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Control of organ size is of fundamental importance and is controlled by genetic, environ-
mental, and mechanical factors. Studies in many species have pointed to the existence of
both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordi-
nate to regulate organ size. Here, we discuss organ size control by organ patterning and the
Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens
and other patterning molecules couples growth and patterning, whereas emerging evidence
suggests that the Hippo pathway controls growth in response to mechanical stimuli and
signals emanating from cell–cell interactions. Several points of cross talk have been reported
between signaling pathways that control organ patterning and the Hippo pathway, both at the
level of membrane receptors and transcriptional regulators. However, despite substantial
progress in the past decade, key questions in the growth-control field remain, including
precisely how and when organ patterning and the Hippo pathway communicate to control
size, and whether these communication mechanisms are organ specific or general. In addi-
tion, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and
the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size,
remain unresolved.

Control of organ size is a fundamental aspect
of biology and crucial for organism fitness.

During development, organs must grow to the
appropriate size, whereas many organs of adult
organisms also display homeostatic size-control
mechanisms. Decades of experimentation have
identified multiple regulators of organ size.
Broadly, these can be grouped into organ-ex-

trinsic and -intrinsic regulators of size. Organ-
extrinsic regulators act in a humoral fashion to
scale the size of multiple organs within an or-
ganism. They provide systemic information
about organism status, such as nutrition and
developmental stage, and include hormones,
such as insulin and steroids. Organ-intrinsic
regulators act in a local fashion to modulate
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the size and shape of individual organs. They
provide information about the local cellular en-
vironment, including position within an organ
and local cell–cell contacts. They were first rec-
ognized through transplantation and regenera-
tion experiments and later identified and char-
acterized through genetic studies.

In this review, we discuss control of size by
organ-intrinsic regulators, focusing on organ
patterning and the Hippo pathway, which pro-
vide key information to cells regarding their
local position and cellular environment. As
much of our understanding of patterning and
Hippo signaling pathways, and how they con-
trol size has come from analysis of growth of the
imaginal discs of Drosophila, we focus on this
model system, but also include insights ob-
tained from other organisms.

An understanding of how organ size is de-
termined requires that we be able to explain
characteristic parameters of organ growth.
The Drosophila wing is perhaps the most inten-
sively studied model for organ growth in all of
biology. It originates from a cluster of �30–50
cells set aside in the Drosophila embryo, which
form the wing imaginal disc (Worley et al.
2013). The discs grow during the larval stages,
in the case of the wing disc, to a cluster of
�30,000–50,000 cells at the end of larval devel-
opment (Martı́n et al. 2009). Perhaps the most
basic questions: “What sets the final size of
the wing disc?” and “Why do cells stop prolif-
erating when the correct organ size has been
reached?” have not yet been definitively an-
swered, but insights have been obtained. Wing
size is clearly modulated by both extrinsic and
intrinsic mechanisms. For example, starvation
or mutation of components of pathways that
control growth in response to nutrient avail-
ability can lead to small, but well-proportioned
flies, indicating that wing size can be altered
based on organ-extrinsic information (Stocker
and Hafen 2000). Yet, transplantation and ge-
netic experiments revealed decades ago that an
individual wing disc “knows” its size. For exam-
ple, if a disc is transplanted to a female abdo-
men, it can be cultured there for an extended
period without receiving pulses of the steroid
hormone ecdysone that it would normally be

exposed to in the larva, triggering metamor-
phosis. In this environment, it can be observed
that an immature wing disc, or a disc in which a
fraction of cells have been surgically excised, will
grow to its appropriate size and then arrest
(Bryant and Levinson 1985). Moreover, genetic
experiments imply that the disc-intrinsic unit
of size control is actually a fraction of a disc. The
wing disc is separated into distinct populations
of cells that do not intermix, called compart-
ments, along both anteroposterior (A–P) and
dorsoventral (D–V) axes. Even if cells of one
compartment grow at a substantially different
rate from cells in other compartments, a wing of
normal size and shape invariably forms (Neu-
feld et al. 1998; Martı́n and Morata 2006). Thus,
each compartment achieves its correct final
size, irrespective of growth rates in neighboring
compartments.

THE RELATIONSHIP BETWEEN ORGAN
PATTERNING AND GROWTH

When a portion of a developing insect wing or
leg is excised, the organ regenerates to replace
the missing tissue. Regeneration experiments
played a crucial role in establishing the concept
that growth of insect appendages is influenced
by their patterning, with the extent of regener-
ative growth dependent on the disparity be-
tween cells newly juxtaposed by surgical manip-
ulations. For example, the growth induced in
grafting experiments between cockroach legs
cut at different locations revealed that cells pro-
liferate to replace what would normally be in-
tervening cell fates, even when this results in a
longer than normal leg (Bohn 1970). These and
other studies of regeneration in insects implied
that: (1) there is a gradient of positional values
within developing organs that enables cells to
know their location, (2) cells are able to recog-
nize when they are next to cells that are not their
normal neighbors, and (3) juxtaposition of
cells with significantly different positional val-
ues stimulates their proliferation (French et al.
1976; Day and Lawrence 2000). The assumption
that these observations on regenerative growth
could also apply during developmental growth
led to models for the control of organ growth by
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gradients of positional values well before mo-
lecular mechanisms controlling organ pattern-
ing were identified.

