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Abstract: Blood stasis syndrome (BSS) is an important pathologic condition in traditional East Asian medicine, char-
acterized by multiple signs and symptoms, including sublingual varicosis, angiotelectasis, slow and choppy pulse, 
local fixed pain, nyctalgia, menstrual cramps, dark-purple tongue and infra-orbital darkness. However, recent stud-
ies have been restricted to the circulatory disorder and could not suggest the pathologic core to explain all of the 
characteristics of BSS. Here, we review the current research on the senescence of red blood cells (RBCs), focusing 
on the correlation between the pathologic properties of senescent RBCs and BSS-specific manifestations. The ac-
cumulation of senescent RBCs and their products induce pathological conditions that affect blood flow resistance 
and cause thrombosis, vasoconstriction and methemoglobinemia. These pathological alterations are identical to 
the characteristics of BSS, therefore supporting the hypothesis that accelerated RBC aging could be considered as 
a novel pathologic mechanism of BSS.
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Introduction

Blood stasis is a pathological concept in tradi-
tional East Asian medicine and refers to stag-
nant blood that has lost its physiological func-
tion within the body [1, 2]. It develops into a 
blood stasis syndrome (BSS) that is character-
ized by multiple signs and symptoms, such as 
sublingual varicosis, angiotelectasis, slow and 
choppy pulse, local fixed pain, nyctalgia, men-
strual cramps, dark-purple tongue or infra-
orbital darkness [1, 3]. In the clinic, these mani-
festations are frequently observed in patients 
with ischemic heart disease, cerebral vascular 
accident, diabetes mellitus, chronic renal fail-
ure, severe traumatic injury and dysmenorrhea 
[2, 4]. Many herbal formulas have been shown 
to be effective for relieving the BSS-specific 
manifestations and the severity of these dis-
eases [5-8]. In recent decades, many preclini-
cal and clinical studies have been conducted to 
reveal the underlying pathogenic correlation 
between BSS and these diseases. However, 
almost all of these studies have been restricted 
to ischemic heart disease and could not sug-

gest the pathologic core to explain all of the 
characteristics of BSS [9-13]. 

In this review, we present the current research 
progress on the senescence of red blood cells 
(RBCs), focusing on the correlation between the 
pathologic properties of senescent RBCs and 
the signs and symptoms of BSS, and we sug-
gest that the accelerated RBC aging process 
could be considered to be a novel pathologic 
mechanism of BSS.

Pathologic properties of senescent RBCs 

RBCs are naturally exposed to various stressful 
situations during their lifespan, such as oxida-
tive stress in the lungs, osmotic shock in the 
kidneys and squeezing through capillary beds 
[14]. During RBC aging, the accumulation of 
damage by these stressors induces biochemi-
cal and structural alterations that derange the 
functions of the RBCs.

Decreased deformability

Deformability is the ability of an RBC to change 
its shape in response to a deforming force with-
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out hemolysis, and it is determined by the geo-
metric and viscoelastic properties of the plas-
ma membrane [15, 16]. The lipid bilayer con-
tents of the membrane and the sub-membrane 
cytoskeletal network of spectrin molecules are 
primarily responsible for the discocyte mor-
phology of RBCs and provide the membrane 
with its viscoelastic properties [16, 17]. Oxi- 
dative damage to the membrane lipids and the 
spectrin network occur during RBC aging, which 
causes morphological changes and decreased 
membrane viscoelasticity, resulting in impaired 
deformability [16, 18, 19]. Therefore, older 
RBCs demonstrate a decreased deformability 
compared to younger RBCs [20, 21].

Release of microparticles

Microparticles (MPs) are membrane vesicles of 
less than 1 μm that are released into the blood 
flow by various types of cells, including plate-
lets, RBCs, white blood cells and endothelial 
cells [22]. Their cell membrane consists of a 
phospholipid bilayer, and phosphatidylserine 
(PS) and phosphatidylethanolamine are specifi-
cally enriched in the inner membrane, while 
phosphatidylcholine and sphingomyelin are 
enriched in the outer membrane. This asym-
metric distribution of phospholipids is actively 
maintained by three major enzyme systems: a 
flippase, a floppase and a scramblase [23]. 
However, various stimuli, such as cell activa-
tion, shear stress or apoptosis, induce nega-
tively charged PS externalization on the mem-
brane through the impairment of these enzyme 
functions and cytoskeletal degradation via 
Ca2+-dependent proteolysis. This process cau- 
ses sufficient membrane fluctuation, allowing 
the formation and release of MPs containing 
hemoglobin (Hb) and membrane lipids [24, 25]. 
MPs have also been implicated in RBC senes-
cence [26, 27]. In actuality, RBCs lose approxi-
mately 20% of their volume during their lifes-
pan, and this lost volume could be caused by 
the shedding of MPs from their membrane dur-
ing RBC aging [28, 29].

