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Abstract

complex of ROP18, ROP17 and ROP5.

Background: The interactions between pathogen proteins and their hosts allow pathogens to manipulate host
cellular mechanisms to their advantage. The identification of host proteins that are targeted by virulent pathogen
proteins is crucial to increase our understanding of infection mechanisms and to propose new therapeutics that
target pathogens. Understanding the virulence mechanisms of pathogens requires a detailed molecular description
of the proteins involved, but acquiring this knowledge is time consuming and prohibitively expensive. Therefore, we
develop a statistical method based on hypothesis testing to compare the time series obtained from conversion of the
physicochemical characteristics of the amino acids that form the primary structure of proteins and thus to propose
potential functional relation between proteins. We called this algorithm the multiple spectral comparison algorithm
(MSCA); the MSCA was inspired by the BLASTP tool and was implemented in R code. The algorithm compares and
relates multiple time series according to their spectral similarities, and the biological relation between them could be
interpreted as either a similar function or protein-protein interaction (PPI).

Results: A simulation study showed that the MSCA works satisfactorily well when we compare unequal time series
generated from ARMA processes because its power was close to 1. The MSCA presented a 70% average accuracy of
detecting protein interactions using a threshold of 0.7 for our spectral measure, indicating that this algorithm could
predict novel PPIs and pathogen-host interactions (PHIs) with acceptable confidence. The MSCA also was validated by
its identification of well-known interactions of the human proteins MAGI1, SCRIB and JAK1, as well as interactions of
the virulence proteins ROP16, ROP18, ROP17 and ROP5. We verified the spectral similarities for human intraspecific
PPIs and PHIs that were previously demonstrated experimentally by other authors. We suggest that human GBP
(GTPase group induced by interferon) and the CREB transcription factor family could be human substrates for the

Conclusions: Using multiple-hypothesis testing between the spectral densities of a set of unequal time series, we
developed an algorithm that is able to identify the similarities or interactions between a set of proteins.
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Background

The identification of protein-protein interactions (PPIs) is
crucial for elucidating protein function and further under-
standing various biological processes in cells. Similarly,
the identification of interactions between the proteins of
infectious pathogens and their hosts (PHIs) may enable
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researchers to gain crucial insight into infection mecha-
nisms. However, the general methodology for searching
for new PPIs and PHIs, such as large-scale yeast two-
hybrid approaches or coimmunoprecipitation methods, is
time consuming and expensive [1]. Therefore, the design
of computational tools, which can provide an efficient
method of identifying potential protein interacting part-
ners, is beneficial for minimizing the number of experi-
ments. Current computational methods can be classified
into two main approaches. The first approach is based
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on the genomic [2] or structural information of proteins
[3,4]. However, these methods cannot be implemented
when prior information about the proteins is not avail-
able. The second approach is based on protein primary
sequences [5-7]. The latter type of approach is benefi-
cial because most of the protein information in protein
databases is the protein primary structure. The pattern of
amino acid positions in protein primary structures give
rise to an assumption that the amino acid sequence alone
might be sufficient to estimate the propensity for inter-
actions between two proteins for specific biological func-
tions [8]. Accordingly, predicting PPIs and PHIs based
only on sequence information is an ideal approach for
computational techniques. Most of the methods for PPI
prediction based on the primary structure information of
proteins have been developed using a learning algorithm-
support vector machine (SVM) combined with a kernel
function to perform training and extract features from
known pairs of PPIs to construct a universal model that
separates positive PPIs from false PPIs [6,9-12]. Herein, we
developed an algorithm to compare the spectral similari-
ties between proteins using statistical hypothesis testing.
In our case, we do not construct a general model for a
protein-protein relation; instead, we compare the differ-
ent spectral functions obtained using different descriptors
for a query protein sequence against our own constructed
database. This approach has the advantage of using only
the protein primary sequence and not requiring either
previous information from datasets or training.

The primary structure of proteins is a linear chain of
amino acids that are each represented by one of 20 let-
ters of the alphabet; thus, this alphabetic sequence can
be translated into a numerical sequence using different
physicochemical properties for each amino acid, such as
the electron ion interaction potential (EIIP), hydrophobic-
ity, polarity, polarizability, Van der Walls volume, ioniza-
tion constant, and accessible solvent surface area.