Patterning of the Drosophila wing is estab-
lished progressively (Fig. 1). The wing imaginal
disc is subdivided into anterior and posterior

compartments from the origin of the disc dur-
ing embryogenesis, and into dorsal and ventral
compartments at the second larval instar.
Short-range signaling between cells in neigh-
boring compartments then establishes special-
ized cells along the compartment boundaries,
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Figure 1. Patterning and growth in the Wing imaginal disc. A–G show schematics of the wing region of the
Drosophila wing imaginal disc. (A) The wing disc is subdivided into distinct lineage-restricted compartments
along two orthogonal axes, anteroposterior (A–P) and dorsoventral (D–V). (B) Signaling between cells in
different compartments establishes specialized cells along the compartment boundaries that organize further
wing patterning and growth; decapentaplegic (Dpp) (yellow line) is expressed along the A–P compartment
boundary, Notch (dashed blue line) is activated along the D–V compartment boundary, and the wing pouch
(future wing blade) activates expression of Wingless (Wg) (red). (C) Dpp spreads from its localized site of
synthesis, forming a morphogen gradient (orange) that activates and represses the expression of downstream
genes to direct wing patterning and growth. (D) The combined action of Dpp, Wg, and Notch activates
expression of Vestigial (Vg) and Four-jointed (Fj) (green) in the wing pouch (outlined by a ring of Wg
expression, red). Their expression is graded from center (future distal tip of the wing) toward the edges; these
gradients are more obvious during early wing development. (E) The combined action of Dpp, Wg, and Notch
represses expression of Dachsous (Ds) (magenta) in the wing pouch, at least in part via Vg. Ds expression is
graded from outer (future proximal wing) toward the center. (F,G) Distribution of cell proliferation (dots).
During early wing disc development, cells proliferate more rapidly in the center (F), possibly because of higher
levels of growth promoters, like Dpp, Wg, and Vg. Later on, cell proliferation is roughly uniform throughout the
disc (G). (H,I) Schematic models for explaining how evenly distributed cell proliferation is achieved despite
nonuniform distribution growth promoters, like Dpp. (H ) Growth could be influenced by the absolute amount
of Dpp, the slope of the Dpp gradient, or some combination of the two. (I) Growth promoted by the amount of
Dpp could be uniform if there is a parallel gradient of a growth inhibitor.
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which then secrete long-range signaling mole-
cules (Lawrence and Struhl 1996). Signaling
from posterior to anterior cells is mediated by
the Hedgehog pathway, and establishes a stripe
of expression of decapentaplegic (Dpp) in cells
along the anterior side of the compartment
boundary. Signaling between dorsal and ventral
cells is mediated by the Notch pathway, and
establishes a stripe of Wingless (Wg) expression
in cells along both sides of the D–V compart-
ment boundary. Both Dpp and Wg spread from
these compartment boundaries and have been
inferred to act as morphogens (Tabata 2001):
molecules that are distributed in a concentra-
tion gradient across a tissue and specify distinct
fates as a function of their concentration. How-
ever, although the importance of Dpp as a
morphogen has received continued support, ex-
periments establishing that relatively normal
wings can form in the presence of uniform Wg
(Baena-Lopez et al. 2009) and Wg that cannot
diffuse from cells can still support nearly normal
wing development (Alexandre et al. 2014), im-
ply that a spatial gradient of Wg is not required
for wing development. Instead, it could be that
temporal information is equally or more impor-
tant, for example, cells remember that they were
exposed to Wg previously, even if they become
separated from Wg-expressing cells by subse-
quent growth.

The same pathways that pattern the wing
along its A–P and D–V axes also promote
wing growth. Dpp derives its name from the
reduced growth of imaginal discs in mutants
(Spencer et al. 1982). Dpp can also be sufficient
to increase growth when ectopically expressed,
and this growth can be organized into partial
wing duplications (Zecca et al. 1995). However,
despite extensive examination, the mechanisms
by which Dpp actually controls wing growth
remain controversial. Dpp pathway activity is
graded (Fig. 1), from high in the medial wing
disc (near the A–P boundary) to low at the
lateral edges, and Dpp is a crucial factor regu-
lating wing growth, yet, for most of wing devel-
opment, growth is relatively evenly distributed
throughout the wing disc. How does a growth
factor distributed in a gradient promote uni-
form growth?

