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Abstract

Objective—To assess effects of chronic antidepressant drug treatment on serotonin type-1A 

receptor (5-HT1AR) binding potential (BP) in major depressive disorder.

Methods—Depressed subjects (n=27) were imaged using PET and [11C]WAY-100635 at 

baseline and following a median of 9.4 weeks of treatment with selective serotonin reuptake 

inhibitor or dual reuptake inhibitor antidepressant agents. Fifteen subjects had complete pre- and 

post-treatment scan data. The 5-HT1AR BP was derived from the tissue time-radioactivity 

concentrations from regions-of-interest defined a priori using a simplified reference tissue model 

(SRTM), and in a subset of subjects, compartmental modeling (CMOD).

Results—Chronic treatment had no effect on pre- or postsynaptic 5-HT1AR BP, as confirmed by 

both the SRTM and CMOD analyses. These results were unaffected by treatment response status 

and were consistent across brain regions. Among the 22 subjects for whom the clinical response-

to-treatment was established, the treatment non-responders (n=7) had higher baseline BP values in 

the left (p=0.01) and right orbital cortex (p=0.02) than the responders (n=15).
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Conclusions—Chronic antidepressant drug treatment did not significantly change cerebral 5-

HT1AR binding, consistent with preclinical evidence that the alterations in serotonergic function 

associated with antidepressant drug administration are not accompanied by changes in 5-HT1AR 

density. Higher baseline 5-HT1AR binding was associated with poorer response to treatment.
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Introduction

Alterations in serotonin type-1A receptor (5-HT1AR) function have been associated with the 

pathophysiology (Arango et al. 2001; Bowen et al. 1989; Drevets et al. 2000; Lopez et al. 

1998; Stockmeier et al. 1998) and treatment (Artigas et al. 1996; Chaput et al. 1991; Cowen 

2000; Frazer et al. 1990; Haddjeri et al. 1998) of major depressive disorder (MDD). Several 

groups (Drevets et al. 1999; Meltzer et al. 2004a; Sargent et al. 2000), but not all (Parsey et 

al. 2006), reported abnormal reductions of in vivo pre- and postsynaptic 5-HT1AR binding 

potential (BP; proportional to Bmax x affinity, where Bmax = receptor density) in depressives 

versus controls using PET and [carbonyl-11C]WAY-100635 ([11C]WAY). There has been 

minimal study, however, of whether antidepressant treatment reverses the 5-HT1AR binding 

abnormalities observed in MDD. Although serotonin reuptake inhibitor (SRI) induced 

increases in intrasynaptic 5HT concentrations are not associated with increases in 5-HT1AR 

density and mRNA expression in experimental animals, SRI effects in depressed humans 

may be unique. For example, the down-regulation of 5-HT1AR mRNA expression and 

density in MDD has been hypothesized to result from glucocorticoid hormone 

hypersecretion, a process which may be interrupted by antidepressant drug treatment (Lopez 

et al. 1998).

In one study of selective SRI (SSRI) treatment effects on human 5-HT1AR BP using 

[11C]WAY-PET (Sargent et al. 2000), no treatment-associated changes in BP were evident 

in regions where the 5-HT1A receptor is expressed postsynaptically. In the raphe, where 5-

HT1AR expression occurs presynaptically, the BP showed a nonsignificant trend toward 

being lower in the post-SRI-scans (effect size of 0.26). This latter observation was notable 

because the presynaptic 5-HT1AR population becomes desensitized during chronic SRI 

administration (see Discussion). The present study investigated the effects of SRI treatment 

in an independent MDD sample, using both a reference tissue model and an arterial input 

function-based kinetic model to quantify 5-HT1AR BP. Preliminary data also were acquired 

in a subgroup of subjects treated with venlafaxine, an agent expected to inhibit the reuptake 

of norepinephrine as well as serotonin (Beique et al. 2000; Debonnel et al. 2006; Harvey et 

al. 2000), based upon preclinical evidence that antidepressant agents with potent 

norepinephrine reuptake inhibiting effects proved more effective than SSRI at preventing 

stress-induced decreases in 5-HT1AR binding and mRNA expression (Lopez et al. 1998).

In addition, we characterized the relationship between the clinical response to antidepressant 

drug treatment and the regional 5-HT1AR binding in the pretreatment, baseline condition. 