However, because the distance between consecutive
CA atoms in a protein sequence is 3.84°, the points in
some corresponding numerical sequences are considered
equidistant, and the corresponding numerical sequence
can be considered a time series. When two proteins are
compared using some bioinformatics techniques, such
as pairwise sequence alignments, the similarity between
the proteins can be observed simply by looking for the
amino acids that are conserved in specific positions of
the two proteins. Otherwise, if we transform the same
proteins into two time series, the proteins can be com-
pared using mathematical techniques that allow us to see
some hidden patterns that cannot be observed through
the conventional alignment methods or motif searching
patterns. However, when proteins are represented as a
time series, we can use methods for extracting informa-
tion from signals via spectral analysis. For instance, if
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there are certain periodicities or repetition patterns in
two signals, prominent peaks appear in their spectra, and
each one of these peaks carries relevant information that
can represent either a functional or interaction relation
[13-15]. This type of analysis is called an information spec-
trum method (ISM), and it has been successfully used
to characterize protein-protein interactions between the
gp120 HIV protein and its CD4, CCR5 and CXCR host
cell receptors [16]. To further develop the ISM technique
in this work, we propose the multiple spectral compari-
son algorithm (MSCA) to identify similarities between a
query and our own set of proteins. The algorithm was
inspired by the BLASTP tool in the sense that for each
pair of proteins, we compare the spectral densities of all of
their alignments rather than the amino acids themselves.

Results and discussion

Results

First, we determine whether MSCA can identify some
interactions of the human proteins MAGI1 and SCRIB
using eight different physical/chemical amino acid
descriptors and four different sets of human proteins with
MAGI1 and SCRIB as the query proteins. The algorithm
identified the following protein relations: MAGI1-
NET1 [17-19], MAGI1-FZD4 [19,20], MAGI1-ESAM
[19,21], MAGI1-ABC1l, MAGI1-CYSLTR2, MAGII-
ARHGAP6, MAGI1-TMEM215 and MAGI1-MARCH3
[19] with a similarity measure greater than 0.7. The
MAGI1-NET1 and MAGI1-CYSLTR2 interactions were
found using three different descriptors (Additional
file 1: Supplementary material S1). MSCA also detec-
ted the protein-protein interactions SCRIB-BPIX [22],
SCRIB-GLUT?7, SCRIB-TANCI1, SCRIB-MARCH3, SCR-
IB-ABC1, SCRIB-ARHGAP6, SCRIB-TAX, SCRIB-
CYSLTR2 and SCRIB-TMEM215 [19]. The interactions
SCRIB-MARCH3, SCRIB-TMEM215 and SCRIB-BPIX
were also detected using three descriptors (Additional
file 1: Supplementary material S2). The position and
frequency of the interaction partners of MAGI1 and
SCRIB did not change dramatically when we used
the 4 different datasets. For this analysis, the interac-
tions MAGI1-NET1, MAGI1-ARHGAP6, SCRIB-ARH-
GAP6, SCRIB-TMEM215 and SCRIB-BPIX appear to be
the most consistent findings; these interactions exhibit
the same frequency in the 4 datasets (Additional file 1:
Supplementary material S1 and S2). We also evaluated
JAK1 interaction partners using JAK1 as the query pro-
tein. In this case, the majority of proteins related to JAK1
were kinases, including TYK2 and SYK, which have been
demonstrated to interact with JAK1 [23,24]. The most
common transcription factor family was the STAT family,
which are well-proven substrates for JAK1; STAT1 and
STAT5b were the most frequent JAK1 partners in the 4
analyzed datasets [25] (Additional file 1: Supplementary
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material S3). The MSCA also found the previously known
interaction JAK1-TRAF6 [26]. All of the candidates had a
similarity measure greater than 0.7 for all descriptors.