One class of models, suggested by the in-
ferred relationship between patterning and
growth in regeneration experiments, posits that
proliferation is promoted by a readout of the
gradient of pathway activity, rather than the ab-
solute amount of Dpp signaling (Fig. 1H) (Day
and Lawrence 2000). In support of such models,
when patches of cells express an activated form
of the Dpp receptor Thickveins (Tkv), creating a
local difference between high and low pathway
activity, then cell proliferation can be stimulated
in cells along the borders of these patches (Ro-
gulja and Irvine 2005). Moreover, growth can
also be stimulated by differences created by low-
ering rather than raising effective pathway activ-
ity, whereas uniformly activating the pathway
inhibits rather than stimulates growth in the
center of the wing (Rogulja and Irvine 2005).
However, complicating factors include observa-
tions that, in lateral regions of the wing, cell
proliferation can be promoted autonomously
by activation of the Dpp pathway, the stimula-
tory effect of borders between cells with differ-
ent levels of pathway activity is transient, the
differentials in pathway activity used to detect
effects on cell proliferation exceed the slope of
the endogenous Dpp gradient, and the steep-
ness of the slope of the Dpp gradient normally
varies across the disc (Teleman and Cohen 2000;
Martin-Castellanos and Edgar 2002; Rogulja
and Irvine 2005; Wartlick et al. 2011). Nonethe-
less, the discovery of the connection between Fat
and Hippo signaling (see below), and the ability
of Dpp signaling to influence the Fat pathway,
implies that there is at least some contribution
of a gradient slope to wing growth regulation.

Another class of models, first suggested by
Serrano and O’Farrell (1997), posit that uniform
growth promotion bya Dpp signaling gradient is
achieved through a parallel gradient of a growth
inhibitor (Fig. 1I), which, as a practical matter,
would seem to require that the hypothesized in-
hibitor be regulated by Dpp. Recent years have
seen two classes of observations that could fit
this hypothesis. When Wartlick et al. (2011)
quantified Dpp pathway activity and growth
rates throughout wing development, they ob-
served that cells divide, on average, after Dpp
pathway activity has increased by 50%. They
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proposed that this correlation reflects a process
in which the amount of Dpp signal needed to
promote growth depends on the amount of Dpp
previously received by cells. Although, in prin-
ciple, this type of process could generate uni-
form growth in response to the Dpp gradient,
thus far, a specific molecular mechanism that
would account for the proposed requirement
for temporal increases of 50% in Dpp signaling
has not yet been uncovered. It is also not clear
how well this model can account for the results
of experiments in which temporal control over
Dpp pathway activity was exerted, or in which
Dpp responsiveness was abrogated using Mad
mutations (Rogulja and Irvine 2005; Schwank
et al. 2012).

A possible growth-inhibitory mechanism,
which is receiving increased attention, stems
from the idea that mechanical forces play an
important role in controlling growth. If tissue
compression inhibits growth and, as a tissue
grows, cells become more compressed, then
there is a natural negative feedback mechanism
limiting tissue growth (Shraiman 2005; Ae-
gerter-Wilmsen et al. 2007, 2012; Hufnagel et
al. 2007). Indeed, rates of cell proliferation do
gradually decline as the disc grows (Martı́n et
al. 2009; Wartlick et al. 2011). Thus, to the ex-
tent that Dpp promotes growth, it could, with
some temporal lag, be proportionally inhibiting
growth by increasing tissue compression, espe-
cially in central regions of the disc. How tissue
compression might inhibit growth is not known
for certain, but as discussed below, there is in-
creasing evidence that one possible mechanism
is through effects on Hippo signaling (Halder
et al. 2012; Rauskolb et al. 2014).

Growth of the wing also depends on Notch
activation along the D–V compartment boun-
dary. Notch signaling is required for wing for-
mation, and creation of ectopic sites of Notch
activation can induce nonautonomous wing
overgrowth, which remarkably depend on the
location of Notch activation, with activation
far from the normal compartment boundary
inducing more growth than activation. (Irvine
and Vogt 1997). Although Notch activation
leads to expression of Wg, increased Wg can-
not account for the effects of Notch on wing

growth. Another key target of Notch signaling
in promoting wing growth is the transcription
factor Vestigial (Vg) (Couso et al. 1995; Kim
et al. 1996), which, as discussed below, appears
to play a key role in linking pathways that con-
trol wing patterning to a major growth regula-
tory pathway, the Hippo pathway.

THE HIPPO PATHWAY

The most recently defined signaling pathway
implicated in organ size control is the Hippo
pathway, which is an ancient signaling network
that appears to predate the evolution of meta-
zoans (Fig. 2) (Sebé-Pedrós et al. 2012). The
Hippo pathway was first discovered in Droso-
phila in mosaic genetic screens, which identified
alleles in many genes that showed gross over-
growths of epithelial-derived tissues, such as
the eye, wing, legs, and thorax (Justice et al.
1995; Xu et al. 1995; Kango-Singh et al. 2002;
Tapon et al. 2002; Harvey et al. 2003; Jia et al.
2003; Pantalacci et al. 2003; Udan et al. 2003).
Subsequently, Hippo pathway deregulation was
shown to affect the size of many tissues in both
flies and mice; these tissues include the Droso-
phila brain (Reddy et al. 2010; Reddy and Irvine
2011) and the mouse liver, heart, skin, gastro-
intestinal tract, and brain (Halder and Johnson
2011). Unlike many signaling networks, which
are regulated by ligand–receptor interactions,
the Hippo pathway appears to be predominant-
ly controlled by a network of proteins that reg-
ulate cell adhesion, polarity, and the actin cyto-
skeleton.

