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Abstract

Background: Melon (Cucumis melo) fruits exhibit phenotypic diversity in several key quality determinants such as
taste, color and aroma. Sucrose, carotenoids and volatiles are recognized as the key compounds shaping the above
corresponding traits yet the full network of biochemical events underlying their synthesis have not been
comprehensively described. To delineate the cellular processes shaping fruit quality phenotypes, a population of
recombinant inbred lines (RIL) was used as a source of phenotypic and genotypic variations. In parallel, ripe fruits
were analyzed for both the quantified level of 77 metabolic traits directly associated with fruit quality and for RNA-seq
based expression profiles generated for 27,000 unigenes. First, we explored inter-metabolite association patterns; then,
we described metabolites versus gene association patterns; finally, we used the correlation-based associations for
predicting uncharacterized synthesis pathways.

Results: Based on metabolite versus metabolite and metabolite versus gene association patterns, we divided
metabolites into two key groups: a group including ethylene and aroma determining volatiles whose accumulation
patterns are correlated with the expression of genes involved in the glycolysis and TCA cycle pathways; and a group
including sucrose and color determining carotenoids whose accumulation levels are correlated with the expression of
genes associated with plastid formation.

Conclusions: The study integrates multiple processes into a genome scale perspective of cellular activity. This lays a
foundation for deciphering the role of gene markers associated with the determination of fruit quality traits.

Keywords: Fruit quality, Specialized metabolites, Metabolomic, Transcriptomic, Correlation analysis, Recombinant
inbred lines
Background
Fruit quality is determined by numerous traits including
sweetness, color, aroma, acidity and firmness. These
traits are shaped during the complex process of ripening,
which although vary among species, is yet associated
with typical cellular activity [1-4]. Color changes, for
example, are due to alterations in chlorophyll, caroten-
oid and other pigment content of the plastids and vacu-
oles [5-7]. Sweetness in the mature fruit is the outcome
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of elevation in the level of mono- and disaccharides due
to starch degradation or extracellular transport. Alter-
ations in the metabolism of organic acids and generation
of volatile compounds that produce aroma are common
and softening is brought about by progressive degrad-
ation of cell wall components [8].
Overall, ripening changes involve a multiplicity of bio-

chemical, metabolic, and molecular changes that have
been shown to be related to alterations in the activity of
specific enzymes or complete pathways. These changes
lead to the accumulation of soluble sugars, organic acids,
volatiles and additional specialized metabolites [9-14].
Ripening processes are not necessarily co-regulated and
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they are typically classified as ethylene-dependent and
independent whereas the scope of ethylene control dif-
fers between species [15-17]. Here, we aim at exploring
the intricate associations between prominent determi-
nants of quality in the ripe fruit – sweetness, color and
aroma. Notably, all three traits are clearly associated with
the accumulation of primary or specialized metabolites,
e.g., sugars, pigments, and volatiles, respectively. Hence,
combining transcriptomic and metabolomic information
allows the exploration of the cellular processes determin-
ing selected, quantitatively characterized, phenotypes, as
well as the gene expression variations underlying the
observed diversity. To date, next generation sequencing
and metabolomics technologies are revolutionizing vari-
ation studies in crop by allowing the massive, simultan-
eous, characterization of metabolite and gene expression
data from an entire, phenotypicaly diverse, populations
across a range of developmental stages [18-28]. In par-
ticular, the relatively straightforward construction of
Recombinant Inbred Line (RIL) populations – that is
populations that are composed of the close to homozy-
gous progeny of phenotypically diverse parents [29] –
facilitates the exploration of intra-population diversity. In
this project, we made use of a RIL population from
melon (Cucumis melo L.) – a plant whose fruits generally
have a sweet aromatic flavor, with great diversity in size
(50 g to 15 kg), flesh color (orange, green, white, and
pink), rind color (green, yellow, white, orange, red, and
gray), form (round, flat, and elongated), and dimension (4
to 200 cm) [30-32]. This phenotypic diversity is associ-
ated with variability in the maturation processes where,
unlike most plant species that exhibit a single ripening
mode, melon fruits can be either climacteric or non-
climacteric (ripening associated and not-associated with
ethylene respiration bursts, respectively) [3]. Accordingly,
the regulation of ripening, which in climacteric fruits is
typically ethylene-dependent, in melon [7] seems to be
pleiotropic and processes are classified as ethylene
dependent and independent ones. Whereas the accumu-
lation of some aroma compounds (especially esters) is
thought to be ethylene dependent, the color in the ma-
ture fruit is suggested to be ethylene independent [16].
To date, the global picture of the associations between

fruit quality traits and the regulatory and biochemical
pathways participating in ethylene dependent and ethyl-
ene independent ripening processes have not yet been
comprehensively characterized. Though sucrose, β-caro-
tene and a selected group of volatiles were recognized as
critical determinants of sweetness, color and aroma in
melon, respectively [33-36], the full network of biochem-
ical events underlying their synthesis, as well as the
intricate associations between the metabolite-specific
pathways, have not been comprehensively described. To
delineate the cellular processes shaping fruit quality
phenotypes, a population of 96 recombinant inbred lines
was used as a source of defined phenotypic and geno-
typic variations. Ripe fruits were analyzed for the level of
77 metabolic traits directly associated with fruit quality
(accumulation level of 76 metabolites and pH) and for
RNA-seq based expression profiles generated for ~27,000
unigenes. First, we have explored inter-metabolite associ-
ation patterns aiming to cluster together metabolites that
are associated with sweetness, color or aroma and to
characterize negative and positive intra-group associations
of the patterns of accumulation. Then, we described me-
tabolites versus gene association patterns aiming at associ-
ating cellular processes with selected quality traits.

Results and discussion
Characterizing the phenotypic diversity of key fruit
quality traits in the population studied
Variations at the level of selected metabolites were char-
acterized in a 96 RIL population designed to express var-
iations in fruit quality phenotypes (Methods): fruits of
the ‘Dulce’ parent are sweet and aromatic with orange
flesh while those of the PI 414723 parent are non-sweet
and sour and have an undesirable sulfurous aroma and
very light orange flesh (Figure 1). Both lines are climac-
teric, yet, the PI 414723 is extremely so, characterized by
fast maturation and immediate softening. To study the
phenotypic diversity within their progeny population we
have measured the accumulation level of metabolites
that were shown to have a key role in setting the typical
aroma (ethyl butanoate) [37], undesirable aroma (methyl
3-(methylthio)propionate), climacteric ripening (ethylene),
sweetness (sucrose), color (β-carotene) and acidity (pH) in
the melon fruit (Methods). High and low values of accu-
mulation were recorded for ‘Dulce’ and PI 414723 accord-
ing to fruit phenotypes (Figure 1). For sucrose, β-carotene,
ethylene, and methyl 3-(methylthio)propionate, accumula-
tion levels across the population are mostly within the
range set by the phenotypically diverse parents (97%, 88%,
58% and 94%, respectively). For ethyl butanoate, higher
values than the parental range were recorded for 94% of
the RILs, possibly reflecting a heterosis vigor effect. For
the pH phenotype, known to be a single-gene trait [30,38],
we observed two, parent-related, peaks, unlike the distri-
bution of the other accumulation patterns that are charac-
teristics of polygenic quantitative traits and reflects the
mosaic nature of the progeny population. The variations
within this population allow exploring the intricate associ-
ations between the accumulation levels of these fruit-
quality determining metabolites.

