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Clusters of functionally related genes can be disrupted by a single copy number variant (CNV). We demonstrate that the

simultaneous disruption of multiple functionally related genes is a frequent and significant characteristic of de novo CNVs

in patients with developmental disorders (P= 1 × 10−3). Using three different functional networks, we identified unexpect-

edly large numbers of functionally related genes within de novo CNVs from two large independent cohorts of individuals

with developmental disorders. The presence of multiple functionally related genes was a significant predictor of a CNV’s

pathogenicity when compared to CNVs from apparently healthy individuals and a better predictor than the presence of

known disease or haploinsufficient genes for larger CNVs. The functionally related genes found in the de novo CNVs be-

longed to 70% of all clusters of functionally related genes found across the genome. De novo CNVs were more likely to

affect functional clusters and affect them to a greater extent than benign CNVs (P= 6 × 10−4). Furthermore, such clusters

of functionally related genes are phenotypically informative: Different patients possessing CNVs that affect the same cluster

of functionally related genes exhibit more similar phenotypes than expected (P< 0.05). The spanning of multiple function-

ally similar genes by single CNVs contributes substantially to how these variants exert their pathogenic effects.

[Supplemental material is available for this article.]

Proteins rarely act in isolation; they participate in large interacting
networks. Genes and their protein products can interact in a vari-
ety of ways: Proteins physically interact, regulate gene expression,
modify the activity of other proteins, or catalyze sequential meta-
bolic reactions. Genes encoding functionally related proteins tend
to be located close together in the genomes of human (Caron et al.
2001; Lee and Sonnhammer 2003; Fukuoka et al. 2004; Singer et al.
2005; Sémon and Duret 2006; Makino and McLysaght 2008;
Michalak 2008; Al-Shahrour et al. 2010), yeast (Cohen et al.
2000; Pal and Hurst 2003; Poyatos and Hurst 2006), mouse (Li
et al. 2005; Singer et al. 2005), fly (Spellman and Rubin 2002;
Mezey et al. 2008; Weber and Hurst 2011), worm (Kamath et al.
2003), and zebrafish (Ng et al. 2009). Significant clustering of func-
tionally related genes in the genome (hereafter termed “functional
clustering”) has been identified using protein–protein interactions
(Poyatos and Hurst 2006; Makino and McLysaght 2009), KEGG
pathways (Lee and Sonnhammer 2003), Gene Ontology terms
(Al-Shahrour et al. 2010), and phenotypes exhibited from gene
knockdowns (Kamath et al. 2003). Clusters of broadly expressed
housekeeping genes (Lercher et al. 2002; Singer et al. 2005;
Michalak 2008; Weber and Hurst 2011), and clusters of coex-
pressed or tissue-specific genes (Cohen et al. 2000; Caron et al.
2001; Fukuoka et al. 2004; Li et al. 2005; Mezey et al. 2008; Ng
et al. 2009; Weber and Hurst 2011) have previously been reported
in humans and other eukaryotes. However, the extent of function-
al clustering in the genome varies according to the methodology
used (Lercher et al. 2002; Michalak 2008; Weber and Hurst
2011). All previous studies of functional clustering have been lim-

ited by their dependence on a single source of functional informa-
tion with which to identify functional clusters. Each source of
functional information, however, captures only a subset of possi-
ble functional relationships and thus will be incomplete. By com-
bining multiple sources of information, functional predictions are
improved (Troyanskaya et al. 2003; Deng et al. 2004; Lee et al.
2004), but this technique has yet to be applied when examining
functional clustering within the genome.

The importance of functional clustering in human disease
has not yet been demonstrated. Mutations that affect multiple
genes close together in the genome may incur compounding del-
eterious effects if the affected genes participate in the same biolog-
ical process. Recent studies of copy number variants (CNVs;
deletions or duplications >1 kb in size) have revealed instances
inwhichmultiple functionally related candidate genes are affected
by a single variant (Boulding andWebber 2012; Golzio et al. 2012;
Doelken et al. 2013). Boulding and Webber (2012) and Doelken
et al. (2013) each found multiple genes within single CNVs that
when individually knocked out in model organisms cause pheno-
types similar to those observed in the respective patient (Boulding
andWebber 2012; Doelken et al. 2013). Golzio et al. (2012) found
that KCTD13, MVP, and MAPK3, which are present within the
16p11.2 CNV locus, interact to produce microcephaly or macro-
cephaly when their orthologs were concurrently overexpressed
or underexpressed, respectively, in zebrafish (Golzio et al. 2012).