Most studies of MDD found abnormal reductions in the postsynaptic 5-HT1AR receptor 
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binding in unmedicated depressed patients (Bowen et al. 1989; Drevets et al. 1999; Sargent 

et al. 2000; Lopez et al. 1998). It is thus noteworthy that chronic administration of 

antidepressant agents from various drug classes increases post-synaptic 5-HT1AR function 

(without altering receptor density) in rodents (Chaput et al. 1991; Haddjeri et al. 1998). If 

this effect also extends to depressed humans, then it is conceivable that the depressed 

subjects with the greatest reduction in post-synaptic 5-HT1AR binding prior to treatment will 

benefit most from the potentially compensatory effect of enhancing postsynaptic 5-HT1AR 

transmission. We tested this hypothesis by comparing the pretreatment 5-HT1AR binding 

between the subjects who proved responsive to antidepressant treatment versus those who 

did not.

Materials and Methods

Subjects were enrolled between January 1998 and October 2002, after being recruited 

through media advertisements and psychiatric services (inpatient/outpatient/emergency) at 

the University of Pittsburgh. Subjects provided written informed consent as approved by the 

University of Pittsburgh Biomedical IRB. Subjects were included if they met DSM-IV 

criteria for recurrent MDD based upon an unstructured interview with a psychiatrist and the 

Structured Clinical Interview for DSM IV, and had a 17-item Hamilton Rating Scale for 

Depression (HRSD17) score ≥ 18. Subjects were excluded if they had medical or 

neurological illnesses likely to affect cerebral physiology or anatomy, gross abnormalities of 

brain structure evident in MRI scans, suicidal intent, substance abuse within 1 year, lifetime 

history of substance dependence (other than nicotine), or exposure to psychotropic or other 

medications likely to alter cerebral physiology or monoamine function within 3 weeks (8 

weeks for fluoxetine).

Twenty-seven depressed subjects (55.6% female; mean age=34.3±8.7 yrs) were imaged at 

unmedicated baseline. Seven subjects withdrew from the study after the baseline scan (5 

discontinued treatment, one continued treatment but failed to return for rescanning, and one 

elected to receive a non-SRI antidepressant drug). The remaining 20 subjects were imaged 

after a median of 9.4 weeks (range: 7 to 63 weeks) of treatment. Medication-naïve subjects 

and prior SSRI responders were treated with citalopram (n=14; mean dose=41±9.5 mg/d, 

range 20–60 mg). Prior SSRI non-responders were treated with venlafaxine (n=4; doses 

were 187.5, 225, 375, and 375 mg/d). An additional subject was treated with combined 

citalopram 20 mg/d plus venlafaxine 225 mg/d. Treatment response was defined as a 50% 

reduction in HRSD17 score.

The PET scans were acquired on an ECAT HR+ PET scanner (CTI-PET systems, Knoxville, 

TN) in 3D mode [63 transaxial planes 2.4-mm thick; in-plane resolution=4.1 mm full-width 

at half-maximum (FWHM) over a 15.2-cm field-of-view]. Radiosynthesis of 

[carbonyl-11C]WAY was performed as described by (McCarron et al. 1996). A transmission 

scan was obtained to correct the PET emission scan for attenuation effects. A dynamic 

emission scan (29 frames of increasing length over 60 min) then was initiated following i.v. 

bolus administration of 9 to 19 mCi of high specific activity [11C]WAY (1.58 +/− 0.71 mCi/

nmol at time of injection). Thirty minutes of additional post-injection emission data (total 

scan duration=90 min) was collected in a subset of 8 subjects to ensure the comparability of 
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the results obtained using either scan length (Parsey et al. 2000). Arterial blood was sampled 

and corrected for radiolabeled metabolites to compute the plasma input function of 

[11C]WAY in 17 of the 27 subjects pretreatment, and in 8 subjects post-treatment.

