averaged 
marginal edge probability greater than 0.5 were 

included in the final consensus network for 
each condition. We note that the program is 
probabilistic and thus applying this hard cutoff 
can lead to minor differences in results from 
different runs.

Results

We have demonstrated previously the parallel 
use of PCA and DBN on a single dataset to gain 
independent insights into the intertwined roles 
of inflammation and pathophysiology in the set-
ting of porcine sepsis/ARDS, and the impact of 
a multimodal therapy (peritoneal suction to 
remove inflammatory ascites) thereon [18]. In 
the current study, we sought to discern the 
impact of a drug (CMT-3) on more comprehen-
sive networks involving interconnected bio-
chemical, physiological and inflammatory vari-
ables. Additionally, given this goal and our 
recent work demonstrating the applicability of 
PCA to datasets containing a large number of 
variables [29], we sought to determine the util-
ity of PCA as an information content filter prior 
to DBN inference.

We first sought to determine if PCA could segre-
gate among variables, and furthermore if this 
methodology could define a natural separation 
between experimental groups. An analysis of 
physiologic data combined for both the control 
and CMT-3 groups revealed an overall trend of 
separation of cardiac and pulmonary variables 
by principal component (Figure 1). Cardiac out-
put, heart rate, and mean arterial pressure 
were all found to make distinctly greater contri-
butions to the second principal component 
than the first, and this was reversed for the pul-
monary variables of mean, peak, and plateau 
pressure as well as static compliance. 

The results of PCA for physiologic and blood 
chemistry data separately for each group can 
be seen in Figure 2. Of note, after the physiol-
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Figure 3. Dynamic Bayesian Network analysis suggests conserved network driven by inflammation and lung dysfunction in porcine ARDS model, but with blunting of 
systemic damage in CMT-3 group. The control and CMT-3 group were treated in identical fashion, except 1 h after injury control pigs (n = 3) received a placebo, while 
CMT-3 pigs (n = 3) received chemically modified tetracycline 3. Numerous inflammatory, physiologic, and blood chemistry variables were found to be interrelated 
using DBN analysis. The weight of the arrows denotes strength of interaction. Of note is the absence of BUN, lactate, and OI as outputs, decrease in weighting of BE 
as an output, and decreased involvement of IL-1β in the CMT-3 group compared to control.
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Figure 4. Dynamic Bayesian Network analysis of Strategy 1 suggests lack of network alteration by filtering process. The control and CMT-3 group were treated in 
identical fashion, except 1 h after injury control pigs (n = 3) received a placebo, while CMT-3 pigs (n = 3) received chemically modified tetracycline 3. Strategy 1 
excluded fewer variables (see Table 1) than Strategy 2 (see Figure 3). Comparing the results for the two strategies, the same overall IL-6 and PF driven network 
structure is seen and all variables excluded in the transition from Strategy 1 to Strategy 2 were either not included in the Strategy 2 results, or were included only 
as outputs (did not show self-feedback or outward links to other nodes).
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ogy data were analyzed separately by group, 
the splitting of cardiac and pulmonary variables 
by component could still be observed in each 
individual analysis (Figure 2A and 2B). 
Interestingly, this result was more distinct in 
the control group, in which the second principal 
component is almost exclusively derived from 
cardiac variables. The physiology analyses also 
revealed PEEP to be the lowest ranked variable 
in the CMT-3 group, compared to being ranked 
6th of 13 variables in control. The analyses of 
blood chemistry variables revealed the Oxygen 
Index (OI) and P/F ratio to both be markedly 
lower in rank in the CMT-3 group as compared 
to control (Figure 2C and 2D). 

We next sought to infer dynamic networks of 
the interconnections among variables relevant 
to the overall response to insult in our animal 
model. We hypothesized that we could utilize 
PCA as an information content filter to reduce 
the number of variables included in DBN infer-
ence. Accordingly, we selected variables and 
tiers for this filtering process as described in 
the Materials and Methods. Resultant tiers for 
variable selection for DBN can be seen in 
Figure 2. DBN results for Strategy 2 can be 
seen in Figure 3. Importantly, DBN results for 
Strategy 1 (Figure 4) appeared similar to 
Strategy 2, indicating that the filtering process 
did not alter the underlying results obtainable 
by DBN. More specifically, the same overall net-
work structure was maintained. Furthermore, 
all variables excluded in the transition from 
Strategy 1 to Strategy 2 were either not includ-
ed in the Strategy 2 results, or were included 
only as outputs (did not show self-feedback or 
outward links to other nodes).