In light of the existence of functional clusters, we examine
how the simultaneous copy change of multiple functionally
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related genes contributes to the pathogenic effects of CNVs.We in-
vestigated the prevalence and extent of functional clustering with-
in de novo CNVs in individuals with developmental disorders and
identify similar clusters present throughout the genome. In addi-
tion, we examined the functional clusters for the presence of
known disease genes and tested their ability to distinguish patho-
genic CNVs from those found in control individuals. Finally, we
considered whether patients with CNVs affecting the same func-
tional cluster exhibit similar phenotypes.

Results

A large deletion or duplication (copy number variant [CNV]) af-
fecting multiple functionally related genes could incur com-
pounding deleterious effects (e.g., by epistasis), whereas a CNV
overlapping functionally unrelated genes would not. We exam-
ined two independent data sets of de novo CNVs, 626 from the
Database of Chromosomal Imbalance and Phenotype in Humans
Using Ensembl Resources (DECIPHER) (Firth et al. 2009) and 426
from the Department of Human Genetics, Radboud University
Medical Center (NIJMEGEN) (Vulto-van Silfhout et al. 2013) that
had been identified in the genomes of patients with developmen-
tal disorders, for functionally related genes that could contribute
to patients’ phenotypes (Table 1).

Measuring functional similarity

We sought to determine the functional similarity among genes
found within each de novo CNV. Functional similarity can be in-
ferred from known pathways and functions, coexpression pat-
terns, protein–protein interaction (PPI) experiments, sequence
information, and phenotypes seen in model organisms, each hav-
ing different errors and covering a different subset of genes. Unlike
previous studies of functional clustering (Lee and Sonnhammer
2003; Singer et al. 2005; Sémon and Duret 2006; Makino and
McLysaght 2008; Al-Shahrour et al. 2010), we used an integrated
network, which represents genes as nodes and the likelihood or
strength of an interaction based on multiple sources of evidence
as weighted edges between them. This network was obtained by
augmenting the integrated network described in Honti et al.
(2014) with mouse phenotype data from the Mouse Genome
Database (Bult et al. 2008) (see Methods), which increased the
number of edges 10-fold and improved the functional specificity
(Supplemental Fig. S1). The resulting Phenotypic Linkage

Network (PLN) combines all data sources (Supplemental Table
S1) into a single network containing 17,039 genes connected by
10,792,987 edges representing gene–gene pairwise functional sim-
ilarities. To conservatively considerwhether genes formed part of a
functional cluster, we considered only pairs of genes connected by
the top 1% of the 142,864,287 shortest paths in this network
(Supplemental Table S2). We confirmed our major findings using
two additional networks: HumanNet (Lee et al. 2011), a publicly
available integrated functional network; and COXPRESdb
(Obayashi et al. 2008), a coexpression network, again using the
top 1% shortest paths in each. However, we focused on results ob-
tained using the PLN for detailed analyses due to its greater cover-
age of genes than HumanNet (Supplemental Table S2) and the
demonstrated superiority of integrated functional networks over
coexpression-only or protein–protein interaction-only networks
at predicting gene function (Troyanskaya et al. 2003; Deng et al.
2004; Lee et al. 2004).

CNVs contain significantly large functional clusters

Controlling for CNV size using gene-number-matched randomiza-
tions (see Methods), both de novo CNV data sets were found to
overlap significantly large functional clusters, although the fre-
quency of CNVs affecting any functional cluster (at least two func-
tionally related genes) was significant in only one data set: 49.4%
(44% expected, P = 0.001) of DECIPHER CNVs contained a func-
tional cluster with an average size of 3.46 genes (P = 0.0217); and
54% (50% expected, P = 0.07) of NIJMGEN CNVs contained a
functional cluster of 3.69 genes, on average (P = 0.0005) (Fig. 1).
To ensure that these functional clusters do not simply reflect re-
cent tandemgene duplicationswhose functions have not diverged
substantially, paralogous genes, identified in OPTIC (Heger and
Ponting 2008) or Ensembl (Vilella et al. 2009) using zebrafish as
the out-group, were counted as a single copy. Subsequently, func-
tional clusters remained significantly large and on average con-
tained more genes (DECIPHER 3.54 genes/cluster, P = 0.0010;
NIJMEGEN 3.80 genes/cluster, P = 0.0001). Since including para-
logs results in a slight decrease in the average size of functional
clusters within CNVs, we infer that these duplicated genes tend
to form separate small clusters rather than contributing to the larg-
er functional clusters, which include nonparalogous genes. A large
number of CNVs contain larger functional clusters than expected,
including both deletions and duplications (Fig. 1D; Supplemental
Fig. S2). In subsequent analyses, results are reported after collaps-
ing paralogous genes unless otherwise specified. The presence of
significantly large functional clusters in de novo CNVs was largely
robust to variation in network or clustering threshold (Supplemen-
tal Fig. S3).