To provide an anatomical framework for analysis of the PET data, MRI scans were obtained 

using a 1.5 T GE Medical Systems (Milwaukee, WI) Signa Scanner and a 3D spoiled 

gradient recalled (SPGR) sequence. The MRI and PET images were aligned using 

automated image registration (AIR; (Woods et al. 1993). Regions-of-interest (ROI) were 

manually traced on the MRI scan using a modified version of the IDL-based (Interactive 

Data Language, Boulder, CO) computer program, ROITOOL (CTI PET Systems; Knoxville, 

TN). The ROIs were defined in the raphe nucleus (RN), the mesiotemporal cortex [MTC; 

hippocampus, amygdala, and parts of the parahippocampal and periamygdaloid cortices; 

Brodmann area (BDA) 34/27/28], the right (RLO; BDA 45/47) and left lateral orbital (LLO; 

BDA 45/47) cortex, the postcentral gyrus (PCG; BDA 1/2/3) and the occipital cortex-

posterior cingulate gyrus (OCC-PC; BDA 17/18/31), as previously described (Drevets et al. 

1999). These ROI were chosen on the basis of association with 5-HT1AR reductions in prior 

PET (Drevets et al. 1999; Sargent et al. 2000) and post mortem studies of depression 

(Arango et al. 1995; Bowen et al. 1989; Lopez et al. 1998). A reference region for assessing 

nonspecifically bound and free radioligand was defined in the cerebellar gray matter (CER) 

using anatomical guidelines that excluded the vermis (Parsey et al. 2005) and minimized the 

influence of spill-in effects from the temporal-occipital cortex (Bailer et al. 2005; Drevets et 

al. 1999; Meltzer et al. 2001; Meltzer et al. 2004b; Price et al. 2002b). Because the RN is 

inadequately visualized in MR images, the ROI for this structure was defined on summed 

late PET image frames which predominantly reflect 5-HT1AR -specific binding on 7 planes 

spanning the pontine and midbrain raphe nuclei (see Drevets et al. 1999).

Tissue time-activity concentrations were obtained from the dynamic PET image for each 

ROI. Regional 5-HT1AR-BP values were determined using a simplified reference tissue 

method (SRTM; (Gunn et al. 1998; Lammertsma et al. 1996). In subjects for whom arterial 

blood was sampled, a 2-tissue compartmental model (CMOD) was applied to the arterial 

input function and regional tissue time-activity concentrations to derive the 5-HT1AR 

distribution volumes (DV). Regional measures of 5-HT1AR BP were determined for the 

compartmental model as BP = (DVROI/DVCER)−1= (Bmax/Kd)f2 = k3/k4 (equivalent to 

SRTM BP measure), where Bmax is the available 5-HT1AR density, KD is the equilibrium 

dissociation constant, f2 is the free fraction of [11C]WAY in tissue, k3 is the association rate 

of [11C]WAY to 5-HT1AR, and k4 is the dissociation rate of [11C]WAY from 5-HT1AR 

(Lammertsma et al. 1996; Mintun et al. 1984).

Statistical inference for 5-HT1AR BP was conducted with the Wilcoxon signed ranks test or 

the Mann-Whitney U test, for related and independent samples respectively, with SPSS 

(SPSS Software Version 13, SPSS Inc, Chicago, IL). Possible relationships between the 

baseline HRSD17 scores and the 5-HT1AR-BP values and between the treatment-associated 

changes in these measures also were explored using Spearman’s rho correlation coefficients. 

Mixed-effects statistical analysis with repeated measures was performed post-hoc on the 

SRTM-derived BP data using SAS Proc Mixed (SAS/STAT Software Version 8 2000 SAS 

institute, Cary, NC), with subjects as the random term. This method offered the benefit of 
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employing the maximal sample size (Brown et al. 1999) to test treatment-by-region, 

treatment-by-gender, and treatment-by-response interactions in the SRTM-derived BP data. 

The SRTM- and CMOD-derived BP values for the 60 and 90 minute dynamic scans were 

compared to assess the possibility of bias, and were correlated within subjects using Pearson 

correlation coefficients.

Results

The demographic and clinical data for the subjects are listed in table I. Comorbid disorders 

present in the depressed sample were: panic disorder (2), bulimia (1), alcohol/substance 

abuse in remission >1 year (11), specific phobia (4), post-traumatic stress disorder (2), and 

social phobia (2). Of the 27 subjects entered, 22 (81.5%) had sufficient clinical data obtained 

during the treatment phase to determine response status (these included the 20 cases scanned 

both pre- and post-treatment plus two cases who withdrew before re-scanning). Of these, 15 

(68%) were treatment responders (>50% reduction in HRSD17 score). The mean interscan 

interval did not differ between responders (16±16 wks) and nonresponders (16±11 wks; 

p=0.99). The interscan intervals were not correlated with the changes in 5HT1AR BP 

measured using SRTM. The subgroups with and without post-treatment scan data were 

demographically and clinically similar.