Metabolite versus metabolites correlation patterns
To carry a comprehensive analysis of fruit-quality associ-
ated metabolites, we further defined additional 71 metabo-
lites that are products or intermediates in the pathways



Figure 1 Diversity of fruit quality associated traits within the RIL population. Top: Ripe fruit of the parental lines PI 414723 (left) and Dulce
(right). Bottom: Distribution values of selected metabolites across the RILs population. Parental values are shown at green (PI 414723) and orange
(Dulce). Accumulation values across RILs are provided at Additional file 3; units are as detailed for parental values. Parental values (PI 414723/Dulce):
sucrose: 4.5/52.1 mg/g; β-carotene: 1.4/9.7 ug/g F.W.; pH: 4.6/6.6; ethylene: 235/54 ppm/kg/hour; methyl 3-(methylthio)propionate: 0/34 ng
compound/gr F.W.; ethyl butanoate: 4.6/23.3 ng compound/gr F.W.
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involved in the production of specialized metabolites
that are associated with fruit quality (Methods). The
76 metabolites and their classification into key meta-
bolic categories are listed in Table 1; the biosynthesis
associations between the categories are illustrated in
Figure 2A. All metabolites show a significant genetic
effect with heritability levels varying between the cat-
egories (Methods), similarly to [39].
Accumulation levels measured across the entire popula-

tion were used for constructing a metabolite versus
metabolite correlation matrix (Figure 2B). We observed a
high similarity between the accumulation levels of metab-
olites with similar chemical structures, catalyzed by se-
quential or analogous catabolic reactions within the same
pathway. For example, ethyl-esters form an homogenous
cluster, also including ethanol, their alcoholic precursor
[40]. Similarly, carotenoids are co-clustered together with
their down-stream derived-volatiles, apocarotenoids [41].
Whereas intra-group associations, reflecting biochem-

ical structure and common bio-synthesis pathways, can
be expected, we further explored the inter-groups associ-
ation patterns aiming to gain a more global view on
ripening processes in melon. According to the patterns
of distribution we divided metabolites into 3 key clusters
(Methods), grouping together metabolites with similar
levels of accumulation across RIL (Additional file 1).
Sucrose clusters together with carotenoids, apocarote-
noids and aldehydes, also associated with a typical high



Table 1 Full name, abbreviation, and classification into
metabolic category of the metabolites analyzed

Metabolic category Metabolite identifier Metabolite name

Alcohols A1 Ethanol

A2 2-(methylthio)ethanol

A3 3(methylthio)propanol

A4 Benzyl alcohol

A5 Benzenepropanol

Acetate Esters AE1 Cinnamyl acetate

AE2 Benzyl acetate

AE3 Phenethyl acetate

AE4 3-phyenyl-1-propanol
acetate

AE5 2-methylbutyl acetate

AE6 2-methylpropyl acetate

AE7 Butyl acetate

AE8 Hexyl acetate

Aldehydes ALD1 3-(methylthio)propanal

ALD2 Benzylaldehyde

ALD3 Phenylacetaldehyde

ALD4 (E)-cinnamaldehyde

ALD5 Hexanal

ALD6 2,6-(E,Z)-nonadienal

Apocarotenoids AP1 6-methyl-5-hepten-2-one
(MHO)

AP2 β-cyctocitral

AP3 α-ionone

AP4 Geranyl acetone

AP5 β-ionone

AP6 β-ionone epoxide

AP7 β-(E)-damascenone

Carotenoids C1 Lutein

C2 β-carotene

C3 ζ-carotene

C4 α-carotene

C5 Phytoene

Esters E1 Benzyl propanoate

Ethyl Esters EE1 Ethyl acetate

EE2 Ethyl propanoate

EE3 Ethyl 2-methyl
propanoate

EE4 Ethyl butanoate

EE5 Ethyl 2-methylbutanoate

EE6 Ethyl pentanoate

EE7 Ethyl hexanoate

EE8 Ethyl heptanoate

EE9 Ethyl octanoate

Table 1 Full name, abbreviation, and classification into
metabolic category of the metabolites analyzed
(Continued)

Metabolic category Metabolite identifier Metabolite name

EE10 Ethyl benzoate

EE11 Ethyl decanoate

Ethyl Esters/Thio-Ester
Ester

EE12/TEE2 Ethyl (methylthio)
acetate

EE13/TEE4 Ethyl (3-methylthio)
propanoate

Ethyl Esters EE14 Ethyl tiglate

EE15 Ethyl phenyl acetate

EE16 Ethyl cinnamate

Ethylene H1 Ethylene

Methyl Esters ME1 Methyl benzoate

ME2 Methyl cinnamate

ME3 Methyl-2-
methylbutanoate;

Phenolic Derivatives PD1 Benzenacetonitrile

PD2 Eugenol

PD3 Phenetyl alcohol

PD4 Cinnamyl alcohol

pH pH pH

Sugars S1 Sucrose

S2 Glucose

S3 Fructose

Sulfide SD1 Dimethyl disulfide

SD2 Dimethyl trisulfide

Tocopherols T1 δ-tocopherol

T2 γ-tocopherol

T3 α-tocopherol

Thio Esters TE1 S-methylthio acetate

TE2 S-methyl propanethioate

TE3 S-methyl
2-methylpropanethioate

TE4 S-methyl thiobutanoate

TE5 S-methyl
2-methylbutanethioate

Thio-Ester Ester TEE1 Methyl 2-methylthio
acetate

TEE3 Methyl
3-(methylthio)propionate

TEE5 3-(methylthio)propyl
acetate

TEE6 2-(methylthio) ethyl
acetate

Thiol TL1 Methanethiol

Volatile Acids VA1 Benzoic acid

VA2 Cinnamic acid
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Figure 2 (See legend on next page.)
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Figure 2 Associations between metabolites accumulation and cellular processes. Accumulation values were recorded for 76 metabolites
directly associated with fruit quality (sweetness, color, aroma) as well as pH values (acidity). (A) Illustration of the proposed synthesis pathways of the
metabolites in analysis. (B) Metabolites versus metabolites correlation matrix (Spearman’s rho coefficient). (C) Metabolites versus metabolites network.
The network describes 403 positive associations (red) and 87 negative associations (blue). The layout of the network visualizes the clusters in the data
(Methods). Nodes fill color is according to biochemical groups (as in panel B); border color is according to the clusters in panel B (Cluster I –black;
Cluster II – light green; Cluster III – light blue). The full names of the metabolites are listed in Table 1.
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pH (Cluster I); glucose and fructose cluster together
with acetate esters and some thioesters (Cluster II);
ethyl-esters cluster together with their alcoholic precur-
sors and ethylene (Cluster III). Complementary to the
hierarchical clustering analysis, we also visualized signifi-
cant metabolite-to-metabolite associations (correlation
coefficient rho > = |0.3|, Methods) via a network of
nodes (metabolites) and edges (either positive correla-
tions in red or negative correlations in blue), taking a
similar approach to [28]. The layout of the network,
whose topology shows the clustered-structure of a graph
(Methods), illustrates the stratification of metabolites
into biochemical groups (Figure 2C). In accordance with
the pattern observed in the hierarchical clustering, 83%
of the significant positive associations and none of the
negative associations occur within the clusters; more
significant positive associations are formed between
metabolites from Clusters II and III, in comparison to
the number of positive associations formed with metab-
olite members of Cluster I (Additional file 1).
Considering the traits associated with the different

groups, metabolites in Cluster I are mainly associated with
determination of sweetness, color and acidity. An associ-
ation between sucrose and carotenoid accumulation was
previously demonstrated when sucrose deficiency lead to
inhibition of carotenoid accumulation in fruits [42]. Me-
tabolites in Clusters II and III are associated with assessing
desirable, melon-typical aroma (for example the ethyl-
esters ethyl butanoate, ethyl 2-methylpropanoate, me-
thyl-2-methylbutanoate and ethyl 2-methylbutanoate)
[43], and undesirable aroma (for example methanethiol,
sulfides and thioesters), respectively. The classification of
fructose and glucose into Cluster II corresponds with pre-
vious studies describing an inverse association between
their level of accumulation versus the accumulation level
of sucrose (Cluster I) during fruit ripening [44-46].
Overall, some of the associations detected are likely to

reflect the synthesis pathways while others are possibly
the outcome of genomic association or common regula-
tory processes. For example, aldehydes, primary precur-
sors in the synthesis of volatile alcohols and esters
(Figure 2A), are found in Cluster I, where the more
downstream volatiles (alcohols and esters, Figure 2A)
are co-located in Clusters II and III, where 30 negative
associations are detected between these compound groups
(Figure 2C). The co-classification of esters together with
alcohols corresponds with the documented association
between the total amounts of esters and alcohols in ripe
fruits [44]. The co-classification of ethylene with the vola-
tile esters possibly reflects its demonstrated role in con-
trolling their production [13] by regulating the reduction
of aldehydes into alcohols which in turn are converted
into esters [16]. Accordingly, aldehydes – whose produc-
tion is not directly controlled by ethylene - are found in
the ethylene non associated cluster (Cluster I), together
with most of the non-volatile compounds. Similarly, the
lack of similarity in the accumulation patterns of ethylene
versus sugars and carotenoids (Cluster I members) sug-
gests that flesh pigmentation (as the outcome of caroten-
oid accumulation) and sweetness level in the melon fruit
are not directly controlled by ethylene. Hence, the cluster-
ing pattern observed provides a corroborative support to
the model suggested by Ayub et al. [7], dividing fruit rip-
ening processes in melon to ethylene dependent and inde-
pendent ones. Whereas the accumulation of the aroma
compounds volatile esters (Cluster II and III) is thought to
be ethylene dependent, the color in the mature fruit
(Cluster I) appears to be ethylene independent.