De novo CNVs tend to contain one large functional cluster

Onaverage, de novoCNVs contained2.0 and1.8 distinct function-
al clusters (P > 0.05) for DECIPHER and NIJMEGEN CNVs, respec-
tively. The largest cluster in each CNV tended to be far larger than
the second or third largest clusters. The largest cluster contained
on average 4.83 and 4.92 genes for DECIPHER and NIJMEGEN, re-
spectively, andwas themost significantly large compared to10,000
gene-number-matched randomizations (P = 0.0002, P = 0.0002),
whereas the second and third largest clusters were only slightly
larger than the minimum size of two genes (P > 0.01) (Fig. 1C).
These observations were largely robust to the network and cluster-
ing parameter used (Supplemental Fig. S3).

Table 1. De novo CNV data sets from patients with developmental
disorders

Data set DECIPHER
DECIPHER
(filtered)a NIJMEGEN

NIJMEGEN
(filtered)a

Median size 2,229,944 1,483,416 2,670,612 1,483,415
Total number of

CNVs
626 427 426 237

Number of losses 464 317 253 141
Number of gains 162 110 173 96
CNVs with genes 582 406 412 228
Median number

of genes/CNV
17 11 23.5 16

Median number
of phenotypes/
patient

6 6 9.5 9

aAfter restricting to between 100 kb and 5 Mb in size.
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In summary, roughly half the de novo CNVs overlapped at
least one cluster of functionally related genes, and these clusters
were significantly large (Fig. 1). In particular, the single largest clus-
ter of functionally related genes of approximately five genes was
highly significant in both DECIPHER and NIJMEGEN de novo
CNVs.

Clusters of functionally related genes explain CNV pathogenicity

beyond known disease genes

De novo CNVs are often pathogenic, and functional clusters with-
in these CNVs may contribute to their pathogenicity. Functional
clusters found in DECIPHER and NIJMEGEN CNVs were signifi-
cantly enriched in (1) known disease genes from the Online
Mendelian Inheritance in Man (OMIM) database (OMIM 2012),
(2) known haploinsufficient (HIS) genes (Dang et al. 2008), (3)
genes recurrently hit in multiple patients, and (4) genes associated
with the respective patient’s phenotype in the Human Phenotype
Ontology (HPO) (Fig. 2; Dolken et al. 2012). The largest cluster in
eachCNVwas themost enriched (Supplemental Fig. S4). However,
the pathogenicity of de novoCNVswas not solely explained by the
presence of these disease or HIS genes. Logistic regression was used
to distinguish the ability of functional clusters from that of disease
and HIS genes to differentiate the combined set of 664 de novo
CNVs from a set of 2478 CNVs identified in healthy individuals
(Shaikh et al. 2009). When functional clusters, disease genes,

and HIS genes were included in the model, they were each signifi-
cant (P < 10−20, P = 4.4 × 10−17, P = 3.0 × 10−11, respectively) with
the presence of a functional cluster within a CNVhaving the great-
est effect (odds ratios: cluster = 9.0, OMIM gene = 3.0 andHIS gene
= 3.3). Clusters of functionally related genes were more specific to
pathogenic CNVs than either OMIM or HIS genes: Half of patho-
genic CNVs affected a cluster of functionally related genes but
only 4% of benign CNVs affected one (Fig. 3). In contrast, known
disease genes were present in 13% of benign CNV; and HIS genes
were present in only a third of pathogenic CNVs. In addition, we
compared the presence of a functional cluster to the LOD-score
(log-odds score) of at least one of the genes being haploinsufficient
as defined inHuang et al. (2010). This score combines information
frommultiple genes in the CNV but is based on a model of only a
single likely deleterious gene being sufficient to render the CNV to
be pathogenic. Again, when both were put into a combined logis-
tic regression, both factors were significant predictors of pathoge-
nicity; OR cluster = 2.5 (P = 0.0033), OR HIS-LOD= 1.4 (P < 10−15).
To make the comparison more even, we dichotomized the HIS-
LOD score according to the logistic regression of CNV pathogenic-
ity against the continuous HIS-LOD score taking a threshold of
HIS-LOD= 5.09 (the point at which the logistic regression pre-
dicts a 50% chance of the CNV being pathogenic). Combining
this dichotomized score with the binary presence/absence of
a functional cluster resulted in both being significant predictors
(P < 10−10) though clusters were less strong than the HIS-LOD