Of the 20 subjects scanned both pre- and post-treatment, the pretreatment scans were 

excluded from analysis for 2 subjects due to excessive movement and for 1 subject for 

showing outlying values [defined as x > mean ± 3(SD)]. The post-treatment scans from 2 

additional subjects were excluded due to excessive movement. A complete set of technically 

usable pre- and post-treatment images thus was obtained for 15 subjects. In the subjects for 

whom arterial blood was sampled both pre- and post-treatment (n=8), the arterial input 

function from one subject’s pretreatment scan and the image reconstruction from another 

subject’s post-treatment scan proved unusable due to technical problems. Thus, 6 subjects 

had complete pre- and post-treatment scan data with technically usable arterial input 

functions.

From the paired analyses, the mean [11C]WAY BP values derived using SRTM appear in 

table II, and the mean [11C]WAY DV and BP values derived via CMOD appear in table III. 

The pre- and post-treatment BP or DV values did not differ significantly in any ROI in 

either analysis (Tables I & II; Figure 1). Inclusion of the outlier (see above) in the SRTM 

analysis did not alter these results. When the subjects treated with venlafaxine were 

excluded from the paired analysis, the SSRI alone group (n=10) showed no significant 

differences in the pre- versus post-treatment BP values in any region (Table II; Figure 1). In 

subjects treated with venlafaxine (n=5), there also were no significant differences in the pre- 

versus post-treatment BP values in any region (Table II).

Analysis of the data from the entire intention-to-treat sample (n=27) using the mixed-effects 

model also revealed no significant effects of treatment on the SRTM-derived BP values in 

any region either when including [F(1,14) = 2.07, p = 0.17; Figure 2] or excluding the 

subjects treated with venlafaxine ([F(1,9)=2.99, p=.12]. There also were no significant 
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treatment-by-region interactions [F(5,69)=0.05, p=1.00] or treatment-by-gender interactions 

evident in the these analyses [F(1,13)=1.51, p=0.24].

The regional BP values did not differ significantly between pre- and post-treatment scans for 

the treatment responsive subgroup alone, and the mean treatment-associated changes in BP 

did not differ significantly between responders and nonresponders. The interactions between 

treatment response status and treatment-associated changes in regional BP were not 

significant [F(1,13)=3.10, p=0.10]. Changes in the HRSD17 scores did not correlate with 

changes in SRTM-derived BP values in any ROI (RN: r=0.004, p=0.99; LLO: r= −0.34, 

p=0.22; RLO: r = −0.18; p=0.53; OCC-PC: r =0.06, p=0.82; PCG: r= −.11, p=0.69; MTC: r= 

−0.37, p=0.20).

Among the 22 subjects for whom the clinical response-to-treatment was established, the 

treatment non-responders (n=7) had higher baseline BP values in the left (3.82 ± 0.39 versus 

3.20 ± 0.55; exact MWU =88; p=0.01) and right orbital cortex (3.83 ± 0.33 versus 3.26 ± 

0.55; exact MWU =71; p=0.02) than the treatment-responders (n=15). The baseline BP 

values did not differ significantly between responders and nonresponders in the PCG 

(p=0.08), OCC-PC (p=0.12), RN (p=0.97) or MTC (p=0.98). The baseline BP values were 

not correlated with baseline HRSD17 scores in any region (RN: r= 0.29, p=0.17; LLO: r= 

0.06, p=0.78; RLO: r= 0.18, p=0.39; OCC-PC: r = 0.17, p=0.44; PCG: r= −0.09, p=0.67; 

MTC: r= 0.16, p=0.49).

For the scans for which technically usable arterial input functions were available (n=15), the 

CMOD-derived BP values were positively correlated with the SRTM-derived BP values (r; 

95% confidence interval; p value) in RN (0.83; 0.54–0.94; <0.001), LLO (0.83; 0.54–0.94; 

<0.001) RLO (0.81; 0.50–0.93; <0.001), OCC-PC (0.85; 0.60–0.95; <0.001), PCG (0.81; 

0.52–0.94; <0.001), and MTC (0.59; 0.02–0.87;0.045; n=12). The SRTM-derived BP-values 

were biased toward being lower than the CMOD-derived BP-values, as previously described 

(Parsey et al 2000). [SRTM BP values were lower than CMOD BP values in every ROI (p<.