Next, we assessed the pathogen-host interactions (PHIs)
for some well-studied ROPKs and host proteins. The
interactions between ROP16 and STATs were used to
validate the MSCA, and similar to JAK1, most of the
proteins related to ROP16 are kinases. ROP16 is a
kinase protein that has all of the key amino acids for
the phosphotransferase function [27] (Additional file 1:
Supplementary material S4). Similarly, the third most
frequent group that was identified to be related to
ROP16 was the STAT transcription factor family;
STAT5A and STAT5B were the most frequent part-
ners, with each occurring five times (Additional file 1:
Supplementary material S4). The MSCA also detected
the experimentally demonstrated interactions ROP16-
STAT3, ROP16-STAT6 and ROP16-STAT1 (Additional
file 1: Supplementary material S4). The ROP18 have also
been described that phosphorilates a member of the
mouse GTPase family IRGa6 [28-30], and we also aimed
to evaluate this interaction using the MSCA. The kinases
were largely represented, but members of the immunity-
related GTPase family (IRGs) were found 21 times (Addi-
tional file 1: Supplementary material S5). The protein
ROP5 was also shown to act as a cofactor of ROP18. A
recent work concluded that ROP17, ROP18 and ROP5
function as a complex and that the host substrates for
ROP17 and ROP18 are members of the mouse immunity-
related GTPase family [28-31]. The MSCA results for
this complex showed that aside from proteins with kinase
activity, the second most frequent family of proteins is
the mouse IRG family, which was significantly related
to ROP17 and ROP5, with 20 and 17 instances, respec-
tively (Additional file 1: Supplementary materials S5, S6
and S7).

Finally, we obtained an average accuracy of 70% for
detecting protein interactions using a threshold of 0.7 for
our p-value measure. However, the specificity of the test
was improved when we increased the threshold to 0.8
(Additional file 1: Supplementary material S8). In general,
we considered 70% accuracy acceptable for finding novel
PPI or PHIs. Furthermore, we assumed that if the func-
tional protein families found and described below from
the sequence query with a probability higher than 0.7,
the families would have some relationship with the query
sequence; these proteins share spectral similarity derived
from physicochemical features, and thus, this informa-
tion could be interpreted as either a common function
or PPL.