Numerous inflammatory, physiologic, and blood 
chemistry variables were interrelated based on 
DBN inference. This analysis suggested an 
overall response coordinated by the pro-inflam-
matory mediator IL-6 and lung dysfunction (PF), 
with lung dysfunction feeding back into a multi-
faceted inflammatory response (IL-6, IL-1β, IL-4, 
IL-10, and NO3

-/NO2), as we have suggest previ-
ously [18, 25]. Within this general network 
structure, differences were observed between 
experimental groups. These differences includ-
ed the suggestion that PF is affected by IL-6 
and IL-1β in control animals, while PF is affect-
ed solely by IL-6 in CMT-3 animals. Another 
inferred difference was the lack of feedback 
from PF back to IL-6 in control animals. IL-1β, in 

addition to appearing to have a bidirectional 
relationship with PF, was inferred to be an out-
put of arterial glucose in control animals. These 
findings suggest that in an untreated ARDS 
response IL-1β, in response to hyperglycemia, 
plays a key role affecting processes that ulti-
mately result in  pulmonary dysfunction. 

The interplay between inflammation and blood 
chemistry in the DBN inferred from control ani-
mals is also noteworthy for outputs from IL-6 to 
BUN, arterial lactate, and OI that are not pres-
ent in the CMT-3 DBN. In fact, these three 
markers of acute kidney injury (AKI), acidosis, 
and respiratory failure, respectively, are not 
present anywhere in the CMT-3 DBN, suggest-
ing a reduced degree of multiple organ dys-
function in response to the initiating insult. 
Across all animals and time points, the average 
base excess in control data was -2.83, and in 
CMT-3 data was -2.10, supporting the DBN-
based inference of increased relevance of aci-
dosis in control animals. 

Also of note is the role of arterial glucose in 
both DBN models. Aside from IL-6 and PF, arte-
rial glucose is the only other variable to exhibit 
self-feedback. Moreover, arterial glucose was 
connected to more outputs than any other vari-
able in our dataset. This finding may support 
recent emphasis on glucose control in sepsis 
[30, 31], as well as the relation of glucose to 
stress and cortisol [32].

Discussion

We have focused much of our work on dynamic 
networks of systemic inflammation in diverse 
settings [18, 23, 27-29, 33-35]. These studies 
have helped elucidate novel mechanisms and 
interactions, as well as suggesting novel dis-
ease biomarkers. In the present study, we 
sought to utilize these in silico methods to help 
link the numerous physiologic and blood chem-
istry information parameters available to the 
clinician, in order to gain further insights in 
ARDS, and to help define the multi-factorial 
mechanisms by which a drug such as CMT-3 
exerts its beneficial effects. Using a clinically 
applicable model of ARDS, biochemical/physi-
ological data of the type that could be readily 
available to clinicians, as well as data on circu-
lating inflammation biomarkers, we compared 
a group of control and CMT-3-treated swine in 
order to gain insights into the mechanisms of 
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sepsis/ARDS pathogenesis. This work is not 
meant to suggest the clinical use of CMT-3. 
Rather, this particular treatment was chosen 
because CMT-3 is, in essence, a multi-factorial 
perturbation of ARDS with previously defined, 
major effects on ARDS [14]. 

A key aspect of our work revolved around the 
integration of multiple data elements collected 
over time, with the goal of gaining translational-
ly-useful knowledge. Data-driven computation-
al modeling can help infer mechanisms operant 
in biological systems, leading to hypotheses 
that can be tested in the laboratory [9, 10, 22, 
36]. For researchers interested in testing a par-
ticular hypothesis or searching for new targets, 
this approach can narrow down an excessive 
number of potential reductionist experiments. 
The wide variety of currently available tech-
niques allows for modeling, mapping of net-
works, and dimensionality reduction to suggest 
principal characteristics or drivers of a response 
[9]. We have previously employed PCA and 
DBN, among other data-driven modeling meth-
ods, to study networks of inflammatory media-
tors in rodents, swine, and humans [18, 23, 25, 
27-29, 33]. In the present study, we combined 
PCA and DBN to gain insights into the multi-
compartment dynamics of our porcine ARDS 
model, extending our prior work [18] to assess 
the impact of CMT-3.

We utilized PCA to include multiple physiologic 
and blood chemistry variables in addition to 
inflammatory mediators. Within the physiology 
analyses, the PCA-based separation of cardiac 
and pulmonary variables is a particularly inter-
esting finding. One of the traditional uses of 
PCA in the social sciences has been separation 
of variables by category into different principal 
components, and we see this trend clearly in 
both the combined and group-specific results. 
The decrease in rank of OI and PF from control 
to CMT-3 treatment groups within the blood 
chemistry analyses mirrors our previous work, 
which found OI and PF to decrease in rank from 
control to peritoneal suction treatment groups 
within a set of inflammatory variables in septic 
swine [18]. The conservation of this significant 
decrease in the ranking of these two variables 
across different treatments and classes of 
comparison variables suggests their broad util-
ity as metrics of pulmonary dysfunction, and 
further supports the theory of intertwined phys-
iological, biochemical, and inflammatory net-

works in sepsis/ARDS. The OI is the only routine 
measure that takes into account both oxygen-
ation and lung pressure [37]; OI can be predic-
tive of acute hypoxic respiratory failure in chil-
dren [38]. We have also shown in our previous 
work that OI correlates with predicted overall 
“damage”, a simulated index of whole-animal 
health status in a two-compartment ordinary 
differential equation, mechanistic model of por-
cine endotoxemia [25].