The Hippo pathway controls organ size by
promoting cell growth and proliferation, and
inhibiting apoptosis. Later studies also defined
important roles for Hippo pathway compo-
nents in both differentiation and morphogene-
sis. More than 40 proteins have been identified
in both the Drosophila and human Hippo path-
ways (Fig. 2) (for detailed reviews, see Pan 2010;
Halder and Johnson 2011; Zhao et al. 2011; Sta-
ley and Irvine 2012; Enderle and McNeill 2013;
Harvey et al. 2013; Yu and Guan 2013). The
pathway can be classified into three main parts:
a central core kinase cassette, downstream tran-
scriptional regulatory proteins, and multiple
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Figure 2. The Drosophila Hippo pathway. More than 40 proteins have been identified in the Drosophila Hippo
pathway. Growth-promoting proteins are depicted in red and growth repressors in blue. Many upstream
regulatory proteins control activity of core kinase cassette proteins, such as the Hippo kinase (Hpo), Salvador
(Sav), Mob as tumor suppressor (Mats), and Warts (Wts). The Wts kinase represses tissue growth through
phosphorylation-dependent inhibition of Yorkie (Yki). Some Hippo pathway proteins bypass the core kinase
cassette and regulate Yki directly. When nuclear, Yki can activate different transcription factors to promote tissue
growth. AJ, adherens junction; aPKC, Atypical protein kinase C; App, Approximated; Crb, Crumbs; D, Dachs;
Dco, Discs overgrown; Dlg, Discs large; Ds, Dachsous; Ed, Echinoid; Ex, Expanded; Fj, Four-jointed; Ft, Fat;
Hipk, Homeodomain-interacting protein kinase; Hth, Homothorax; Jub, Ajuba LIM protein; Lft, Lowfat; Lgl,
Lethal giant larvae; Mad, Mothers against decapentaplegic (Dpp); Mask, multiple ankyrin repeats single KH
domain; Mer, Merlin; Mnb, Minibrain; Mop, Myopic; RASSF, Ras-association family; Riq, Riquiqui; SAR, sub-
apical region; Scrib, Scribble; Sd, Scalloped; SJ, septate junction; STRIPAK, striatin-interacting phosphatase and
kinase; Tao-1, Thousand and one amino acid protein; Tgi, Tondu domain-containing growth inhibitor; Tsh,
Teashirt; Wbp2, WW domain-binding protein 2; Zyx, Zyxin. (From an earlier publication, Harvey and Hari-
haran 2012; modified, with permission, from the authors.)
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upstream regulatory proteins. Core kinase cas-
sette proteins are the kinases, Warts (Wts) and
Hippo (Hpo), and the adaptor proteins, Salva-
dor (Sav) and Mob as tumor suppressor (Mats).
They act together to repress tissue growth by
phosphorylating and repressing the key tran-
scriptional coactivator, Yorkie (Yki). Yki pro-
motes tissue growth and survival in conjunction
with several DNA-binding transcription fac-
tors, including Scalloped (Sd), Homothorax,
and Mad. When not activated by Yki, Sd can
act as a transcriptional repressor in conjunction
with the Tondu-domain protein, Tgi (Koontz
et al. 2013).

REGULATION OF HIPPO SIGNALING
BY CYTOSKELETAL AND JUNCTIONAL
PROTEINS

Upstream branches of the Hippo pathway con-
trol tissue growth by regulating activity of the
core kinase cassette, or by directly impinging on
Yki (Grusche et al. 2010; Staley and Irvine 2012;
Enderle and McNeill 2013). These upstream
branches are complex and their mode of action
is not yet fully understood. Yet, it seems clear
that many of these upstream regulatory proteins
concentrate at cell junctions, and they enable
the Hippo pathway to be regulated by cell–cell
contact, cell polarity, and the actin cytoskeleton,
and thereby enable pathway activity to respond
to tissue organization and integrity.

Kibra, Expanded, and Merlin

Three proteins, Kibra, Expanded (Ex), and
Merlin (Mer), have been reported as having re-
dundant and potentially overlapping roles in
activating the Hippo pathway. As well as having
similar loss-of-function overgrowth pheno-
types, these proteins can physically interact
with each other (McCartney et al. 2000; Baum-
gartner et al. 2010; Genevet et al. 2010; Yu et al.
2010). Kibra, Ex, and Mer are also apparently
important components of negative feedback
signaling within the Hippo pathway, as their
transcription is up-regulated by Yki. How they
influence activity of the Hippo pathway core
kinase cassette is not entirely clear. Initially,