Discussion
Discovering protein interaction partners is a difficult
task because it is time consuming and experimentally
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expensive; thus, it is necessary to generate algorithms to
develop computational tools that help researchers who
are deciding how to better understand the pathogen-
human interaction system and decrease the number of
experiments that must be performed. Previous experi-
mental information, curated databases or 3D structural
information is necessary to find potential interactions
between proteins. Most of the bioinformatic programs
that predict PPIs and PHIs require already character-
ized or experimentally proven PPIs and PHIs to trans-
fer this information to new sequences. Therefore, our
motivation was to develop a program that we called the
MSCA, which will identify PPI or PHI relations between
proteins from the primary sequence information itself.
Each spectrum contains the information for each partic-
ular physicochemical descriptor for all of the proteins in
this study. The MSCA relies on a spectral comparison
of the protein sequences, but the comparison was for-
mally designed through hypothesis testing. The MSCA
confirmed all known PPIs using a similarity threshold
of greater than 0.7. If a query protein has significant
spectral similarities with another protein (using several
descriptors) but the proteins are functionally different
(in our case, we compared toxoplasma ROP kinases vs.
transcription factors), this would mean that some spec-
tral information is shared and would suggest an inter-
action between the proteins. When comparing series,
commonality of some frequency and amplitude peaks
along the spectra suggests a relation between the series.
In the case of biological sequences, commonality of par-
ticular frequency peaks that arise from the periodical
interaction interfaces of the proteins would suggest an
interaction relationship. However, the MSCA can also
identify the functional similarity (as shown in all tables).
Indeed, many human kinase proteins appeared close to
the ROP queries because they are also kinases. MSCA
detected the human PPI between MAGI1 and SCRIB.
Accordingly, in our analysis, the domains related to the
G protein Rho are the third most abundant for MAGI1
and SCRIB and appeared 11 and 13 times, respec-
tively (Additional file 1: Supplementary materials S1 and
S2). The second most abundant group is the proteins-
related to cell-cell adhesion and integral membrane pro-
teins. Additional experimental studies suggested that the
MAGI1 and SCRIB proteins are closely associated with
cell-cell adhesion and that these proteins act as scaffolds
that assemble proteins close to membranes to regulate G
protein Rho signaling [19,20,32,33]. Similarly, the riboso-
mal protein S6 kinase RPS6K and MAPK3 can interact
with MAGI1 and SCRIB, respectively [34,35]. For the
JAK1 validation, the transcription factor family STAT
is the third most frequent family, and 10 experimental
JAK-STAT interactions that had already been experimen-
tally proven were found (Additional file 1: Supplementary
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material S3). Moreover, toxoplasma ROP16, ROP17 and
ROP18 are grouped as active kinases, and these proteins
are not highly divergent from one another [27]; how-
ever, other protein groups are also related to each ROP.
Our ROP16 analysis showed that in addition to kinases,
the STAT transcription factor family was represented fre-
quently and appeared a total of 18 times (Additional file 1:
Supplementary material S4). Although the experimentally
proven interactions are not the most frequent, the MSCA
found the ROP16-STAT3 and ROP16-STAT1 interactions
one time each and found the ROP16-STAT6 twice. Follow-
ing this concept, when we analyzed ROP18 and ROP17,
the group with the second most frequent occurrences was
the immunity-related GTPases (IRGs) (Additional file 1:
Supplementary materials S5 and S6). Furthermore, the
CREB human transcription factor family was identified
frequently during ROP18 and ROP5 queries with 15 and
16 occurrences, respectively; CREB1 was the most fre-
quently found member of the CREB family (Additional
file 1: Supplementary materials S5 and S7). Experimen-
tal evidence also demonstrated that ROP18 interacts with
the ATF68 factor, which belongs to the CREB family
[36]. Another human protein group related to the ROP18,
ROP5, and ROP17 complex is the SMAD family, which
is a group of signal transducers and transcriptional mod-
ulators that belong to the (TGF-B8) pathway and mediate
cell differentiation [37]. Finally, an interesting group that
is also related to the complex ROP18/ROP17/ROP5 is the
human GBP GTPase family, which consists of guanylate-
binding proteins induced by interferon. These types of
proteins promote inflammasome responses to pathogenic
bacteria [38,39]. We consider GBPs to be possible human
substrates for the ROP complex because the ROP com-
plex is able to interact with mouse IRGs, which are also
GTPases that are induced by interferon. Furthermore,
human GBPs are highly induced after microbial infec-
tion and are associated with T. gondii [40]. Although the
MSCA relies on spectral information methods, it com-
pares the complete spectrum rather than only the fre-
quency peaks that are shared among the proteins. More-
over, formal statistical testing was used. In summary, the
MSCA results included highly well-known and experi-
mentally identified PPIs as well as some new candidates
that have a sound theoretical basis for an interaction.
These candidates merit further experimental validation.
In agreement with the accumulating evidence, the MSCA
identifies some direct candidates for PPIs, PHIs and
protein-function relations. At minimum, the MSCA can
reduce the number of sequences in a large database that
should be further studied, and the sequences that remain
should be true candidates for relationships with the query
protein. The MSCA provides the advantage of analyz-
ing a large number of sequences, and the method can be
generalized for any type of protein from any organism.
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Conclusions

Using multiple-hypothesis testing between the spectral
densities of several time series, we developed an algorithm
that can identify similarities or interactions between a set
of proteins. A simulation study that compared different
series generated from autoregressive moving average pro-
cesses showed that the approach works satisfactorily. We
also could identify some well-known interactions between
proteins from a toxoplasma-host infection model. Consid-
ering the obtained accuracy, we choose a threshold of 0.70
that guarantees an interaction with the query protein.

Methods

Time series analysis

A time series is a set of observations {x;}, where each
x; is recorded at a different time. If the observations are
recorded at discrete points, we have a discrete time series;
this type of time series is used most frequently in practice.
A more formal definition of a time series can be obtained
using the theory of stochastic processes. In this context,
the time series {x;, t = 1,2,..., T} represents a realization
of a stochastic process {X;, ¢t € t}. Stationarity is an inter-
esting property of stochastic processes and can be either
strong or weak. Processes are strongly stationaries if their
finite-dimensional distributions are time invariants, and
processes are second-order stationaries when the uncon-
ditional expectations and variances are time invariants
and if the correlation structures between observations x;
and x; depend solely on the delay k = |s — ¢].