Figure 1. De novo CNVs from patients with developmental disorders contain significantly large numbers of functionally similar genes, as defined by
proximity in the phenotypic linkage network (PLN). (Blue) DECIPHER, (red) NIJMEGEN. (A,B) DECIPHER (A) and NIJMEGEN (B) de novo CNVs contain sig-
nificantly large functional clusters compared to 10,000 gene-number-matched randomizations, the significance of which increases when paralogous
genes within the same CNV are collapsed to a single copy. Arrows indicate observed value and P-value. (C) The largest functional cluster is most significant
in both data sets. The size of the circle indicates the average cluster size, light gray line indicates P = 0.05, and data sets are offset due to high overlap. (D)
Thirty percent of de novo CNVs contain a functional cluster that is larger than expected (points, gray line indicate P = 0.5); shaded areas indicate 95%
confidence intervals given a uniform distribution of P-values. The respective patients were not significantly enriched for any phenotype (hypergeometric
test with Bonferroni correction). (E,F) More DECIPHER (E) and NIJMEGEN (F) de novo CNVs contain functional clusters compared to 10,000 gene-number-
matched randomizations. Only DECIPHER was significantly different. Arrows indicate observed value and P-value.
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(OR cluster = 8.4, OR dichotomized LOD= 10.8). This highlights
the importance of considering the contribution of multiple genes
to the pathogenicity of a CNV rather than attempting to identify a
single causal disease gene within the CNV.

When the total number of genes affected by a CNVwas added
to the model, the presence of a functional cluster remained a sig-
nificant predictor of CNV pathogenicity (odds ratios: cluster =
1.9; OMIM gene = 2.2; and HIS gene = 3.0, down from 9.0, 3.0,
and 3.3, respectively) and retained its preeminence for larger
CNVs affecting at least 15 genes (odds ratios: cluster = 3.1; OMIM
gene = 2.4; HIS gene = 2.1) (Table 2). The inclusion of the total
number of genes affected by a CNV substantially reduced the pre-
dictive power of all three predictors and had the greatest effect on
reducing the predictive power of the presence of a functional clus-
ter as expected since it is dependent on the number of pairwise
similarities between CNV genes, which grows as the square of
the number of genes. This is consistent with the functional rela-
tionships between genes in the CNV being a significant contribu-
tor to the phenotypic consequences of the CNV beyond their
individual deleteriousness; however, this effect is relatively small.
Unlike HIS andOMIM genes, functional clusters were a significant
predictor of large CNV pathogenicity among both deletions and
duplications (Table 2). We also replicated this model using a pub-
lished case-control CNV data set from patients with developmen-
tal disorders (Cooper et al. 2011) and, as before, when large CNVs
were considered (affecting at least 10 genes), functional clusters
were a better predictor of CNV pathogenicity than HIS or OMIM
genes (Supplemental Table S3).

Genes found to be disrupted in multiple patients are more
likely to be disease causing. Genes belonging to functional clusters
were significantly enriched in genes affected by CNVs in more
than one patient (“recurrently hit”) compared to all CNV genes
(DECIPHER P = 1.5 × 10−8; NIJMEGEN P = 0.0013), and this enrich-
ment increased with the number of patients harboring a CNV that
overlaps the gene (Fig. 2). Thus, themore often a regionwas seen to

be affected by CNVs in patients with developmental disorders, the
larger the proportion of genes belonging to functional clusters
within the region.

We have shown that de novo CNVs in patients with develop-
mental disorders affect a significantly large functional cluster en-
riched in disease genes, which is rarely seen in either apparently
benign CNVs or random regions containing an equal number of
genes.