Using accumulation and expression patterns for linking
metabolites with genes
Making use of the gene expression data, extracted in
parallel to the metabolite accumulation data, we have
calculated the correlations between all gene-metabolite
combinations (Methods). In order to validate the cor-
respondence between the computed expression-accu-
mulation associations and previously reported empirical
observations, we focused on the group of volatile esters, a
class of compounds contributing to the aroma of melon
fruit [43,44,47]. The production of esters is catalyzed by
alcohol acyl-transferases (Cm-AATs) through the esterifi-
cation of an alcohol and acyl-CoA substrates [10]. Differ-
ent Cm-AAT enzymes use different substrates (alcohol
and/or acyl-CoA) to produce different ester products
[11,13]. Product and substrate specificities for some of
these genes have been described in detail in in vitro sys-
tems for a set of volatile esters, ten of them included in
our data set [13]. Eight of these ten esters were shown to
be produced, at varying amounts, by Cm-AAT1 (en-
zyme product of MELO3C024771) and none of the
esters were produced by Cm-AAT2 (enzyme product
of MELO3C024766). In order to examine whether
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metabolite-gene correlation analyses are indicative of po-
tential biochemical association, we looked at the correla-
tions between the accumulation levels of the ten volatile
esters and the expression levels of Cm-AAT1 and 2
(Table 2). For Cm-AAT1 we observe a significant positive
correlation (p value < 0 .05 in a Spearman rank correl-
ation) with five esters, all produced by Cm-AAT1 [13];
most of the remaining (4 esters, Table 1), non correlated
esters, were shown either not to be produced by Cm-
AAT1 or to be produced at low levels (<100 mg−1). A
homolog of Cm-AAT2 that in previous studies was
regarded as catalytically inactive [13] is not correlated with
any of these metabolites. Overall, in all 3 cases where a
high level of volatile ester was experimentally detected
(>1000 mg−1, Table 2), we also observe a significant gene
expression-product accumulation correlation; in all 12
cases where a production of volatile esters was not experi-
mentally detected (either by Cm-AAT1 or Cm-AAT2), a
significant correlation was not observed; also, a significant
correlation was not observed in two out of three cases of
low production. This overall agreement between the
Table 2 Gene-metabolite correlation values between alcohol
metabolic association

Ester product ID accession* Cm-AAT1 (MELO3C024771

Rho correlation coefficien
(p value)ζ

Butyl acetate AE7 0.34 (0.0009)

Hexyl acetate AE8 0.29 (0.004)

2-methylpropyl acetate acetate AE6 0.34 (0.0008)

Benzyl acetate AE2 0.28 (0.006)

Cinnamyl acetate AE1 0.41 (3.43e-05)

Ethyl phenyl acetate EE15 NS

Ethyl propanoate EE2 NS

Ethyl butanoate EE4 NS

Ethyl 2-methyl propanoate EE3 NS

Ethyl hexanoate EE7 NS

Ethyl heptanoate EE8 NS

Ethyl octanoate EE9 NG

Ethyl (methylthio) acetate EE12/TEE2 NS

S-methyl
2-methylpropanethioate

TE3 NS

Methyl 2-methylthio acetate TEE1 NG

Methyl 3-(methylthio)
propionate

TEE3 NG

Upper part of the table: Metabolic evidence is based on in vitro experiments [13] tes
of the table were retrieved from the crossing of the 29 ester products tested at [13]
Cm-AAT4 (MELO3C017688) were detected at very low levels at the ripe fruit across th
Median expression values (RPKM) across the RIL population for MELO3C024771 (Cm-
(Cm-AAT3) and MELO3C017688 (Cm-AAT4), respectively: 6777.400, 2881.290, 0.075, 0
in the data set) with significant (<0.05) positive correlation with CmAAT2. The catalyt
assays not carry at the reference work [13] are marked as NA.
*Full names are as in Table 1.
ζNS – not significant (p value > 0.05); NG – negative correlation; NA - In vitro assays
§According to [13]. High production levels: > 1000 mg−1; medium production levels
predictions and laboratory tests encourages the use of the
gene-correlation associations in order to predict unknown
synthetic pathways. For example, looking for the metabol-
ite associations of the CmAAT2 coding sequence we found
six metabolites that are significantly positively correlated
with CmAAT2 expression including ethyl esters, thio
esters, and thio ethyl esters. Though correlation cannot be
regarded as a conclusive indication for a synthetic role,
these associations provide a testable set of predictions for
potential function of the CmAAT2 whose biochemical
role has not been yet elucidated.

Functional analysis of metabolite-gene associations
Beyond the identification of specific, uncharacterized,
pathways, we further aimed at the comprehensive
characterization of the associations between genes and
metabolites. Though, for some compound groups such as
sucrose and carotenoids, we did not expect to observe a
correlation between their pattern of accumulation and
the expression level of genes directly involved in their
synthesis [36,48], we did aim at delineating the overall
acyl-transferases versus experimental evidence for their

) Cm-AAT2 (MELO3C024766)

t Production levels
in vitro§

Rho correlation coefficient
(p value)ζ

Production levels
in vitro§

High NS ND

High NS ND

Low NS ND

High NS ND

Medium NS ND

Medium NS ND

ND NS ND

Low NS ND

ND NS ND

Low NS ND

NA 0.22 (0.03) NA

NA 0.22 (0.03) NA

NA 0.24 (0.02) NA

NA 0.20 (0.04) NA

NA 0.26 (0.008) NA

NA 0.21 (0.008) NA

ting the product specificity of Cm-AAT1-4. The ten metabolites in the upper part
with our set of metabolites. Cm-AAT3 (MELO3C024769 and MELO3C024762) and
e RIL population (Additional file 4) hence correlation values were not computed
AAT1), MELO3C024766 (Cm-AAT2), MELO3C024769 (Cm-AAT3), MELO3C024762
.840 and 0.000. Lower part of the table: metabolites (out of the 76 metabolites
ic ability of CmAAT2 to produce the 6 metabolites was not tested at [13]. In vitro

not carry at the reference work [13].
: 100–1000 mg−1; low production levels: < 100 mg−1; ND – not detected.
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cellular activity that is typical of their enhanced, or
slowed-down, production. To this end, we recorded for
each metabolite its list of associated genes (Methods).
The genes were assigned to the MapMan hierarchical an-
notation scheme (Methods) providing high and low levels
description for their functional role. MELO3C010686, for
example, is assigned to the “amino acid metabolism” cat-
egory at the highest classification level, “synthesis” at the
second level, “central amino acid metabolism” at the
third level, “alanine” at the fourth level, and “alanine ami-
notransferase” at the fifth level. For each metabolite, we
calculated the frequency of genes at each classification
level in order to outline these cellular processes that are
more significantly associated with its rate of production
(Methods).
Taking a top-down approach, we first looked at the cat-