There are two common approaches for analyzing a sta-
tionary time series depending on the domain under con-
sideration. In the time domain, the analyses are largely
based on the autocorrelation function (acf) given by

pathy = 20,

o
where yy(k) = Cov(xy,x;—x) = E[(xy — p)(xs—x — 1))
is the autocovariance function, w is the unconditional
expectation and o2 is the unconditional variance of the
process. The function p,(k) measures the linear depen-
dence between pairs of observations separated by a lag k.
If px (k) = 0 for all k # 0, the process lacks memory. In the
frequency domain, the correlation structure is represented
by the spectral density function defined as

[e ¢}

)= ) ye(k) exp(=i2mik), A e[-1/2,1/2],

k=—o00

k=0,%+1,%2,...,

where A is measured in cycles per unit of time. f; (1) is the
Fourier transform of y, (k) and describes the properties of
the process in terms of periodic components at different
frequencies.

For a set of observations {x;, t = 1,2,..., T}, the dis-
crete Fourier transform (DFT) defined for the discrete
Fourier frequencies A; = j/T, j = 0,1,2,...,[T/2] is
given by
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T
1 )
dx(Aj) = T E x¢ exp(—i2m Ajt).
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An estimator of the spectral density f,(1) is the peri-
odogram I, (), which is defined as the squared modulus
of the DFT,

L) = ldx ()%

The value of the periodogram at each frequency repre-
sents the amount of time series variance related to this
frequency or its power.

Time series metrics

The classification and comparison of time series are prob-
lems with applications in biology, medicine, seismology,
economics, and other fields, and different metrics have
been proposed for classifying a set of time series. Through
a simulation study, Caido et al. [41] evaluated several met-
rics to compare two stationary time series; most of these
metrics were based on Euclidian distances. The metrics
studied in the time domain were the Euclidian distance
between the two time series, the two autocorrelation func-
tions, the two partial autocorrelation functions and the
Euclidian distance between their respective autoregres-
sive parameters. In the frequency domain, the analyzed
metrics were the Euclidean distance between the nor-
malized periodograms and the Kullback-Leibler distance.
A simulation study showed that distances based on the
autoregressive parameters and normalized periodograms
were the best metrics. Maharaj [42] proposed the p-value
of the hypothesis testing of the equality of autoregressive
parameters as a metric to compare two stationary time
series. Accordingly, our algorithm uses the p-value of the
hypothesis testing of the equality of spectral densities.

The hypothesis testing

The issue of comparing two or more stationary time series
is equivalent to evaluating whether the series were gen-
erated by the same stationary process. Stationary time
series are similar if they have the same correlation struc-
ture. Coates and Diggle [43] provided some conditions for
comparing two time series in the frequency domain.

Let fx(A) and f,(A) be the spectral density of {x;, t =
1,...,T} and {y;, ¢t = 1,...,T}, respectively, and let
L:(Ar) and I;(A) be their respective periodograms. For
k=1,...,K, k << T,% ~ Aand% # O,i%,...,when
T — 00, and when the time series are independent,

L) d

J(Ag) = — UMW) Fp,

L)

d C .
where —> represents a distribution convergence, U(X) =

;;3; and Fy is the Fisher distribution with two degrees of
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freedom in both its numerator and denominator. Further-
more, zx = In(1+J 71 () 4 U (X ) exp(1). Thus, when
the spectral densities are equal, U(Ax) = 1, and when
they are asymptotically equivalent, z; is exponentially dis-
tributed with a mean of 1. Consequently, the statistics
G = Z]k:1 zx describe the points of a Poisson process of
mean 1, and

Cj ,
oj=—), j=1,...,m=[T/2],
Cm

is a vector of the order statistics from a uniform distri-
bution over (0,1). Then, we can test the hypothesis Hy :
Sx() = f,(0), YA € (—1/2,1/2) if the statistics o’s follow
a uniform distribution over (0, 1); for instance, we can use
a Kolmogorov-Smirnov test.

The multiple spectral comparison algorithm (MSCA)

Our approach for comparing a query and a set of proteins
with unequal sizes and for sorting the proteins according
to their similarities follows the steps outlined below:

Step 1: The set of proteins is transformed into a set of
time series according to some amino acid
properties (see properties in the Additional file 1:
Supplementary material).