Figure 2. Enrichment of various disease-relevant annotations in functional clusters respectively compared to all genes in their CNVs. The enrichment
of disease genes in DECIPHER (A) and NIJMEGEN (B) functional clusters. Recur indicates genes found in more than one de novo CNV in the same data
set, HIS-Dang are haploinsufficient genes identified in Dang et al. (2008), OMIM are genes causally related to a disease in the OMIM database (OMIM
2012) and HPO-PS are candidate genes specifically associated with the respective patient’s phenotype based on gene-phenotype annotations in the
Human Phenotype Ontology database (Dolken et al. 2012). Stars indicate significance: (∗) P < 0.05, (∗∗) P < 0.005, (∗∗∗) P < 0.0005, etc. up to a max-
imum of five stars. (C) Survivorship curve indicating the frequency of functional cluster genes in recurrent regions compared to CNV genes not belong-
ing to clusters of functionally related genes. The more frequently a gene was seen affected by de novo CNVs, the greater the chance it belongs to a
functional cluster.

Figure 3. The presence of clusters of functionally related genes in a CNV
is a more specific or more sensitive predictor of pathogenicity than the
presence of OMIM or HIS genes. The percentage of CNVs which contain
at least one functional cluster (have Cluster), disease gene from
OMIMan (have OMIM) (OMIM 2012), or haploinsufficient gene (have
HIS) from Dang et al. (2008). The height of the DECIPHER (blue) and
NIJMEGEN (red) bars indicates the sensitivity of the predictor to pathogen-
ic CNVs, whereas the height of control (gray) bars indicates the specificity
of each predictor (a low bar is high specificity), above the bars is the odds
ratio (OR) from the combined logistic regression.

Functionally similar genes in pathogenic CNVs

Genome Research 805
www.genome.org



The human genome is functionally clustered

Previous studies have found significant clustering of functionally
related genes in the human genome (Caron et al. 2001; Lee and
Sonnhammer 2003; Fukuoka et al. 2004; Singer et al. 2005;
Sémon and Duret 2006; Makino and McLysaght 2008; Michalak
2008; Al-Shahrour et al. 2010), but these have yet to be linked to
human disease. To determine the genome-wide extent of dis-
ease-relevant functional clustering similar to what we observed
within the de novo CNVs, we combined the single-linkage cluster-
ing with a growing cluster algorithm similar to what was used by
others (Li et al. 2005; Ng et al. 2009; Weber and Hurst 2011)
such that genes are added to a cluster of functionally related genes
as long as they are within a distance threshold D and above a sim-
ilarity threshold of T of another gene that belongs to the cluster
(Supplemental Fig. S5). The similarity threshold (T) was set at
the top 1% shortest paths in the network as above, and the dis-
tance threshold (D) was set equal to the 99th percentile of observed
genomic distances between functionally related genes in the
DECIPHER andNIJMEGEN de novo CNVs (2.1Mb) (Supplemental
Fig. S6).

We identified 933 clusters of functionally related genes with-
in the human genome using the phenotypic linkage network (Fig.
4; Supplemental Table S4). A total of 3411 genes (16% of the ge-
nome)were present in functional clusters after collapsing paralogs,
which is consistent with previous estimates of 3%–20% of genes
participating in functional clusters (Spellman and Rubin 2002;
Al-Shahrour et al. 2010). The significance of these functional clus-

ters was determined by comparing to 1000 gene-label permuta-
tions, which permute the genes with respect to their genomic
locations while leaving the patterns of gene density in the genome
intact. Both the number of clusters (933) and the total number of
genes in clusters (3411) were significantly high (P < 0.001), but the
average size of clusters was not significantly different (on average
3.6, P = 0.114; data not shown) from the randomizations (Fig. 4).
Our findings were robust to the clustering parameters and the net-
work used to identify the functional clusters and were not due to
the MHC region (Supplemental Fig. S7).

Pathogenic CNVs affect functional clusters to a greater extent

than benign CNVs

If functional clusters contribute to CNV pathogenicity through
compounding the deleterious effects of each gene then we would
expect benign CNVs to affect a smaller number of genes in the
functional cluster than pathogenic CNVs (i.e., de novo patient
CNVs). Because we have shown that the largest cluster within
each de novo CNVwas the most significant (Fig. 1C), we restricted
our analyses to the largest cluster hit by each de novo CNV, where
theCNVhit two ormore genes in the cluster (herein termed “path-
ogenic clusters”). Therewere 315 pathogenic clusters across the ge-
nome. Apparently, benign CNVs do not specifically avoid the
pathogenic clusters because 169 were also overlapped by a benign
CNV, more than the 143 expected under a binomial model (P =
0.002). In addition, 54 of the pathogenic clusters were also the