overexpression of Kibra, Ex, and Mer was shown
to stimulate activity of Hpo and Wts, whereas
knockdown reduced apical membrane localiza-
tion of Hpo (Baumgartner et al. 2010; Genevet
et al. 2010; Yu et al. 2010). Ex was also found to
directly bind to Yki, and postulated to bypass
the core kinase cassette to repress Yki (Badouel
et al. 2009; Oh et al. 2009). More recently, Mer
was shown to recruit Wts to the apical mem-
brane to facilitate activation by the Hpo kinase
(Yin et al. 2013). Ex and/or Mer might also
regulate Hpo activity via the Tao-1 kinase (Bog-
giano et al. 2011; Poon et al. 2011), although
this warrants investigation in vivo. How Kibra,
Ex, and Mer proteins are regulated is also un-
clear, although both Crumbs (Crb) and Fat
regulate Ex abundance and, as membrane local-
ization of Crb depends on its interaction with
Crb in neighboring cells, Crb could provide a
form of contact-dependent regulation of Ex
(Chen et al. 2010; Hafezi et al. 2012). Given
links between Mer and the broader Hippo path-
way to both contact inhibition and actin (dis-
cussed below), Mer has been postulated to pro-
vide a link between mechanical information,
the actin cytoskeleton, and the Hippo pathway.
Indeed, actin was recently shown to influence
the ability of Mer to bind to Wts and recruit it
to the cell membrane (Yin et al. 2013).

Apicobasal Polarity Proteins

Many proteins that have well-defined roles in
regulating apicobasal polarity of epithelial cells
have been linked to the Hippo pathway. Initially,
studies in Drosophila ovaries and larval imaginal
discs found that mutations in Discs large (Dlg),
Lethal giant larvae (Lgl), Scribble (Scrib), and
Crb all caused alterations in Hippo pathway ac-
tivity (Zhao et al. 2008; Chen et al. 2010; Grzes-
chik et al. 2010; Ling et al. 2010; Robinson et al.
2010). The mechanism by which these proteins
control Hippo pathway activity is not entirely
clear. Lgl was proposed to regulate the subcel-
lular distribution of Hpo and Rassf (Grzeschik
et al. 2010), and it was also observed that loss of
Lgl activates Yki, at least in part, through Jnk
activation (Sun and Irvine 2011). Crb was
found to physically interact with Ex and regu-

Control of Organ Growth

Cite this article as Cold Spring Harb Perspect Biol 2015;7:a019224 7



late its localization and abundance (Chen et al.
2010; Grzeschik et al. 2010; Ling et al. 2010;
Robinson et al. 2010). In mammals, Scrib was
found to form physical complexes with the or-
thologs of both Hpo (MST1 and MST2) and
Wts (LATS1 and LATS2) and postulated to serve
as a scaffold for the core kinase cassette (Corde-
nonsi et al. 2011). These different studies pro-
vided a conceptual link between epithelial cell
polarity and proliferation, but the context in
which this occurs and its roles in normal devel-
opment are not entirely clear.

Cell–Cell Adhesion and Junctional Proteins

Many of the proteins discussed above localize
predominantly to cell junctions in which pro-
teins that regulate cell–cell adhesion reside. Sev-
eral additional such proteins have also been
identified as regulators of the Hippo pathway,
particularly in mammalian cells. The tight junc-
tions proteins CRB1-3, Angiomotin family pro-
teins AMOT, AMOTL1, and AMOTL2, Zonula
occludens (ZO)1 and ZO2, as well as the PATJ/
PALS proteins were all defined as regulators of
the mammalian Hippo pathway (Yu and Guan
2013). In addition, several adherens junction
proteins also control Hippo pathway activity,
including a-catenin and E-cadherin in mam-
malian cells, and Ajuba and Echinoid in Drosoph-
ila (Das Thakur et al. 2010; Kim et al. 2011;
Schlegelmilch et al. 2011; Yue et al. 2012). In
addition to providing a means for Hippo path-
way activity to be sensitive to cell–cell contact,
junctional proteins also provide a point of cross
talk between Hippo and other pathways. For
example, Ajuba family proteins can be phos-
phorylated by mitogen-associated protein ki-
nase (MAPKs) of the JNK and ERK family,
which influences their ability to bind and inhibit
Wts/LATS proteins (Reddy and Irvine 2013;
Sun and Irvine 2013).