Prior to each alignment between the query and a
protein, hypothesis testing for equality of their
spectral densities is performed and provides a
p-value of the testing. Each alignment is
understood as a match between the query and
each protein using translations of order 1. The
spectral similarity is represented by the mean of
these p-values.

Because the p-value from an equality testing of
two time series represents a similarity measure
between the two time series and satisfies the
properties of a semi-metric [42], the set of
proteins is sorted according to the p-values
obtained in Step 2. The similarity between a
protein and itself results in a p-value of 1, and this
protein has the highest score. Similarities close to
1 indicate that two proteins are strongly related.

Step 2:

Step 3:

Simulation study

Our algorithm is based on a multiple-hypothesis testing
of signals of different lengths; thus, to assess its power
for finite samples, we performed some simulations where
we compared series generated from autoregressive mov-
ing average (ARMA) processes. {X;, ¢ € T} is a stationary
ARMA(p, q) process of zero mean if X; = ¢p1Xr—1 + ...+
OpXt—p + Oras 1 + ... + 64a; 4 + a, where the roots of
the characteristic polynomials 1 — ¢1B — ... — ¢,B and
1—61B—...—0,B% are outside the unit circle and {a;} is
a white noise process.
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Then, in the first case, we only compared time
series AR(1) or MA(1) and generated series of length
T = 1000 from AR(1) processes with ¢; varying from
{0.2,0.3,...,0.9}. These series were compared with series
AR(1), where ¢; = 0.2 remains fixed and T = 800. Anal-
ogously, we generated series from processes MA(1) with
01 varying from {0.2,0.3,...,0.9} and length " = 1000,
and we compared these series with series MA(1), where
61 = 0.2 remains fixed and T = 800. In both cases, we
simulated 2000 replications and considered a nominal size
of 5%. We calculate this size when both signals are gen-
erated from the same process where the parameter is 0.2;
in the other cases, we calculate the power. Figure 1(a) and
1(b) show the estimated power function when we compare
the signals from the AR and MA processes, respectively.
In general, the test performance is similar when we com-
pare either the AR or MA time series, and the test is
reasonably good because the estimated power function
increases rapidly to 1 when the processes are different. In
both cases, the estimated size is 0.045.

In the second case, the algorithm was used for 2000
replications of the following group of stationary time
series: two time series from AR(1) process with ¢; = 0.8
and T = 500, two time series from MA(1) process with
0 = —0.6 and T = 400, and two time series from
ARMA(1,1) process with the parameters ¢; = 0.8, 6; =
—0.6 and T = 300. In this case, we compare ARMA(1,1)
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with the other series. However, due to the similarity
between the parameters, the series from the AR(1) or
MA(1) processes could eventually be classified as similar
to series from the ARMA(1,1) process, and we obtained
less power due to the misclassification. The estimated size
was 0.054, and the power was 0.9995 because only 1 series
was misclassified.

Finally, we augmented the previous group with two
time series from the AR(2) process with the parameters
¢1 = 0.8, ¢o = —0.3 and T = 200 and with two time
series from the MA(2) process with the parameters 6, =
—0.6, 6, = 0.3 and T = 100. In this case, the estimated
size and power were 0.048 and 0.883, respectively. The
loss of power was due to 1 or 2 misclassifications with a
frequency of 0.112 or 0.005, respectively, in the 2000 repli-
cations. However, for a nominal size of 10%, the estimators
were 0.106 and 0.95 for size and power, respectively, with
only 1 misclassified series with a frequency of 5%.

In general, the MSCA performs reasonably well because
in all cases, the estimated size was close to the nominal
value, and for different series, the power rapidly increased
to 1, as can be expected.