Table 2. Logistic regression of de novo CNVs versus CNVs from healthy individuals

CNV size Predictor OR [95% CI] P-value Number of CNVs (% pathogenic)

≥2 genes Cluster 2.2 [1.1, 4.4] 0.021 1672 (35%)
HIS 2.1 [1.3, 3.3] 0.0015
OMIM 1.9 [1.4, 2.7] 0.00015
CNV length (/100 kb) 1.3 [1.2, 1.3] 1 < 10−15

≥2 genes Cluster 1.9 [1.0, 3.6] 0.042 1672 (35%)
HIS 3 [2.1, 4.4] 5.3 × 10−9

OMIM 2.2 [1.7, 2.9] 1.5 × 10−8

Number of genes 1.1 [1.1, 1.1] 1 < 10−15

≥5 genes Cluster 2.4 [1.3, 4.5] 0.0056 904 (56%)
HIS 2.8 [1.8, 4.3] 7.7 × 10−6

OMIM 2.4 [1.7, 3.4] 2.8 × 10−7

Number of genes 1 [1.0, 1.1] 3.4 × 10−7

≥10 genes Cluster 2.5 [1.3, 4.6] 0.004 539 (72%)
HIS 2.7 [1.5, 4.6] 0.0005
OMIM 1.9 [1.2, 3.1] 0.0045
Number of genes 1 [1.0, 1.0] 0.0029

≥15 genes Cluster 3.1 [1.5, 6.2] 0.0021 393 (81%)
HIS 2.1 [1.1, 4.2] 0.03
OMIM 2.4 [1.3, 4.4] 0.0073
Number of genes 1 [1.0, 1.0] 0.22

≥15 genes (duplications) Cluster 4.4 [1.4, 13.7] 0.0113 146 (74%)
HIS 1.4 [0.5, 4.0] 0.494
OMIM 4.2 [1.5, 11.7] 0.00519
Number of genes 1.0 [1.0, 1.0] 0.298

≥15 genes (deletions) Cluster 2.7 [1.0, 6.9] 0.0429 247 (85%)
HIS 3.7 [1.3, 10.3] 0.0135
OMIM 1.4 [0.6, 3.2] 0.488
Number of genes 1.0 [1.0, 1.0] 0.612

HIS-LOD defined Cluster 2.5 [1.4, 4.6] 0.0033 2084 (30%)
HIS-LOD 1.4 [1.3, 1.4] 1 < 10−15

HIS-LOD defined Cluster 8.4 [4.8, 14.7] 8.14 × 10−14 2084 (30%)
Dichotomized HIS-LOD 10.8 [8.1, 14.3] 1 < 10−15

Predictors are the presence of functional clusters (Cluster), the presence of known haploinsufficient genes (HIS), the presence of known disease genes
(OMIM), and the number of genes affected by the CNV (number of genes).
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largest cluster affected by a benign CNV (32 expected, P = 0.0001,
Supplemental Fig. S8). However, de novo CNVs affect more genes
in the pathogenic clusters than the apparently benign CNVs: For
the 54 pathogenic clusters which were also the largest cluster hit
by a benign CNV, the de novo CNV affected on average 2.8 more
genes within the cluster than the benign CNV (P = 0.0006,

Student’s t-test); and for the 169 pathogenic clusters overlapped
at all by a benign CNV, the de novo CNV affected on average 2.2
more genes within the cluster than the benign CNV (P = 1.1 ×
10−11, Student’s t-test). Thus, de novo CNVsweremore likely to af-
fect a functional cluster and overlap more genes in the functional
cluster than the apparently benign CNVs, revealing small hits to

Figure 4. The human genome contains clusters of functionally related genes. (A) The 933 clusters of functionally related genes are present on all chro-
mosomes examined. Chromosomes are arranged from 1 to X from left to right with functional clusters (orange), yellow bands indicate centromeres, and
dark orange bands indicate regions of highly repetitive sequence; the banding pattern was obtained from UCSC Genome Browser hg18 (Rhead et al.
2010). (B,C) The extent of functional clusters compared to 1000 network node-label permutations of the PLN (see Methods), observed functional clusters
are indicated by arrows with the respective P-value. The null distribution when paralogs were included is almost identical to that when paralogs were ex-
cluded, thus it is mostly hidden behind it in the plots.
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functional clusters are unlikely to be pathogenic. These results sug-
gest pathogenicity is conferred by the cumulative effects of a CNV
affecting many genes within the same functional cluster.