Increased methemoglobin 

Each human RBC contains approximately 270- 
million Hb molecules, which are oxygen-trans-
porting metalloproteins that contain four iron 
atoms. Each ferrous iron (Fe2+) in Hb reversibly 
binds to one O2 molecule to provide the oxygen 
supply for the body. On the converse, methemo-
globin (MetHb) is a form of oxidized hemoglobin 

in which the ferrous iron is oxidized to ferric iron 
(Fe3+) [30]. It is normally maintained as a very 
small proportion of the total hemoglobin (1%), 
primarily by the reduction of nicotinamide ade-
nine dinucleotide (NADH)-dependent MetHb 
reductase [31]. Previous studies have reported 
that senescent RBCs are characterized by an 
increased proportion of MetHb as a result of 
reduced NADH-dependent MetHb reductase 
activity and accumulated oxidative membrane 
damage [32, 33].

Pathogenetic mechanisms of senescent RBCs 
and their products

Increased blood flow resistance

The circulatory resistance of the blood has two 
major components, the rheological properties 
of the blood and the geometric features of the 
blood vessels [15, 34]. The rheological proper-
ties of the blood are determined by the hemato-
crit, plasma viscosity, cell aggregation and cell 
deformability [15]. Especially in the microcircu-
lation, the deformability of an RBC is the princi-
pal factor in maintaining normal flow, allowing 
their transit through capillaries as small as 2-3 
µm in diameter because their size, which is 
approximately 7.5-8.7 µm in diameter and 1.7-
2.2 µm in thickness, is larger than the capillary 
diameter [15, 16]. Therefore, senescent RBCs 
with impaired deformability increase the local 
resistance to the blood flow [35, 36]. 

Thrombosis

RBC-derived MPs in the plasma are involved in 
several pathological processes, including thro- 
mbosis and hemostasis [37, 38]. MPs provide a 
membrane surface for the initiation of blood 
coagulation because negatively charged PSs 
on their outer membrane facilitate the assem-
bly of components of the clotting cascade 
through an electrostatic interaction with the 
positively charged γ-carboxyglutamic acid do- 
mains in the clotting proteins [37]. In addition, 
the nitric oxide (NO) scavenging activity of RBC-
derived MPs contributes to platelet activation 
and aggregation through the decreased NO sig-
naling in the platelets, promoting clot formation 
[39-41].

Vasoconstriction

NO is a critical regulator of basal blood vessel 
tone. It is synthesized in the endothelial cells 
and then diffuses to the smooth muscles to 
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activate soluble guanylyl cyclase, ultimately 
leading to vasodilation and increased blood 
flow in the tissues [42-45]. As oxygenated Hb 
reacts with NO to form nitrate and methemo-
globin, the NO can be scavenged by Hb in the 
blood [46, 47]. However, a physical barrier pro-
duced by the RBC membrane inhibits the endo-
thelial diffusion of NO to the intracellular Hb 
[48, 49]. Additionally, the laminar flow within 
the blood vessel pushes the RBCs inward and 
away from the endothelial cells, forming a cell-
free zone and blocking the access of the RBCs 
to the endothelium [49-51]. Because of these 
diffusional barriers, sufficient NO can reach the 
smooth muscles to sustain vascular homeosta-
sis before being scavenged by Hb. Interestingly, 
the Hb from RBC-derived MPs are able to more 
effectively scavenge NO than the Hb from RBCs 
[52] because the MPs can enter the cell-free 
zone and easily access the endothelial NO, 
even in the laminar blood flow [53]. Therefore, 
the reduction of the endothelial NO concentra-
tion by RBC-derived MPs induces vasoconstric-

tion and decreases the blood flow in the tis- 
sues.

Methemoglobinemia

Generally, methemoglobinemia, which is due to 
abnormally increased MetHb, causes only a 
grayish pigmentation of the skin and brownish 
lips and mucous membranes when the MetHb 
levels are between 3 and 15% of the total 
hemoglobin. Above 15%, patients develop cen-
tral cyanosis that is non-responsive to oxygen 
therapy [30]. The reason is that the ferric iron of 
MetHb cannot bind to oxygen, which enhances 
the binding affinity of the remaining ferrous 
irons to oxygen, shifting the oxygen dissocia-
tion curve to the left and decreasing the deliv-
ery of oxygen to the tissues [54]. 