001).]

In the subjects with 90 min emission scans (n=6), the SRTM-derived BP values obtained 

using the 90 min time-radioactivity concentration curves correlated tightly with those 

obtained using only the 60 min curves in all regions, as follows (r; 95% confidence interval; 

p value): RN (0.99; 0.91–1.0;<0.001), LLO (0.99; 0.91–1.0; <0.001), RLO (0.96; 0.67–1.0; 

0.003), OCC-PC (0.96; 0.67–1.0; 0.003), PCG (0.99; 0.91–1.0; <0.001), and MTC (0.98; 

0.82–1.0;0.001). [SRTM 60 min BP values were lower than SRTM 90 min BP values as 

follows: LLO 4%, p=.063; MTC 11%, p=.031; OCC 0.2%, NS; PCG 3.8%, p=.031; RLO 

4.4%, p=.063; RN 9.4%, p=.094.]

In subjects for whom both 90 min emission scans and arterial input functions were obtained 

(n=7), the CMOD derived BP values also were highly correlated between the 60 and 90 min 

data in RN (0.94; 0.62–0.99; <0.002), LLO (0.93; 0.61–0.99; p<0.002), RLO (r=0.87; 0.35–

0.98; <0.01), OCC-PC (0.96; 0.75–0.99; p<0.001), PCG (r=0.75; 0.0–0.96; <0.05), and 

MTC (0.91;0.50–0.99; 0.004). [CMOD 60 min BP values were non-significantly lower (p>.
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10) than CMOD 90 min BP values as follows: LLO 3%, MTC 4.7%, OCC 3.7%, PCG 2.3%, 

RLO 5.5%, RN 7.3%.]

Discussion

The mean 5-HT1AR binding did not change significantly following chronic SRI treatment in 

the orbital, mesiotemporal, parietal, or occipital cortices or the midbrain/pontine raphe 

nuclei, as measured using [11C]WAY-PET. These negative results are consistent with 

Sargent et al. (2000), who found no significant changes in [11C]WAY binding in MDD 

subjects following chronic paroxetine (n=16) or sertraline (n=4) treatment. These data also 

appear compatible with preclinical evidence that postsynaptic 5-HT1AR density and mRNA 

expression remain unchanged during SRI-induced increases in intrasynaptic serotonin 

concentrations (Carli et al. 1996; Hensler et al. 1991; Spurlock et al. 1994; Welner et al. 

1989), and that the SRI-induced 5-HT1A autoreceptor desensitization occurs through 

receptor internalization or G-protein changes (Hensler 2003; Zimmer et al. 2004) rather than 

through alterations in receptor density (Frazer & Hensler 1990). Notably, [11C]WAY 

binding is insensitive to competition from endogenous 5HT (Hume et al. 2001; Parsey et al. 

1998), and as a lipophilic, high-affinity 5-HT1AR antagonist, [11C]WAY is likely to bind 

internalized receptors without showing significant changes in site affinity (Laruelle 2000).

A limitation of our study was that the sample for which usable pre- and post-treatment scan 

data were available consisted of only 15 subjects, so we could not rule out the possibility 

that the small and nonsignificant differences observed in tables II and III might become 

significant in a much larger sample. However, the small effect sizes across regions for the 

full sample (0.01 – 0.35; 0.5 – 9% changes) suggests that any treatment-associated effect 

may be within the range of measurement variability. Too few subjects (n=5) were re-imaged 

following venlafaxine treatment in order to establish whether NRI agents alter the 5-HT1AR 

BP, however. A future study involving a larger subject sample treated with NRI agents thus 

may be warranted.

The negative results obtained with respect to changes in 5-HT1AR binding were primarily 

based upon BP values derived using SRTM and 60 min emission scan data. Our study was 

initiated using this approach as validated for [11C]WAY by Gunn et al. (1998). When Parsey 

et al. (2000) reported evidence that the SRTM approach to analyzing [11C]WAY images 

introduced bias (consistently underestimating BP) and that longer dynamic scans were 

needed to reach equilibrium conditions in some regions, we revised our methods to add 

arterial blood sampling and increase the scan duration. Nevertheless, the bias introduced by 

the SRTM method (Parsey et al. 2000) is inconsequential to the comparisons of pre- versus 

post-treatment 5-HT1AR BP data, because both measures are subject to identical bias. 