Clusters of functionally related genes explain shared patient

phenotypes

We considered whether CNVs that affect the same genome-wide
functional cluster resulted in similar phenotypes. All DECIPHER
and NIJMEGEN de novo CNVs were combined into a single data
set and grouped by patient, and patient phenotypes were mapped
to HPO terms (see Methods) (Dolken et al. 2012). As above, we fo-
cused our analyses on the largest cluster hit by a CNV where the
CNV hit more than one gene in the cluster. On average, a patient

phenotype was present in 30% (±0.3%) of patients whose CNVs
overlapped the same genome-wide functional cluster; this value
was only matched or surpassed once after the 1000 permutations
of patient phenotypes (P = 0.0002).

When considered in a pairwisemanner, patients whoseCNVs
affected the same functional cluster genes (Cluster-and-Genes) or
which affect genes in the same functional cluster but do not affect
any of the same genes (Cluster-only) have significantly more sim-
ilar phenotypes thanpatientswhoseCNVs affected the same genes
not belonging to functional clusters (Genes-only) or whose CNVs
do not overlap at all (Fig. 5). This latter case, Cluster-only, excludes
cases in which the patients’ CNVs overlap and thus could be phe-
notypically similar because they have the same syndrome. CNVs
that affected fewer than two genes were excluded, since they could

Figure 5. Clusters of functionally related genes are a better indicator of phenotypic similarity than genes. (A) Patient pairs were placed into six categories
based on shared genetic elements. Orange rectangles represent genes. Purple rectangles represent genes belonging to the same genome-wide functional
cluster. Black bordered rectangles indicate OMIM disease genes. Black segments indicate the de novo CNVs from two different patients. Only one CNV per
patient is included for each situation for simplicity; in cases with multiple de novo CNVs, overlaps between all the CNV(s) of one patient and all the CNVs of
the other patient were considered. (B) Phenotype similarity as measured by the Goodall3 index (Boriah et al. 2008) between pairs of patients in each cat-
egory shown in A: Cluster-and-Genes affect the functional cluster and the same genes; Cluster-and-OMIM affect the same functional cluster and the same
OMIM genes; Cluster-only affect the same functional cluster but different genes; Genes-only affect the same genes but not the functional cluster; OMIM-
only affect the same OMIM genes but not the same functional cluster. Stars indicate significance, calculated using a Wilcoxon rank-sum test: (∗) P < 0.05;
(∗∗) P < 0.005; (∗∗∗) P < 0.0005, etc., up to a maximum of five stars. The red line indicates the median phenotypic similarity over all patient pairs.
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not affect a functional cluster. This ensured that the phenotypic
similarity was not due to patients whose CNVs affect a functional
cluster having more phenotype annotations (P > 0.07, two-sided
Wilcoxon rank-sum test) (Supplemental Fig. S9). In agreement
with our finding that functional clusters are more strongly associ-
ated with pathogenicity than known disease genes (Fig. 3), we ob-
served that patients whose CNVs affected the same OMIM genes
did not have more similar phenotypes than those affecting the
same non-OMIM genes (P > 0.4).

Patients whose CNVs affected the same functional cluster
genes (Cluster-and-Genes) had consistently significantly more
similar phenotypes than Genes-only patient pairs across both al-
ternative networks and four different sets of clustering parameters
(Supplemental Fig. S10). Patient pairs with CNVs affecting the
same functional cluster but none of the same genes (Cluster-
only) had consistently more similar phenotypes than Genes-
only pairs, but due to the smaller number of patient pairs in this
category, it did not retain significance. Patients whose CNVs over-
lap the same cluster have significantly more similar phenotypes
than thosewhoseCNVs donot. These results show that the disrup-
tion of functional clusters by CNVs influences the respective pa-
tient’s phenotype.

Discussion

In this study, we have demonstrated that clusters of functionally
related genes in the human genome contribute to CNV-mediated
developmental disorders. Using three different functional net-
works, we found that two independent sets of de novo CNVs
from individuals with developmental disorders frequently con-
tained a significantly large cluster of functionally related genes
(Fig. 1). These clusters were enriched in known disease genes com-
pared to the rest of the CNV (Fig. 2; Supplemental Fig. S4), but the
presence of a functional cluster was better able to distinguish pa-
tient de novo CNVs from CNVs from healthy individuals (Fig.
3). Across the genome, we found significantly more similarly sized
functional clusters than expected, many of which were not over-
lapped by any of the apparently benign or pathogenic CNVs con-
sidered. Pathogenic CNVs were more likely to affect functional
clusters and affected more genes in the functional cluster than
apparently benign CNVs. Finally, we showed that patients with
mutations in the same genome-wide functional clusters had signif-
icantly similar phenotypes (Fig. 5).