Hippo Pathway Control by Actin

Studies in both Drosophila tissues and human
cultured cells have shown that Hippo pathway
activity is sensitive to changes in the nature of
the actin cytoskeleton, and that the Hippo path-

way can also influence actin (Dupont et al. 2011;
Fernandez et al. 2011; Sansores-Garcia et al.
2011; Wada et al. 2011). Mutation or altered
expression of actin regulators, such as Capping
proteins and Diaphanous, can influence tissue
growth and Yki activity, whereas Hippo pathway
mutations cause increased apical actin in wing
imaginal disc cells (Fernandez et al. 2011; San-
sores-Garcia et al. 2011). In addition, Wts can
influence border cell migration in the ovary by
repressing activity of the actin regulator En-
abled (Lucas et al. 2013). The Hippo pathway
is also sensitive to the physical properties of cul-
tured cells. Cells plated at different densities,
or on substrates that dictate distinct cell shapes,
display different activities for the downstream
transcriptional regulators of the mammalian
Hippo pathway, YAP, and TAZ (orthologs of
Yki). Stretched cells, with visible actin stress fi-
bers, proliferate and have high YAP/TAZ activ-
ity, whereas small compressed cells do not pro-
liferate and have low YAP/TAZ activity (Dupont
et al. 2011; Wada et al. 2011). There have been
contrasting reports on the mechanism by which
actin regulates YAP/TAZ activity. Some studies
have implicated Wts and its mammalian ortho-
logs LATS1 and LATS2 (Fernandez et al. 2011;
Sansores-Garcia et al. 2011; Wada et al. 2011;
Zhao et al. 2012), whereas other studies point
to the existence of regulatory mechanisms that
act in parallel to the core kinase cassette of the
Hippo pathway (Dupont et al. 2011; Aragona
et al. 2013). In wing imaginal discs, cytoskeletal
tension can modulate Wts activity through re-
cruitment of the Wts inhibitor, Jub (Rauskolb
et al. 2014). Given its potential to link mechan-
ical forces experienced by cells to organ growth,
the mechanisms by which the state of the actin
cytoskeleton regulates Yki/YAP/TAZ are clearly
of great importance. As these mechanisms be-
come better understood, it should be possible to
assess their contribution to developmental and
physiological processes, such as the hypothe-
sized role of mechanical compression in coun-
teracting the influence of growth factors, like
Dpp, to limit organ growth (Aegerter-Wilmsen
et al. 2007; Hufnagel et al. 2007).

F-actin may also function as a point of
cross talk between Hippo and other pathways.
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In mammals, G protein–coupled receptors
(GPCRs) have also been found to control Hippo
pathway activity (Yu et al. 2012). It is not entire-
ly clear how these receptors signal to the Hippo
pathway, but it involves the LATS kinases and
actin-regulator Rho, and so may occur through
effects on the actin cytoskeleton related to those
described above. Given the vast number of
GPCRs, the potential situation, in which these
receptors could control pathway activity is large,
although this awaits further evaluation in vivo.

The Hippo Pathway, Organ Growth,
and Regeneration

Given the Hippo pathway’s ability to link control
of proliferation to changes in the actin cytoskel-
eton and mechanical forces, it has been pro-
posed to regulate proliferation in response to
local changes in cell compression and stretching
through the tensile state of the actin cytoskele-
ton. For example, the central (distal) regions
of growing wing imaginal discs, in which con-
centrations of growth factors, such as Dpp, are
higher, initially proliferate faster than outer
(proximal) cells (Fig. 1F) (Mao et al. 2013).
This appears to cause distal cells to be com-
pressed and proximal cells to become circum-
ferentially stretched (Aegerter-Wilmsen et al.
2012; Legoff et al. 2013; Mao et al. 2013). Me-
chanical compression has also been proposed as
a mechanism that could cause organs to cease
growing on reaching their final size (Shraiman
2005; Aegerter-Wilmsen et al. 2007, 2012; Huf-
nagel et al. 2007). The contribution of mechan-
ical forces to modulating Hippo pathwayactivity
during organ growth in vivo remains an impor-
tant area for future studies.

As well as potentially conveying mechani-
cal information to growing organs, the Hippo
pathway is important for maintaining the integ-
rity of growing organs. The discoveries that the
Hippo pathway is responsive to perturbations in
fundamental cell biology properties, such as cell
polarity and cell–cell adhesion, have led to the
hypothesis that it promotes epithelial integrity
by increasing proliferation in response to death
and removal of unfit cells. Indeed, Hippo path-
way activity is derepressed at the edges of dam-

aged tissues (Grusche et al. 2011; Sun and Irvine
2011), whereas full activity of the key growth-
promoting transcriptional coactivator proteins
of the Hippo pathway (Drosophila Yki and
mammalian YAP) are required for tissue regen-
eration to occur properly (Cai et al. 2010; Gru-
sche et al. 2011; Sun and Irvine 2011). Given the
dramatic changes that occur to the actin cyto-
skeleton, cell polarity, shape, and adhesion dur-
ing tissue damage and regeneration, the Hippo
pathway is ideally suited to regulate regenerative
tissue growth. In addition, Jnk signaling, which
is activated by tissue damage and plays an im-
portant role in regeneration, can activate Yki in
damaged tissues (Shaw et al. 2010; Staley and
Irvine 2010; Grusche et al. 2011; Sun and Irvine
2011).

CROSS TALK BETWEEN THE HIPPO
PATHWAY AND PATTERNING FACTORS

Given the profound influence that both the
Hippo pathway and patterning molecules, like
Dpp, have on organ growth, cells must have
mechanisms for integrating the information
they provide. Indeed, cross talk, both at the level
of upstream branches of Hippo signaling and
downstream transcription factors, has been
identified. This cross talk appears to play im-
portant roles in integrating distinct influences
on organ growth.