egories at the highest level of classification (most general).
Figure 3A lists for each metabolite these categories that
are significantly enriched in genes with which it is either
positively or negatively correlated (red and blue coloring,
respectively). Metabolites are ordered as in Figure 2
according to their co-clustering pattern, pointing at the
key functional differences between the three groups. For
metabolites from Cluster I, pathways associated with
photo-protection activity including redox, photosynthesis,
and tetrapyrrole (a precursor of chlorophyll) synthesis cat-
egories are in many cases enriched in positively correlated
genes. The enrichment of carotenoid-correlated genes in
these photosynthesis-related pathways was previously re-
ported, suggested to be explained by the well documented
role of carotenoids in light harvesting and photoprotec-
tion [22]. Genes from the tetrapyrrole synthesis pathway
that are positively correlated with carotenoid levels
include chlorophyllase (MELO3C014286) – a chlorophyll
degrading enzyme, possibly accounting for the demon-
strated degradation of chlorophyll accompanying the
accumulation of carotenoids during ripening [6,33,41,49].
In Clusters II and III, including ethylene and many

volatile compounds, pathways enriched in positively cor-
related genes include the TCA and glycolysis pathways.
The positive enrichment in genes from the TCA and
glyscolysis pathways is in accordance with the ethylene-
dependent large respiratory increase during ripening,
accompanied by radical alteration in the concentrations
of organic acids in the TCA cycle [50]. The positive
enrichment in genes from the sulfur associated pathway
(S-assimilation) corresponds with the incorporation of
sulfur residues in thio-ester compounds. Overall, a re-
verse pattern of enrichment (blue versus red) is observed
between the metabolites from Cluster I versus the
metabolites from Clusters II and III. Mainly, pathways
enriched in genes that are negatively correlated with
metabolites from Cluster I include the TCA, sulfur-
assimilation and glycolysis pathways (Figure 3A).
Delineation of key cellular processes involved in
metabolite accumulation
To narrow down the big picture and identify the specific
pathways associated with metabolite accumulation we
focused on a subset of 17 representative metabolic traits.
Metabolites (marked at green, Figure 3A) were selected
to represent the main biochemical groups studied, con-
sidering both their importance for determining fruit
quality traits and their clustering pattern. In cases where
clustering pattern does not reflect the biochemical asso-
ciation, more than a single metabolite was selected. For
example, since sugars fall into two clusters, both sucrose
(S1, Cluster I) and fructose (S3, Cluster II) were selected
as representative metabolites.
For the representative metabolites, we screened across

all classification levels, looking for pathways that are
enriched with positively correlated genes (Methods).
Overall, we recorded 645 categories associated with at
least a single metabolite (Additional file 2). To further nar-
row down the analysis, for each metabolite we then
recorded its top five most significant categories yielding a
table with 97 pathway entries (Figure 3B). The categories
include a single entry at the top hierarchical level (S
assimilation) and entries up to the seventh level of classifi-
cation – mainly for synthesis pathways of the prokaryote
ribosomal subunits of cellular organelles. Synthesis of
prokaryote ribosomal subunits of cellular organelles, in-
cluding the chloroplast subunits, is mainly detected for
the metabolite members of Cluster I – β-carotene (C2),
benzenepropanol (A5) and pH. The enhanced production
of these plastid ribosomal subunits together with the
elevated tetrapyrrole synthesis (Figure 3B) is possibly indi-
cative of the increased production of chromoplasts – plas-
tids highly similar to chloroplasts in which carotenoids are
synthesized and stored.
As already detected at the highest classification level

(Figure 3A), metabolites from Clusters II and III exhibit
an overall similarity in the cellular activity accompanying
their accumulation, where pathways detected include
such belonging to TCA and S assimilation activity. At a
lower level of classification, categories selected include
the synthesis of aromatic amino acids, detected for the
phenyl propanoid derivate eugenol (PD2, Cluster III).
The increase in activity of enzymes associated with aro-
matic amino acids metabolism corresponds with their
role as precursors of many volatiles in the melon fruit
[35]. Significant degradation activity of the sulfur con-
taining amino acids cysteine is predicted for the sulfide
representative dimethyl trisulfide (SD2). This corre-
sponds with cysteine being the central precursor of all or-
ganic molecules containing reduced sulfur ranging from
the amino acid methionine to peptides as glutathione
[51]. Glutathione S-transferase activity is detected among
the top most significant categories for 5 metabolites in



Figure 3 (See legend on next page.)
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Figure 3 A heatmap of over-represented categories from the metabolites versus genes correlation data. The level of representation of
genes positively and negatively correlated with metabolites across all level of MapMan categories was subjected to cumulative hypergeometric
distribution tests. Categories that are significantly enriched in positively correlated genes are colored in red (light red: 0.01 < P value < = 0.05; dark red:
< P value < = 0.01); Categories that are significantly enriched in negatively correlated genes are colored in blue (light blue: 0.01 < P value < = 0.05; dark
blue: < P value < = 0.01). For each category (rows) numbers in bracts are indicative of its level of classification (left) and the number of genes assigned
to the category (left). (A) Categories at the top level of classification. Metabolites are ordered according to their classification pattern at the metabolites
versus metabolites analysis (Figure 2B). Representative metabolites are marked in green. (B) Top over-represented categories across all MapMan
classification levels. Five top categories were selected for each representative metabolite according to P values (Methods). Only over-representation of
positively-correlated genes was considered. Metabolites are ordered consequently, according to their classification pattern at the metabolites versus
metabolites analysis (Figure 2B). The full names of the metabolites are listed in Table 1. In order to simplify the visualization the original 97 categories
were reduced into 83 by choosing single category to represent several similar categories (considering their higher level path) sharing the
same enrichment profile across metabolites. E.g., a single category was chosen from the following categories at level 7: protein.synthesis.-
ribosomal-protein.prokaryotic.chloroplast.50S.subunit.L28; protein.synthesis.ribosomal-protein.prokaryotic.chloroplast.50S.subunit.L10; protein.-
synthesis.ribosomal-protein.prokaryotic.chloroplast.30S subunit.PSRP3; and protein.synthesis.ribosomal-protein.prokaryotic.chloroplast.50S
subunit.L18 – all categories showing over-representation of genes positively correlated with pH.
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Clusters II and III (Figure 3B) and significant activity in
methionine degradation is observed for four metabolites
of these clusters (AE6, ME2, TEE3, TL1, Additional file 2).
Identification of key gene-groups associated with
ethylene dependent and independent processes
Looking directly at the correlation matrix of metabolite
accumulation versus gene expression, for the large
majority of metabolites, the clustering pattern remains
constant between the metabolite versus metabolites and
metabolites versus gene matrices (Figure 4A). The co-
classification of γ-tocopherol (T2, Cluster III) together
with metabolites from Cluster I including carotenoids
and apocarotenoids (Cluster I), can possibly reflect their
common biochemical origin being all synthesized through
the deoxyxylulose phosphate plastidial terpenoid pathway
[40] from an isoprenoid precursor (Figure 2A). Corres-
pondingly, cellular activities associated with the level of γ-
tocopherol accumulation include categories typical to
Cluster I metabolites such as the synthesis of chloroplast
ribosomal proteins and tetrapyrroles (Figure 3A). The
classification of tocopherols in the metabolite Cluster III
(metabolite versus metabolites accumulation pattern,
Figure 2B), together with ethylene, can be explained
by recent evidence for the role of tocopherols in regu-
lating ethylene signaling pathways [52]. The full correl-
ation matrix of 77 metabolites versus gene expression
is presented at Additional file 3, also showing an over-
all agreement between the clustering patterns of the main
metabolite groups as derived from the metabolite-versus-
metabolite analysis.
Taking a gene rather than a metabolite perspective, the