Validation study

For intra-specific (PPI) validation, we compared the dif-
ferent spectra for three well-studied human proteins,
MAGI1, SCRIB and JAK1, against our own spectral
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Figure 1 Power function for comparison of AR(1) processes (a) and MA(1) processes (b). This figure shows the estimated power function from the
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dataset. MAGI1 (membrane-associated guanylate kinase,
contains a PDZ domain), which has six PDZ domains,
was found to be located to adherens and tight junctions
in epithelial and endothelial cells [21,44], where MAGI1
appears to be involved in the maintenance of the junctions
and in cell signal propagation. SCRIB (scribbled planar
cell polarity protein), which has four PDZ domains, is
known to be involved in the establishment of adherens
and tight junctions as well as in the regulation of cell
polarity and cell migration [45-47]. JAK1 (Janus kinase
1) is involved in the interferona/B and interferony signal
transduction pathways. Furthermore, for (PHIs), we used
the pathogen-host infection model (Toxoplasma gondii-
Host). This pathogen is an obligate intracellular parasite
that is able to infect any mammalian cell [48]. T. gondii is
a highly successful parasite that can manipulate and con-
trol a variety of host processes due to secreted factors
that interact with the host cell proteins [49-51]. Con-
sequently, rhoptry proteins are vital for the Toxoplasma
infection process and for its survival. There are a few well-
documented host target proteins for toxoplasma rhoptry
kinases (ROPKSs) that are involved in host cell modulation.
A proteomic study of rhoptry contents led to the identi-
fication of 38 rhoptry proteins [52], after a screening of a
database (ToxoDB) for ROPKs revealed 44 ROPKs in the
T. gondii genome using hidden Markov models (HMMs)
and a phylogenomic approach [51]. ROP16 activates the
STAT family transcription factors STAT1, STAT3 and
STATG6 that influence the JAK/STAT pathway [53-55]. In a
recent study, the authors found that ROP18 forms a com-
plex with ROP5 and ROP17, which phosphorylate mouse
immunity-related GTPase family members (IRGs) [28].

Datasets

The MSCA was validated by searching for protein inter-
action partners that had been experimentally proven
for MAGI1, SCRIB and JAK1 (PPIs) and for the afore-
mentioned interactions between ROP16, ROP18, ROP17,
ROP5 and host STAT and IRG proteins (PHIs). We
downloaded 930 proteins from the UniProt database
(http://www.uniprot.org) and 250 kinases belonging to
seven host signal transduction pathways from the KEGG
database (www.genome.jp/kegg/pathway), the MAPK,
JAK-STAT, NF-, TNF, HIF-1, PI3K-Akt and mTOR path-
ways, as well 450 transcription factors, 100 membrane
proteins related to cell-cell adhesion and 130 proteins
related to different activities. We mixed all of these pro-
teins into four different sets and tested some query pro-
teins against each group. Group 1 had 279 sequences, and
the other three groups had 218 different sequences each;
the queries were MAGI1 and SCRIB. For the JAK1 query,
group 1 had 262 sequences, and the other three groups
had 212 sequences; for ROP16, ROP18, ROP17 and ROP5,
only one group of 332 proteins was considered for each
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validation (see Additional file 1: Supplementary material).
MSCA sorted the proteins of each group according to the
spectral similarity measure (the global p-value) of each
protein with each of the following query proteins: MAGI1,
SCRIB, JAK1, ROP16, ROP18, ROP17 and ROP5. (All the
sequences used in the validation study were uploaded in
the Additional file 2).

Feature conversions

PPIs can be categorized into four interaction modes:
electrostatic interactions, hydrophobic interactions, steric
interactions and hydrogen bonds. Here, 6 physicochem-
ical features of amino acids were selected to transform
the alphabetic sequences into a numerical series to reflect
these interaction modes. These features were hydropho-
bicity (hydro), volume of side chains (VSC), polarity (P1),
polarizability (P2), solvent accessible surface area (SASA)
and the net charge index of side chains (NCISC) [56].
Furthermore, we considered 5 other physicomathematical
characteristics for each amino acid, and these character-
istics were successful used in the ISM technique (to look
for interaction partners). These characteristics were the
electron ion interaction potential (EIIP) and ionization
constant (IC), which were used in [57,58] and [59], respec-
tively. The characteristics P001, H085 and H371 were also
previously proposed [60].

Measuring the accuracy

We calculated the accuracy (ACC) and F1 scores to assess
the accuracy of the MSCA. We downloaded the interac-
tion partners for JAK1, MAGI1 and STAT3 from STRING
9.1 (string-db.org) [61]. Each protein was analyzed sepa-
rately, and we designed 3 sets of negative interactions for
each analysis.

Additional files

Additional file 1: Supplementary material. The supplementary material
contains all tables of the validation study.

Additional file 2: Supplementary material. The supplementary material
contains all the sequences used in the validation study.
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