Alterations to the human body during the ac-
celerated RBC aging process

Under normal circumstances, the lifespan of a 
circulating human RBC is approximately 120 

Figure 1. The hypothetical scheme illustrating the pathobiological effects of senescent RBCs on blood stasis syn-
drome. When the RBC aging process is accelerated during highly stressful situations, the senescent RBCs play 
pathogenetic roles. The impaired deformability of the RBCs increases the blood flow resistance in the tissues and in-
duces circulatory disturbances. Additionally, increased RBC-derived microparticles activate the body’s procoagulant 
and NO-scavenging activities, therefore facilitating thrombosis and vasoconstriction. This process causes hypoxia 
in the tissues and ischemic pain, as well as circulatory disturbances. The elevation of methemoglobin leads to a 
grayish skin color and also contributes to the hypoxia. These pathological alterations caused by senescent RBCs are 
identical to the diagnostic characteristics of blood stasis syndrome.
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days [14], indicating that approximately 1% of 
all circulating RBCs are destroyed and newly 
generated from hematopoietic stem cells each 
day [55]. Therefore, the RBC’s composition and 
counts are maintained within the normal range 
for a particular age. However, under highly 
stressful situations, such as oxidative stress 
due to severe trauma [56-59] or exhaustive 
physical exercise [60-62], shear stress from a 
cardiovascular device [63, 64], hyperlipidemia 
[65-67] or hyperglycemia [68, 69], the RBC 
aging process is accelerated due to the in- 
creased damage to the cellular components 
[63, 70]. The rapid accumulation of senescent 
RBCs and their products can lead to pathologi-
cal alterations in the human body. 

Circulatory disturbances 

The impaired deformability of RBCs and throm-
bosis increase the blood flow resistance in the 
tissues, which leads to the development of cir-
culatory disturbances. Impaired deformability 
is correlated with coronary artery disease, clau-
dication and diabetes mellitus-associated vas-
cular complications [71-75], and the procoagu-
lant activity of RBC-derived MPs has also been 
observed in the patients with atherosclerosis, 
ischemic heart disease and nephrotic syn-
drome [76-78]. These pathologic properties of 
senescent RBCs can cause BSS-specific signs, 
such as a slow and choppy pulse, sublingual 
varicosis and angiotelectasis, depending on 
the circulatory disturbance.

Local pain

Thrombosis and vasoconstriction decrease the 
blood flow in the tissues, and MetHb inhibits 
the oxygen delivery from the RBCs to the tis-
sues. In this case, hypoxia-induced pain [79, 
80] can lead to the development of BSS-
specific symptoms, including local fixed pain, 
nyctalgia and menstrual cramps, depending on 
the site of the lesion.

Discoloration

Skin discoloration, dark-purple tongue and 
infra-orbital darkness are unique signs of BSS; 
however, previous studies have been unable to 
determine the mechanism for the observed dis-
colorations. If the MetHb levels increase to 
more than 3% of the total Hb in BSS patients, 
the grayish skin color could be explained by the 
presence of methemoglobinemia.

Taken together, highly stressful situations 
should be correlated with the etiology of BSS, 
and BSS-associated diseases and manifesta-
tions are also correlated with accelerated RBC 
senescence. Furthermore, we explained the 
characteristics of BSS that arise from the 
pathologic mechanisms of accelerated RBC 
senescence (Figure 1). 

Conclusion

BSS is an important pathologic condition in tra-
ditional East Asian medicine, and it is correlat-
ed with diseases such as ischemic heart dis-
ease, cerebral vascular accident, diabetes mel-
litus, chronic renal failure, severe traumatic 
injury and dysmenorrhea, which have been 
reported in several preclinical and clinical stud-
ies [4-8]. However, these studies have been 
unable to reveal the pathologic mechanism 
behind the characteristics of BSS. Here, we 
presented the pathogenetic mechanisms of 
senescent RBCs, which explain all of the BSS-
specific manifestations, such as circulatory dis-
orders and local pain, as well as the grayish 
skin color.

As RBCs lack a nucleus to synthesize new pro-
teins for repairing stress-induced damage, they 
lose their deformability and enzyme activity 
during their aging process, leading to the for-
mation of MPs and methemoglobin. Senescent 
RBCs in the circulation are selectively removed 
by macrophages in the liver and spleen, while a 
proportion of aging RBCs are normally main-
tained in a healthy individual. However, under 
highly stressful situations, the RBC aging pro-
cess is accelerated, and the number of senes-
cent RBCs in the circulatory system increases 
[63, 70]. The rapid accumulation of senescent 
RBCs and their products induce pathological 
conditions that affect the blood flow resistance 
and lead to thrombosis, vasoconstriction and 
methemoglobinemia, which lead to pathologi-
cal alterations, circulatory disturbances, local 
pain and discoloration of the skin. These find-
ings support the hypothesis that the accelerat-
ed RBC aging process may be a novel patho-
logic mechanism of BSS.

Although intense clinical studies are still neces-
sary to prove the relationship between acceler-
ated RBC senescence and BSS, this new 
approach could provide an opportunity to 
develop diagnostic tools using biological mark-
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ers and contribute to a more accurate diagno-
sis and effective treatment of BSS. 
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