clustering pattern of the genes correlated with the repre-
sentative metabolites reveals 3 key gene groups marked
at black, green and red (Figure 4A). Genes from the
black group show an overall correlation with most
metabolites and are found to be associated with house-
keeping and maintenance functions (Figure 4B); genes
from the green group show reverse pattern of association
versus genes from the red group where green genes are
mostly associated with volatiles, sulfide derived metabo-
lites and ethylene (Cluster II and III) and red genes are
mostly associated with sweetness, color and acidity de-
termining representatives (Cluster I). The gene-centered
enrichment analysis (Figure 4B) reinforces the key obser-
vations derived at the single compound level where
ethylene-associated compounds are correlated with genes
involved in key energy producing pathways (glycolysis,
TCA) and sulfur assimilation and ethylene non-associated
compounds are correlated with plastid-related activities
such as photoprotection activities. Finally, to gain a net-
work perspective of the functional significance of the gene
clusters we have highlighted enzymes from all groups on
top of the generic KEGG metabolic pathway (Methods,
Figure 5). Volatile-associated enzymes (green) are most
dominant at the TCA, and sulfur metabolism pathways.
Red enzymes, on the other hand, are involved in processes
of specialized metabolism activities including chlorophyll
metabolism.
Conclusions
Here we describe an integrated transcriptomic and meta-
bolomic data from the mature fruit of a phenotypically
diverse melon population. Extensive metabolic phenotyp-
ing were previously carried in melon [27,46,47,53,54],
and in other fruits [26,28], though without the parallel
analysis of the transcriptomic data. Moreover, here we
focused on specialized-metabolism pathways rather than
primary metabolism and elemental profiling aiming to
preserve a relatively direct association between metabol-
ite and a phenotypic trait. An integrative metabolomic-
transcriptomic approach was successfully applied for
identifying genes that control carotenoid accumulation in
the mature tomato fruit [22]. Here, we have extended the
approach to additional metabolites, in order to delineate
a comprehensive description of the cellular processes
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Figure 4 Associating groups of genes and cellular processes accompanying the accumulation of metabolites. The full names of the
metabolites are listed in Table 1. (A) Metabolites versus genes correlation matrix (Spearman’s rho coefficient). The heatmap display correlation
values for the 17 representative metabolic traits detailed at Figure 3B. 6129 genes were significantly correlated with at least a single representative
metabolic trait (|r| > 0.3). The rows in the heat map are the genes clustered by their expression patterns and the columns are the metabolic traits. Gene
groups (marked at green, black and red) were selected by cutting the tree. (B) A heat map of over-represented categories from the black, green and
red gene groups marked at (A). The level of representation of genes within each group across the top level of MapMan categories was subjected to
cumulative hypergeometric distribution tests. Categories that are significantly enriched are colored in red (light red: 0.01 < P value < = 0.05; dark red:
< P value < = 0.01). For each category (rows) numbers in bracts are indicative of its level of classification (left) and the number of genes assigned to the
category (left).
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associated with the determination of fruit quality traits.
Notably, expression measures are based on a single fruit-
pool from each line (Methods), allowing a better coverage
of each sample. Since we focus on gene-metabolite asso-
ciations across the entire population, values rely on mul-
tiple estimates and reduce the likelihood of biases caused
by technical errors.
The analysis points at two independent processes asso-

ciated with melon fruit maturation: ethylene associated
activity, where the synthesis of ethylene and key volatiles
(Clusters II and III) is characterized by enhanced activity
of enzymes involved in the TCA cycle and sulfur metab-
olism, including the enhanced degradation of sulfur-
containing amino acids and the increased synthesis of
aromatic amino acids, providing precursors to many
volatiles. Ethylene non-associated processes include the
accumulation of sucrose and β-carotene (Cluster I). The
cellular processes accompanying their accumulation are
associated with plastids formation and activity, rather
than with the expression of genes directing the synthesis
of these metabolites suggesting that color accumulation
during ripening is to a large extent regulated at the level
of plastid differentiation.
Overall, the present approach of integrated transcrip-

tome and metabolite profiling using RILs as a source of
variation of gene expression and metabolite accumula-
tion sums together multiple past efforts to study ripen-
ing processes taking a single gene perspective. Our
findings are in accordance with such previous works.
Yet, taking a genome scale perspective, our study pro-
vides a comprehensive model describing the cellular
activity during ripening. Moreover it suggests a testable
set of solutions for the possible catalytic activity of
enzymes. Considering the vast diversity of specialized
metabolites in plants and the large numbers of expressed
genes whose functional role is yet unknown [55,56], the
demonstrated correlation between the expression level
of alcohol acyl-transferases and their catalytic products,
supports the use of correlation analyses for predicting
substrate and product specificities of enzymes.
Notably, the role of ripening process in shaping traits

associated with fruit-quality is of obvious importance.
Yet, our understanding is complicated by the polygenic
nature of most of these traits [36,57]. Notably, the RNA-
seq data provides not only expression information but
also allow the characterization of the genetic variations
associated with the phenotypic diversity. A parallel use
of the data for gene association analysis can provide pre-
dictions for genetic markers of selected traits. Taken
together, the gene association approach and the expres-
sion based correlation analysis are complementary as
they allow functional contextualization of the selected
markers. For example, in cases where several markers
were found to be associated with a given traits, highlight-
ing the pathway connectivity between these markers can
explain their concentrated activity as synergistic or over-
lapping. Hence, this analysis lays foundation for deci-
phering the role of gene markers associated with the
determination of polygenic traits. Though the synthesis of
fruit quality associated metabolites such as sugars, carot-
enoids and volatiles is long being explored, such system
level analyses will enhance our understanding of the fac-
tors that determines their level of accumulation, and
quantify the unique contribution of relevant genes, also
considering the mutual impact of multiple genes all indi-
vidually contributing to a given phenotype.

Methods
Plant material
A population of recombinant inbred lines was con-
structed from a cross between PI 414723-S5 (C. melo var
momordica) and ‘Dulce’ cv. (C. melo var reticulatus), as
described in [30,58]. Ninety six lines were grown in a
complete randomized design, in an open field at Ne’we
Yaar Research Center in the spring-summer season of
2010. The experimental design for cultivation and har-
vest was directed by standard cultivation practice
[30,46,58]. Briefly, the soil type was fine clay, density of
plants was 10,000 plants/ha, irrigation in the field was
about 250 m3 per ha once a week corresponding to 25 l
per plant per week, and fertilizer management and
pathogen pest control were performed according to the
standard practices at Newe Ya’ar. Each line was repre-
sented by 12 plants. Flowers were pollinated and tagged
at anthesis and one fruit was allowed to develop per
plant. The fruits were sampled at ripening, once the ab-
scission layer was fully developed and the fruit detached
when touched. Typically ripening took place 35–40 days



Figure 5 Highlighting enzymes from three gene groups on top of the generic KEGG metabolic pathway. Genes were classified into three
groups (black, red and green) according to their clustering pattern at the metabolites versus genes correlation matrix (Figure 4). Following
mapping gene accessions to ECs (Methods), only ECs that were classified into a single gene group were further highlighted.
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after anthesis (DAA), in accordance with a previous
study under similar conditions, in which the PI414723
fruits reached ripening in 30 DAA and ‘Dulce’ fruits in
40 DAA [24]. Flesh tissues (mesocarp) were taken from
five fruits (per line) for transcriptomic and metabolomic
analyses. Tissues were immediately frozen in liquid
nitrogen and stored at −80°C.

Metabolic phenotyping
77 metabolic traits (76 metabolite levels and pH) were
measured across the population of RILs. For the analysis
of the 64 volatiles, frozen fruit samples (3 g) were placed
in a 10 ml glass vial containing 1 g solid NaCl. To each
vial 5 ml of a 20% (w/v) NaCl solution and 0.3 μg of 2-
heptanone, which was used as an internal standard, were
added. The vial was then sealed and stored at 4°C, for no
longer than 1 week until analyzed. Solid-Phase Micro-
Extraction (SPME) sampling was conducted according to
[59] with slight modifications. The sample was preheated
to 50°C, agitated for 5 min at 500 RPM and then a
65 μm fused silica fiber coated with polydimethylsilox-
ane/divinylbenzene/carboxen (PDMS/DVB/CAR) SPME
fiber (Supelco Inc., http://www.sigmaaldrich.com/ana-
lytical-chromatography.html) was inserted into the vial
and exposed to the sample headspace. After 25 min
the SPME fiber was introduced into the injector port
of the GC-MS. Volatile compounds were analyzed
and quantified on a GC-MS apparatus (Agilent Tech-
nologies, http://www.home.agilent.com/agilent/home.jspx?
cc=US&lc=eng) according to [59]. Carotenoids and tocoph-
erols were extracted from 0.5 g FW of finely grinded frozen
fruit flesh tissue in hexane:acetone:ethanol (50:25:25, v/v/v)
mixture as described in [60] and were analyzed, identified
and quantified with a Waters (Milford, MA) 2695 HPLC
apparatus equipped with a Waters 996 PDA detector
(carotenoids) and FD detector (tocopherols), as described
previously [61]. Soluble sugars were sampled using HPLC
applying the procedure outlined at [62]; ethylene was sam-
pled using GC-flame ionization detector (FID); pH of the
flesh samples were measured by pH meter (PH-03(II), ZD
Instrument Corp., China) in juice squeezed from the fruit.
In each RIL, volatile accumulation levels were sampled in
three replicates, from each fruit separately; other metabolic
traits were sampled separately in five replicates. One-way
ANOVA analyses were carried out for each metabolite with
the RIL (genetic factor) as the main effect using REML
method. Metabolites with severly skewed distribution were
subject to a square-root transformation. In all 77 traits we
detected a significant genetic effect (p ≤ 0.05, Additional file
4). Broad-sense heritability (H2) was calculated based on