Fat-Dachsous Cadherins and Hippo
Signaling

The first defined transmembrane protein in the
Hippo pathway was the atypical cadherin Fat
(Bennett and Harvey 2006; Cho et al. 2006; Silva
et al. 2006; Willecke et al. 2006; Tyler and Baker
2007), which, together with the related cadherin
Dachsous (Ds), serve as a ligand-receptor pair
(Matakatsu and Blair 2004; Cho et al. 2006; Ro-
gulja et al. 2008; Willecke et al. 2008). Signaling
downstream from Fat limits Yki activity by in-
fluencing the cellular distribution of the atypi-
cal myosin Dachs and the abundance of Wts and
Ex (Bennett and Harvey 2006; Cho et al. 2006;
Silva et al. 2006; Willecke et al. 2006; Tyler and
Baker 2007; Bosch et al. 2014; Rodrigues-Cam-
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pos and Thompson 2014). Ds-Fat signaling can
be bidirectional, with signaling downstream
from Ds mediated via the WD40 repeat protein
Riquiqui and the Minibrain kinase, which stim-
ulate Yki activity (Degoutin et al. 2013). The net
genetic effect of loss of fat or ds is increased Yki
activity, but the fact that Fat and Ds binding can
potentially both promote and repress Yki activ-
ity raises as-yet-unanswered questions as to the
relative roles of these opposing processes in con-
trolling organ growth.

Regulation of Fat-Dachsous Signaling
by Gradients

One remarkable feature of the Ds-Fat pathway is
its regulation by proteins expressed in gradients.
Fat activity is regulated both by its binding part-
ner, Ds, and by Four-jointed (Fj), which en-
codes a kinase that modulates Ds-Fat binding
(Ishikawa et al. 2008; Brittle et al. 2010; Simon
et al. 2010). In the developing wing, Ds expres-
sion is graded from proximal (high) to distal
(low), and Fat and Fj are graded from distal
(high) to proximal (low) (Fig. 1D,E). The gra-
dients of Ds and Fj expression have well-estab-
lished roles in regulating planar cell polarity
(PCP) in multiple organs (Matis and Axelrod
2013). Sharp differences in Fj or Ds expres-
sion between neighboring cells created by loss-
or gain-of-function clones can also stimulate
strong Yki activation and, consequently, cell
proliferation, whereas uniform expression of
Ds or Fj can decrease cell proliferation and or-
gan size (Rogulja et al. 2008; Willecke et al.
2008). These observations suggest that Fat-Hip-
po signaling is sensitive to the slope of the gra-
dient of Ds-Fat pathway regulators.

The membrane localization of pathway
components, including the Ds and Fat proteins
themselves, and the downstream effector Dachs,
becomes polarized along these gradients (Mao
et al. 2006; Rogulja et al. 2008; Ambegaonkar et
al. 2012; Bosveld et al. 2012; Brittle et al. 2012).
Experiments and mathematical modeling indi-
cate that the membrane accumulation of Dachs
can be sensitive to both the amounts of Fat and
Ds and their expression gradients (Mao et al.
2006; Mani et al. 2013). Because accumulation

of Dachs on membranes down-regulates Wts,
this provides a mechanism for growth to be
influenced by molecules expressed in gradients
(Cho et al. 2006; Rogulja et al. 2008; Pan et al.
2013).

Vestigial Links Wing Patterning to Hippo
Signaling

The influence that Dpp and other wing-pattern-
ing molecules have on wing growth has been
linked to Hippo signaling through the Ds-Fat
pathway because activation of Yki along the
borders between high and low Dpp pathway ac-
tivity requires the Ds-Fat pathway effector dachs
(Rogulja et al. 2008). Moreover, key wing-pat-
terning molecules, including Dpp, Notch, and
Wg, can influence Ds and Fj expression (Rogulja
et al. 2008; Zecca and Struhl 2010). In the wing,
this regulation of Ds and Fj expression appears
to be mediated largely through the wing tran-
scription factor, Vg. Vg is expressed in a prox-
imodistal gradient in the developing wing under
the control of the Dpp, Notch, and Wg pathways
(Fig. 1D) (Couso et al. 1995; Kim et al. 1996,
1997; Zecca and Struhl 2007), and Vg, in turn,
promotes Fj expression while inhibiting Ds ex-
pression (Cho and Irvine 2004; Zecca and
Struhl 2010). In addition to its role in setting
up Fj and Ds gradients within the developing
wing, a “feedforward” mechanism that operates
along the border of Vg expression has been pro-
posed to contribute to wing growth by recruit-
ing cells into the developing wing (Zecca and
Struhl 2010). This mechanism relies on the rel-
atively steep border of Fj and Ds expression at
the edge of the developing wing, which leads
to elevated Yki activity and, in conjunction
with Wg, can promote Vg expression in neigh-
boring cells.