Moreover, the greater test-retest reliability of the SRTM method compared to CMOD or 

other approaches (Parsey et al. 2000) enhanced the sensitivity of our pre-versus post-

treatment comparisons. Moreover, the SRTM- and CMOD-derived 5-HT1AR BP values 

were correlated in the subset of subjects for whom arterial blood was sampled, supporting 

the emphasis of the SRTM-derived BP values as the largest available data set of pre- and 

post-SRI treatment 5-HT1AR binding data (table II).
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Another limitation of the current study was that the analyses were restricted to a few, 

relatively large, predefined ROIs. We thus could not exclude the possibility that SRI-

induced changes in 5-HT1AR BP may have occurred outside the regions sampled, or may 

have been limited to subsections of these ROI.

Although chronic SRI administration did not appear to correct the abnormal reduction in 5-

HT1AR binding reported in MDD, such treatments may nevertheless compensate for 

deficient 5-HT1AR function in depression. By desensitizing the presynaptic 5-HT1A 

autoreceptor and thereby increasing the amount of 5-HT release (Artigas et al. 1996; Blier et 

al. 1983; Blier et al. 1986; Chaput et al. 1988; Chaput et al. 1991) chronic SRI 

administration appears to increase postsynaptic 5-HT1AR function (Chaput et al. 1991; Price 

et al. 1989). Likewise, chronic treatment with NRI or tricyclic antidepressant agents results 

in tonic activation of postsynaptic 5-HT1AR in the absence of alterations in receptor density 

(Chaput et al. 1991; Haddjeri et al. 1998).

These effects of antidepressant drugs of increasing postsynaptic 5-HT1AR function is 

noteworthy in view of our finding that the pre-treatment 5-HT1AR binding was lower in the 

orbital cortex in subjects who proved responsive to treatment versus subjects who proved 

nonresponsive (effect size of 1.3 in the LLO). This observation is compatible with a 

previous report that MDD cases with a lower raphe 5-HT1AR binding in the pretreatment, 

baseline condition showed more rapid rates of symptom remission during antidepressant 

drug treatment (Meltzer et al. 2004a). Conversely, MDD cases who expressed the G allele of 

the C(−1019)G 5-HT1A promoter region polymorphism showed decreased response rates to 

SSRI treatment (Lemonde et al. 2004) and increased 5-HT1AR BP in one study (Parsey et 

al. 2006), although a second study could not confirm the association between this 

polymorphism and regional 5-HT1AR BP (David et al. 2005). Nevertheless, concurrent 

assessment of genotype, treatment response and neuroimaging binding measures ultimately 

may provide fruitful research directions for elucidating pathophysiology and guiding 

treatment development.
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Figure 1. 
Pattern of 5-HT1A receptor BP changes in the raphe nucleus during treatment with selective 

serotonin reuptake inhibitors (SSRI; solid lines), venlafaxine alone (dashed lines), or 

venlafaxine plus an SSRI (heavy solid line).
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Figure 2. Boxplots of observed 5HT1A receptor BP before and following SRI treatment for data 
obtained from the entire study sample
This graph shows pre- and post-treatment 5-HT1A receptor BP in three representative 

regions-of-interest using all available pre and post-treatment SRTM data (including the 

outlier). LLO = left lateral orbital cortex; baseline scan n=26, post-treatment scan n=18. 

MTC = mesiotemporal cortex; baseline scan n=24, post-treatment scan n=16. RN = raphe 

nucleus: baseline scan n=26, post-treatment scan n=18). ○ denotes the outlier.
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TABLE I

Demographic and clinical characteristics of subjects

All Subjects Usable Post-treatment scan 
data

Unusable or unavailable Post-
treatment scan data

N 27 18 9

Proportion of females (%) 55.6 50 66.7

Mean age (SD) 34.3 (8.7) 34.8 (7.8) 33.2 (10.7)

Baseline HRSD17 [mean (SD), range] 21.0 (4.3), 14–31 21.1 (3.8), 14–28 20.8 (5.4), 17–31

Post-treatment HRSD17 [mean (SD), 
range]

9.5 (8.5), 0–28 (n=22) 8.6 (8.0), 0–28 11.0 (11.1), 0–28 (n=4)*

*
post-treatment HRSD missing for four subjects who discontinued medications before completion of a therapeutic trial
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