http://www.sigmaaldrich.com/analytical-chromatography.html
http://www.sigmaaldrich.com/analytical-chromatography.html
http://www.home.agilent.com/agilent/home.jspx?cc=US&lc=eng
http://www.home.agilent.com/agilent/home.jspx?cc=US&lc=eng
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ANOVA component values using intra-class correlations
[63] (Additional file 4). Statistic calculations were con-
ducted in JMP® Pro, Version 10.0.2. SAS Institute Inc., Cary,
NC, 1989–2014. The mean value over all fruits sampled
was set as the level of accumultion in RIL. Additional file 5
provides the full list of metabolites and their accumulation
levels across all lines sampled.

Preparation of cDNA libraries and transcriptomic profiling
For each line, total RNA was extracted from pooled flesh
tissues of five ripe fruits and used for the preparation of
Illumina cDNA libraries [24]. RNA quality and quantity
were determined using a ND-1000 spectrophotometer
(Nanodrop Technologies Inc., Wilmington, DE. USA)
and denaturing agarose gel electrophoresis. Strand-
specific RNA-seq libraries were constructed using the
protocol of [64]. Libraries were barcoded and multi-
plexed in collections of four samples per lane of sequen-
cing. The libraries were barcoded and 8 to 20 libraries
were pooled and sequenced on one lane of the Illumina
GAII and HiSeq 2000 systems, respectively. Five to 10
million reads were obtained for each library. RNA-Seq
reads were first aligned to ribosomal RNA sequence
database [65] using Bowtie allowing up to two mis-
matches [66], to remove any possible rRNA contamina-
tions. The resulting cleaned reads were aligned to the
melon genome [67] using TopHat [68] allowing a single
segment mismatch. Following alignments, raw counts
for each melon gene were normalized to reads per kilo-
base of exon model per million mapped reads (RPKM)
[69]. RPKM values for 27,427 gene accessions across the
RILs population are available at Additional file 6.

Correlation analysis of genes and metabolites and
network visualization
Metabolites versus metabolites correlations between the
77 metabolic traits and metabolites versus genes correla-
tions between the 27,427 gene accessions and the 77
metabolic traits were calculated using the Spearman
rank correlation. RPKM floor was set to 3. A total of
9721 genes are considered to be associated with at least
a single metabolite, as defined by a correlation coeffi-
cient rho > |0.3|. The heat maps of metabolites versus
metabolites and metabolites versus genes were generated
by two-way hierarchical clustering. Metabolites were
divided into three groups using the cutree function (k = 3);
genes were divided into four groups using the cutree func-
tion (k = 4).
Metabolite versus metabolites network was constructed

setting a threshold of correlation coefficient rho > = |0.3|
(p value < 0.003), similar to [28]. All computations and
preparation for the network visualizations were generated
in R. The graphical presentation of the network was com-
posed with Cytoscape version 3.1.1. Network layout was
carried automatically using the ‘organic’ layout option that
visualizes the clusters in the data. Only positive associa-
tions were considered for the layout, and negative associa-
tions are illustrated over the formed graph.

Gene annotations and functional analysis of gene groups
The map of functional categories was retrieved using the
Mercator mapping tool of MapMan [70,71]. Overall,
13,579 genes were assigned to a bin category. Genes co-
selected by transcript–metabolite correlation analysis
were grouped together and the functional significance of
such groups was estimated by calculating the cumulative
hypergeometric p value for the probability that a gene
group is enriched with a functional bin at a rate higher
than chance expectation. Multiple tests were carried for
all gene groups – functional categories at all hierarchical
levels. Significance cut-off was determined by setting a
False Discovery Rate threshold of 10%. The significance
of the appearance rate of each functional category within
each gene group is provided at Additional file 2. The sig-
nificance of the appearance rate of the top functional
categories at the three key gene groups (Figure 4) was
determined using the same procedure. Functional cat-
egories were then converted into EC numbers using the
file the file “BIN2EC” at the mapping repository http://
mapman.gabipd.org/web/guest/mapmanstore. ECs were
mapped to KEGG network using the KEGG Mapper.

Availability of supporting data
Illumina sequencing data were deposited in the NCBI
SRA repository under accession identifier SRP052934. All
additional data files and a file describing the accumulation
levels of metabolites across RILs and across biological
repeats are available in the LabArchives repository [72].

Additional files

Additional file 1: Provides a comparison of the intra- and inter-
cluster similarities of metabolite accumulation patterns in the three
clusters of metabolites, determined according to hierarchical
clustering.

Additional file 2: Is a table listing the significance of the occurrence
rate of functional categories within gene groups selected according
to their correlation with a metabolite (rho > 0.3). Values represent the
p value in a cumulative hypergeometric test following FDR. Values > =
0.05 are considered significant. The full names of the metabolites are
listed at Table 1.

Additional file 3: Is a figure showing metabolites versus genes
correlation matrix (Spearman’s rho coefficient). The heatmap displays
correlation values for all 77 metabolic traits detailed at Figure 2. Out of
27,427 unigenes, 9721 genes were significantly correlated with at least a
single metabolic trait (|r| > 0.3). The rows in the heat map are the genes
clustered by their expression patterns and the columns are the metabolic
traits.

Additional file 4: Is a table listing results from one-way ANOVA and
Broad-sense heritability (H2) analyses for the 77 metabolic traits.
Asterisks indicate a square root transformation of the raw data.

http://mapman.gabipd.org/web/guest/mapmanstore
http://mapman.gabipd.org/web/guest/mapmanstore
http://www.biomedcentral.com/content/supplementary/s12870-015-0449-x-s1.docx
http://www.biomedcentral.com/content/supplementary/s12870-015-0449-x-s2.txt
http://www.biomedcentral.com/content/supplementary/s12870-015-0449-x-s3.jpeg
http://www.biomedcentral.com/content/supplementary/s12870-015-0449-x-s4.txt
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Additional file 5: Is a table listing the level of metabolites’
accumulation across RILs. The full names of the metabolites are listed
in Table 1.

Additional file 6: Is a table listing the level of genes’ expression
(RPKM) across RILs.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
SF carried the bioinformatics analyses of the data and drafted the manuscript.
SL carried the growth, phenotyping, metabolomic analyses and RNA
preparation for the transcriptomic characterization of the population. IG
participated in the metabolomic phenotyping and in drafting the manuscript.
ER carried bioinformatic analyses. VP participated in the transcriptomic analyses.
EO performed the statistical analysis. ML carried the gene annotations
procedure. NG participated in the metabolomic analyses. EB participated in the
metabolomic analyses. GT participated in the transcriptomic analyses. GW
participated in the metabolomic analyses. AM participated in the metabolomic
analyses. JB advised in issues of growth and phenotyping of the population. YT
participated in the metabolic analyses and the statistical analyses. AS
participated in the design of the study. ZF carried the bioinformatics analyses of
the transcriptomic data and participated in the design of the study of the
study. EL participated in the metabolic analyses and in drafting the manuscript.
JG and NK were in charge of the design and coordination of the study, JG was
also in charge of the transcriptomic analysis and NK participated in drafting the
manuscript. All authors read and approved the final manuscript.

Acknowledgments
This research was supported by Research Grant Award No. IS–4223–09C from
BARD, and by the Chief Scientist of the Ministry of Agriculture of Israel
(project no. 261-1049-14).