The Ds-Fat pathway is required for normal
growth of other insect organs as well, most
noticeably the legs. However, the molecular re-
lationship between organ patterning and the
regulation of Ds-Fat signaling is less well under-
stood outside of the wing, where Vg is not ex-
pressed. The two key regulators of Fat, Ds and
Fj, are expressed in gradients within each leg
segment (Clark et al. 1995; Villano and Katz
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1995; Bando et al. 2009). Wg and Dpp are not
candidate regulators of Fj and Ds in legs because
their expression patterns are distinct. Instead,
the Fj and Ds gradients parallel stripes of Notch
activity within each leg segment and Fj, at least,
has been shown to be affected by Notch signal-
ing, although this regulation may be indirect
(Rauskolb and Irvine 1999).

Interactions between Transcription
Factors

A further point of cross talk between patterning
factors and Hippo signaling was revealed with
the discovery that Yki and Mad can physically
interact with each other and function together
to regulate certain downstream genes involved
in promoting organ growth, such as the micro-
RNA gene, bantam (Alarcon et al. 2009; Oh and
Irvine 2011). In mammalian cells, Hippo sig-
naling has also been linked to both bone mor-
phogenetic protein (BMP) and Wnt signaling at
multiple levels, including interactions between
transcription factors (Varelas et al. 2010a,b).
Intriguingly, this cross talk can vary depending
on the status of pathway activity. In the nucleus,
YAP and TAZ can coactivate transcription, to-
gether with SMADs (Sma- and Mad-related
proteins) or b-catenin (transcription factors
of BMP and Wnt pathways). Conversely, when
the Hippo pathway is active and YAP and TAZ
are cytoplasmic, they can inhibit BMP or Wnt
signaling by interacting with SMADs or Dvl in
the cytoplasm (Varelas and Wrana 2011; Atti-
sano and Wrana 2013).

CONCLUDING REMARKS

One of the challenges in understanding growth
control is elucidating how the many factors that
influence growth are integrated. Regulatory
pathways must act in concert to achieve the right
size for specific organs while providing flexibil-
ity to adapt to varying physiological condi-
tions, for example, wounding, infection, and
diet. The past decade has witnessed important
advances in the growth-control field. Most no-
tably, the Hippo pathway has been recognized as
an evolutionarily conserved regulator of tissue

growth that responds to fundamental cell bio-
logical properties. These include regulation by
apicobasal polarity, cell–cell adhesion, F-actin
accumulation, and the PCP transmembrane
proteins, Fat and Ds. It has also been identified
as a mechanotransduction pathway that con-
trols tissue growth in response to mechanical
stimuli, such as stretch or compression, and
have been shown to be a target of regulation
by other signaling mechanisms, including G
protein and MAPK pathways. The Hippo path-
way has, thus, emerged as an important integra-
tor of multiple growth regulatory signals.

As organ growth is influenced by organ pat-
terning, developmental control of growth re-
quires coordination of information provided
by morphogens and other patterning mole-
cules, together with the cell biological informa-
tion that modulates Hippo signaling. Patterning
molecules, like Wg and Dpp, promote growth
independently of Hippo signaling, but also
cross talk with the Hippo pathway, both through
regulation of Ds-Fat signaling and direct inter-
actions between the transcription factors of each
pathway. Despite our increased understanding
of molecular mechanisms by which Dpp and
Wg can promote growth and intersect with oth-
er pathways, fundamental questions of how uni-
form growth is achieved, or why organs stop
growing after having reached their correct size,
have not yet been clearly answered. However,
one intriguing possibility that has emerged is
the possibility that mechanical forces experi-
enced by cells are affected by growth, and then
feedback and modulate growth through the
Hippo pathway.

Much of our knowledge on organ size con-
trol has emanated from studies of the Droso-
phila wing imaginal disc. Future studies will
need to address how generally applicable infor-
mation derived from this tissue is in other Dro-
sophila organs, as well as organs from other spe-
cies altogether. For example, the transcription
factor Vg has been identified as a nexus between
the Hippo pathway and patterning factors in
control of wing growth, but Vg is not required
for the growth of other Drosophila organs. Is
there a Vg equivalent in other organs, such as
the legs and eye, or do the Hippo pathway and
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patterning factors cross talk in other organs via
different mechanisms altogether?

More broadly, we also lack a clear under-
standing of how organ patterning and the Hip-
po pathway integrate with organ-extrinsic size-
control factors, such as hormones and nutri-
tion. For example, do they play a role in organ
scaling under conditions of dietary stress? Some
examples of pathways regulated by organ-ex-
trinsic factors, such as GPCRs, and the insulin
pathway, that can modulate Hippo signaling
have been identified (Straßburger et al. 2012;
Yu et al. 2012), but further studies are needed
to provide a comprehensive understanding of
how extrinsic and intrinsic factors are integrated
for size regulation. Insights into these out-
standing questions will require multidisciplin-
ary approaches and technical advances, such
as real-time readouts of activity of different
growth-control pathways.
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