The present study supports the current hypoth-
esis that mechanical ventilation is a primary 
‘driver’ of acute lung injury pathogenesis in nor-
mal lungs before the development of ARDS [1, 
2]. It has recently been shown that patients are 
risk of developing ARDS (e.g. sepsis, trauma, 
hemorrhagic) but with normal lungs when 
placed on mechanical ventilation had a signifi-
cantly higher incidence of ARDS if they were on 
non-protective high tidal volume ventilation 
[39]. PCA shows that both OI and PF ratio 
decrease markedly in rank and tier between 
the control and CMT-3 groups. OI and PF ratio 
are markers of lung pathology, and the airway 
pressure component in OI suggests a role for 
VILI in this lung pathology (i.e. the higher the 
airway pressure the more potential for VILI). 
Thus, we hypothesize, based on recent clinical 
studies, that severe pulmonary inflammation in 
the control group, combined with non-protec-
tive mechanical ventilation strategies, act syn-
ergistically to drive the disease process forward 
culminating ultimately in ARDS [39, 40]. We fur-
ther hypothesize that upon treatment with 
CMT-3 and concomitant alteration of inflamma-
tory patterns, the injurious impact of non-pro-
tective ventilation is reduced and ARDS is pre-
vented. Also of interest is that PEEP, thought to 
play a key role in protective ventilation, was in 
the lowest tier in the CMT-3 group. This finding 
also supports the hypothesis that, upon treat-
ment with the CMT-3, alteration of the inflam-
matory patterns driven by VILI is no longer an 
important mechanism driving acute lung injury. 
Our DBN analysis further supports this hypoth-
esis, since OI, and presumably VILI, is no longer 
an output node in the CMT-3 group. 

In further support of this hypothesis, our com-
putational analysis suggested that IL-1β, in 
addition to appearing to have a bidirectional 
relationship with PF, was inferred to be an out-
put of arterial glucose in control animals. These 
findings suggest that in an untreated ARDS 
response IL-1β, in response to hyperglycemia, 
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plays a key role affecting processes that ulti-
mately result in pulmonary dysfunction. Our 
prior computational modeling work, based on 
studies of acute lung injury in endotoxemic 
swine, suggested that IL-1β drives the release 
of the damage-associated molecular pattern 
molecule HMGB1, setting in motion a feed-for-
ward loop of inflammation à organ dysfunction 
à inflammation [25].

There are multiple limitations to our study. The 
number of animals was relatively small, due to 
the nature and expense of large animal studies. 
However, this limitation is justified by the 
increased applicability, compared to rodent 
models, of a porcine model to man, and is miti-
gated by the extensive number of time points 
and data elements obtained. The number of 
inflammatory variables was also small, as this 
study aimed to only include a reduced number 
of key variables of this type so that physiologic 
and blood chemistry variables could be focused 
on, and since the availability of pig-specific ana-
lytical reagents is lacking in comparison to 
those available for rodents or humans. A weak-
ness of our DBN algorithm used here is its 
inability to determine directly the positive or 
negative nature of edges connecting the nodes, 
as well as whether links represent a linear or 
other type of relationship. Nonetheless, DBN 
inference is still capable of providing valuable 
information regarding the interconnectedness 
of variables that methodologies such as PCA 
cannot infer, and that can be supplemented 
and interpreted in context by the experimenter. 
Finally, data-driven modeling techniques are 
not mechanistic and must be further validated 
by in vivo or in vitro experiments in the labora-
tory, or by in silico mechanistic models. 

Conclusion

In conclusion, we suggest that our studies 
reveal a dynamic interplay between inflamma-
tory, physiologic and blood chemistry variables 
in the setting of acute systemic inflammation 
and ARDS. We have demonstrated the use of 
PCA on large data sets as an information con-
tent filter for DBN inference, without detracting 
from the nature of DBN results, and have 
expanded our use of both techniques to include 
two new classes of clinically applicable vari-
ables. Thus, the data analysis framework pre-
sented herein, combined with the clinically-
realistic nature of the animal model from which 
these data were obtained, may serve as a 
translationally useful discovery platform.
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