Author details
1Newe Ya’ar Research Center, Agricultural Research Organization, Ramat
Yishay 30095, Israel. 2Targenomix GmbH, Potsdam, Germany. 3Migal Research
Institute, Kiryat Shmona 11016, Israel. 4USDA-ARS and Boyce Thompson
Institute for Plant Research, Cornell University, Ithaca, New York, USA.

Received: 11 November 2014 Accepted: 4 February 2015

References
1. Cruz-Hernandez A, Paredes-Lopez O. Fruit quality: new insights for

biotechnology. Crit Rev Food Sci Nutr. 2012;52:272–89.
2. Giovannoni J. Molecular biology of fruit maturation and ripening. Annu Rev

Plant Physiol Plant Mol Biol. 2001;52:725–49.
3. Giovannoni JJ. Fruit ripening mutants yield insights into ripening control.

Curr Opin Plant Biol. 2007;10:283–9.
4. Giovannoni JJ. Genetic regulation of fruit development and ripening. Plant

Cell Online. 2004;16:S170–80.
5. Powell AL, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R, Aktas H, et al.

Uniform ripening encodes a Golden 2-like transcription factor regulating
tomato fruit chloroplast development. Science. 2012;336:1711–5.

6. Flores FB, Martínez-Madrid MC, Sánchez-Hidalgo FJ, Romojaro F. Differential
rind and pulp ripening of transgenic antisenseACC oxidase melon. Plant
Physiol Biochem. 2001;39:37–43.

7. Ayub R, Guis M, Ben Amor M, Gillot L, Roustan JP, Latche A, et al. Expression
of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits.
Nat Biotechnol. 1996;14:862–6.

8. Carrillo-Lopez A, Cruz-Hernandez A, Carabez-Trejo A, Guevara-Lara F,
Paredes-Lopez O. Hydrolytic activity and ultrastructural changes in fruit skins
from two prickly pear (Opuntia sp.) varieties during storage. J Agric Food
Chem. 2002;50:1681–5.

9. Schaffer AA, Madore M, Pharr DM. Cucurbits. In: Zamski E, Schaffer AA,
editors. Photoassimilate Distribution in Plants And Crops. New York: Marcel
Dekker; 1996. p. 729–57.

10. Shalit M, Katzir N, Tadmor Y, Larkov O, Burger Y, Shalekhet F, et al. Acetyl-
CoA: alcohol acetyltransferase activity and aroma formation in ripening
melon fruits. J Agric Food Chem. 2001;49:794–9.
11. Yahyaoui FE, Wongs-Aree C, Latche A, Hackett R, Grierson D, Pech JC.
Molecular and biochemical characteristics of a gene encoding an alcohol
acyl-transferase involved in the generation of aroma volatile esters during
melon ripening. Eur J Biochem. 2002;269:2359–66.

12. Burger Y, Sa’ar U, Distelfeld A, Katzir N, Yeselson Y, Shen S, et al. Development
of sweet melon (Cucumis melo) genotypes combining high sucrose and
organic acid content. J Am Soc Horticultural Sci. 2003;128:537–40.

13. El-Sharkawy I, Manriquez D, Flores FB, Regad F, Bouzayen M, Latche A, et al.
Functional characterization of a melon alcohol acyl-transferase gene family
involved in the biosynthesis of ester volatiles. Identification of the crucial role
of a threonine residue for enzyme activity. Plant Mol Biol. 2005;59:345–62.

14. Nishiyama K, Guis M, Rose JKC, Kubo Y, Bennett KA, Lu WJ, et al. Ethylene
regulation of fruit softening and cell wall disassembly in Charentais melon.
J Exp Bot. 2007;58:1281–90.

15. Pech JC, Bouzayen M, Latché A. Climacteric fruit ripening: ethylene-
dependent and independent regulation of ripening pathways in melon
fruit. Plant Sci. 2008;175:114–20.

16. Pech JC, Guis M, Botondi R, Ayub R, Bouzayen M, Lelievre JM, et al.
Ethylene-dependent and ethylene-independent pathways in a climacteric
fruit, the melon. In: Kanellis AK, Chang C, Klee H, Bleecker AB, Pech JC,
Grierson D, editors. Biology and Biotechnology of the Plant Hormone
Ethylene II. Netherlands: Springer; 1999. p. 105–10.

17. Hadfield KA, Dang T, Guis M, Pech J-C, Bouzayen M, Bennett AB.
Characterization of ripening-regulated cDNAs and their expression in
ethylene-suppressed Charentais melon fruit. Plant Physiol. 2000;122:977–84.

18. Schadt EE, Lamb J, Yang X, Zhu J, Edwards S, Guhathakurta D, et al. An
integrative genomics approach to infer causal associations between gene
expression and disease. Nat Genet. 2005;37:710–7.

19. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J,
et al. Genetics of gene expression and its effect on disease. Nature.
2008;452:423–8.

20. Zhu J, Zhang B, Smith EN, Drees B, Brem RB, Kruglyak L, et al. Integrating
large-scale functional genomic data to dissect the complexity of yeast
regulatory networks. Nat Genet. 2008;40:854–61.

21. Park CC, Gale GD, de Jong S, Ghazalpour A, Bennett BJ, Farber CR, et al.
Gene networks associated with conditional fear in mice identified using a
systems genetics approach. BMC Syst Biol. 2011;5:43.

22. Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, et al. Combined
transcriptome, genetic diversity and metabolite profiling in tomato fruit
reveals that the ethylene response factor SlERF6 plays an important role in
ripening and carotenoid accumulation. Plant J. 2012;70:191–204.

23. Rounsley SD, Last RL. Shotguns and SNPs: how fast and cheap sequencing
is revolutionizing plant biology. Plant J. 2010;61:922–7.

24. Portnoy V, Diber A, Pollock S, Karchi H, Lev S, Tzuri G, et al. Use of non-
normalized, non-amplified cDNA for 454-based RNA sequencing of fleshy
melon fruit. Plant Gen. 2011;4:36–46.

25. Clepet C, Joobeur T, Zheng Y, Jublot D, Huang M, Truniger V, et al. Analysis
of expressed sequence tags generated from full-length enriched cDNA
libraries of melon. BMC Genomics. 2011;12:252.

26. Klie S, Osorio S, Tohge T, Drincovich MF, Fait A, Giovannoni JJ, et al.
Conserved changes in the dynamics of metabolic processes during fruit
development and ripening across species. Plant Physiol. 2014;164:55–68.

27. Moing A, Aharoni A, Biais B, Rogachev I, Meir S, Brodsky L, et al. Extensive
metabolic cross-talk in melon fruit revealed by spatial and developmental
combinatorial metabolomics. New Phytologist. 2011;190:683–96.

28. Toubiana D, Semel Y, Tohge T, Beleggia R, Cattivelli L, Rosental L, et al.
Metabolic profiling of a mapping population exposes new insights in the
regulation of seed metabolism and seed, fruit, and plant relations. PLoS
Genet. 2012;8:e1002612.

29. Crow JF. Haldane, Bailey, Taylor and recombinant-inbred lines. Genetics.
2007;176:729–32.

30. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, et al. A
genetic map of melon highly enriched with fruit quality QTLs and EST
markers, including sugar and carotenoid metabolism genes. Theor Appl
Genet. 2010;121:511–33.

31. Diaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, et al. A
consensus linkage map for molecular markers and quantitative trait loci
associated with economically important traits in melon (Cucumis melo L.).
BMC Plant Biol. 2011;11:111.

32. Cohen S, Tzuri G, Harel-Beja R, Itkin M, Portnoy V, Sa’ar U, et al. Co-mapping
studies of QTLs for fruit acidity and candidate genes of organic acid

http://www.biomedcentral.com/content/supplementary/s12870-015-0449-x-s5.txt
http://www.biomedcentral.com/content/supplementary/s12870-015-0449-x-s6.txt


Freilich et al. BMC Plant Biology  (2015) 15:71 Page 16 of 16
metabolism and proton transport in sweet melon (Cucumis melo L.). Theor
Appl Genet. 2012;125:343–53.

33. Tadmor Y, Burger J, Yaakov I, Feder A, Libhaber SE, Portnoy V, et al. Genetics
of flavonoid, carotenoid, and chlorophyll pigments in melon fruit rinds. J
Agric Food Chem. 2010;58:10722–8.

34. Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, et al.
The molecular and biochemical basis for varietal variation in sesquiterpene
content in melon (Cucumis melo L.) rinds. Plant Mol Biol. 2008;66:647–61.

35. Gonda I, Bar E, Portnoy V, Lev S, Burger J, Schaffer AA, et al. Branched-chain
and aromatic amino acid catabolism into aroma volatiles in Cucumis melo
L. fruit. J Exp Bot. 2010;61:1111–23.

36. Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, Pompan-Lotan M, et al.
Metabolism of soluble sugars in developing melon fruit: a global
transcriptional view of the metabolic transition to sucrose accumulation.
Plant Mol Biol. 2011;76:1–18.

37. Gonda I, Burger Y, Schaffer AA, Ibdah M, Tadmor Y, Katzir N, et al.
Biosynthesis and Perception of Melon Aroma in press. Oxford, UK: Blackwell
Publishing Ltd; 2014.

38. Kubicki. Polyploidy in melons (Cucumis melo L.) and cucumbers (Cucumis
sativus L.). Genet Polonica. 1962;2–3:161–79.

39. Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, et al. Mode of
inheritance of primary metabolic traits in tomato. Plant Cell. 2008;20:509–23.

40. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-
derived flavor compounds. Plant J. 2008;54:712–32.

41. Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, et al. Functional
characterization of CmCCD1, a carotenoid cleavage dioxygenase from
melon. Phytochemistry. 2006;67:1579–89.

42. Telef N, Stammitti-Bert L, Mortain-Bertrand A, Maucourt M, Carde JP, Rolin D,
et al. Sucrose deficiency delays lycopene accumulation in tomato fruit
pericarp discs. Plant Mol Biol. 2006;62:453–69.

43. Jordan MJ, Shaw PE, Goodner KL. Volatile components in aqueous essence
and fresh fruit of Cucumis melo cv. athena (muskmelon) by GC-MS and
GC-O. J Agric Food Chem. 2001;49:5929–33.

44. Senesi E, Di Cesare LF, Prinzivalli C, Lo Scalzo R. Influence of ripening stage
on volatiles composition, physicochemical indexes and sensory evaluation
in two varieties of muskmelon (Cucumis melo L var reticulatus Naud). J Sci
Food Agric. 2005;85:1241–51.

45. Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, et al.
Manipulation of phytoene levels in tomato fruit: effects on isoprenoids,
plastids, and intermediary metabolism. Plant Cell. 2007;19:3194–211.

46. Bernillon S, Biais B, Deborde C, Maucourt M, Cabasson C, Gibon Y, et al.
Metabolomic and elemental profiling of melon fruit quality as affected by
genotype and environment. Metabolomics. 2013;9:57–77.

47. Allwood JW, Cheung W, Xu Y, Mumm R, De Vos RCH, Deborde C, et al.
Metabolomics in melon: a new opportunity for aroma analysis.
Phytochemistry. 2014;99:61–72.

48. Liu YS, Gur A, Ronen G, Causse M, Damidaux R, Buret M, et al. There is more
to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J.
2003;1:195–207.

49. Galpaz N, Burger Y, Lavee T, Tzuri G, Sherman A, Melamed T, et al. Genetic
and chemical characterization of an EMS induced mutation in Cucumis melo
CRTISO gene. Arch Biochem Biophys. 2013;539:117–25.

50. Jeffery D, Smith C, Goodenough P, Prosser I, Grierson D. Ethylene-
independent and ethylene-dependent biochemical changes in ripening
tomatoes. Plant Physiol. 1984;74:32–8.

51. Hofgen R, Kreft O, Willmitzer L, Hesse H. Manipulation of thiol contents in
plants. Amino Acids. 2001;20:291–9.

52. Cela J, Chang C, Munne-Bosch S. Accumulation of gamma- rather than
alpha-tocopherol alters ethylene signaling gene expression in the vte4
mutant of Arabidopsis thaliana. Plant Cell Physiol. 2011;52:1389–400.

53. Lee J, Kim MK, Hwang SH, Kim J, Ahn JM, Min SR. Phenotypic profiling and
gene expression analyses for aromatic and volatile compounds in Chamoes
(Cucumis melo). Mol Biol Rep. 2014;41:3487–97.

54. Vallone S, Sivertsen H, Anthon GE, Barrett DM, Mitcham EJ, Ebeler SE, et al.
An integrated approach for flavour quality evaluation in muskmelon
(Cucumis melo L. reticulatus group) during ripening. Food Chem.
2013;139:171–83.

55. Lewinsohn E, Gijzen M. Phytochemical diversity: the sounds of silent
metabolism. Plant Sci. 2009;176:161–9.

56. Pichersky E, Lewinsohn E. Convergent evolution in plant specialized
metabolism. Annu Rev Plant Biol. 2011;62:549–66.
57. Burger Y, Schaffer AA. The contribution of sucrose metabolism enzymes to
sucrose accumulation in Cucumis. J Amer Soc Hort Sci. 2007;132:704–12.

58. Danin-Poleg Y, Tadmor Y, Tzuri G, Reis N, Hirschberg J, Katzir N.
Construction of a genetic map of melon with molecular markers,
horticultural traits and ZYMV resistance. Euphytica. 2002;125:373–84.

59. Gonda I, Lev S, Bar E, Sikron N, Portnoy V, Davidovich-Rikanati R, et al.
Catabolism of L-methionine in the formation of sulfur and other volatiles in
melon (Cucumis melo L.) fruit. Plant J. 2013;74:458–72.

60. Tadmor Y, King S, Levi A, Davis A, Meir A, Wasserman B, et al. Comparative
fruit colouration in watermelon and tomato. Food Res Int. 2005;38:837–41.

61. Tadmor Y, Larkov O, Meir A, Minkoff M, Lastochkin E, Edelstein E, et al.
Reversed-phase high performance liquid chromatographic determination of
vitamin E components in maize kernels. Phytochem Anal. 2000;11:370–4.

62. Petreikov M, Shen S, Yeselson Y, Levin I, Bar M, Schaffer AA. Temporally
extended gene expression of the ADP-Glc pyrophosphorylase large subunit
(AgpL1) leads to increased enzyme activity in developing tomato fruit.
Planta. 2006;224:1465–79.

63. Cahaner A, Hillel J. Estimating heritability and genetic correlation between
traits from generations F2 and F 3 of self-fertilizing species: a comparison of
three methods. Theor Appl Genet. 1980;58:33–8.

64. Zhong S, Joung JG, Zheng Y, Chen YR, Liu B, Shao Y, et al. High-throughput
illumina strand-specific RNA sequencing library preparation. Cold Spring
Harb Protoc. 2011;2011:940–9.

65. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA
ribosomal RNA gene database project: improved data processing and web-
based tools. Nucleic Acids Res. 2013;41:D590–6.

66. Langmead B, Trapnell C, Pop M, Salzberg S. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol.
2009;10:R25.

67. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM,
et al. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci U S A.
2012;109:11872–7.

68. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics. 2009;25:1105–11.

69. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods.
2008;5:621–8.

70. Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, et al. Mercator: a
fast and simple web server for genome scale functional annotation of plant
sequence data. Plant Cell Environ. 2014;37:1250–8.

71. Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, et al. MAPMAN: a
user-driven tool to display genomics data sets onto diagrams of metabolic
pathways and other biological processes. Plant J. 2004;37:914–39.

72. LabArchive repository. doi:106070/H49W0CG1.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Characterizing the phenotypic diversity of key fruit quality traits in the population studied
	Metabolite versus metabolites correlation patterns
	Using accumulation and expression patterns for linking metabolites with genes
	Functional analysis of metabolite-gene associations
	Delineation of key cellular processes involved in metabolite accumulation
	Identification of key gene-groups associated with ethylene dependent and independent processes

	Conclusions
	Methods
	Plant material
	Metabolic phenotyping
	Preparation of cDNA libraries and transcriptomic profiling
	Correlation analysis of genes and metabolites and network visualization
	Gene annotations and functional analysis of gene groups
	Availability of supporting data

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