Although the extent and type of functional clustering across
the whole human genome will always be subject to the definition
of functional similarity and the errors and biases present in each
source of functional information, we have identified significantly
unusual clustering within those regions of the genome that are af-
fected by pathogenic CNVs. To minimize the contribution of false
positives without sacrificing coverage of functional information,
we used an integrative approach that weights the contribution of
multiple data types and sets, and then we replicated our findings
using two other networks that used different data sources and dif-
ferent statistical methods in their construction.

Large CNVs (typically >500 kb) have been consistently associ-
atedwithdisease (Sharp et al. 2006; Sebat et al. 2007;Xu et al. 2008;
Greenway et al. 2009; Kirov et al. 2009; Miller et al. 2010; Cooper
et al. 2011; Paciorkowski et al. 2011; Girirajan et al. 2013), but sim-
ilarly sized CNVs are not uncommon and are found at frequencies
of 5%–10% in the healthy population (Itsara et al. 2009). If the
pathogenicity of a CNV is increased by perturbing multiple func-
tionally related genes, thenwewould expect largeCNVs in healthy

individuals to avoid such clusters. Indeed, when considering
benign CNVs in the same size range as the de novo CNVs (100
kb–5 Mb), only one in 20 affected multiple functionally related
genes as compared to approximately half the pathogenic CNVs.
Corroboratively, we find that both sets of de novo CNVs affected
more functionally related genes than expected after controlling
for the number of genes affected by the CNVs. Furthermore, we
found that thepresenceof a functional clusterwas a significant pre-
dictor of pathogenicity of a CNV after controlling for either CNV
size or the number of genes affected by the CNV (Table 2).

Our findings support a model in which the compounding ef-
fects of a simultaneous copy number change of localized groups of
functionally related genes contribute extensively to etiology of
developmental disorders. By increasing the number of functional-
ly related genes affected by a single CNV, clusters of functionally
related genes may increase the penetrance and/or severity of the
phenotype(s) influenced by the functionally related genes. Our
finding that it is the number of functionally related genes affected
by a CNV, rather than affecting a functional cluster per se, that dis-
tinguishes pathogenic CNVs from apparently benign CNVs sug-
gests that (1) there is a degree of redundancy in the affected
functional clusters that is being eliminated by these larger patho-
genic CNVs; (2) there are epistatic effects between combinations
of disrupted genes; and/or (3) the effect of each additionally affect-
ed gene pushes the same phenotype along a continuum and over
the threshold for disease. The first two possibilities suggest that ef-
fects of these CNVs will only be revealed in genetic models carry-
ing multiple simultaneous mutations, as has been observed for
microcephaly (Golzio et al. 2012), whereas the latter suggests
that some disorder-relevant phenotypic similarities might be ob-
served by apparently healthy individuals whose CNVs affect dis-
ease-relevant clusters to a lesser extent, as observed for autism
(Bernier et al. 2012). Finally, since the loss of a gene copy can act
to reveal a recessive mutation in the remaining haplotype
(Hochstenbach et al. 2012), where a loss event occurs across a func-
tional cluster, a single recessive mutation in any of the affected
functionally similar genesmay yield similar phenotypes, with larg-
er CNVs more likely to reveal a mutation within a clustered gene.

Several studies have focused on individual dosage-sensitive or
known disease genes within CNVs (Vissers et al. 2005; Mefford
et al. 2010).We found the presence of clusters of functionally relat-
ed genes within CNVs was a significant predictor of pathogenicity
independent from the presence of either of these classes of known
disease genes (Fig. 3). The presence of clusters of functionally relat-
ed genes remained a significant predictor of pathogenicity when
used in addition to the LOD score of the presence of at least one
haploinsufficient gene (Huang et al. 2010) and after controlling
for the total number of genes in the CNV, although the effect
size did diminish. Furthermore, the disruption of a cluster of func-
tionally related genesmay only explain up to 50%of the patient de
novo CNVs considered here, and our findings do not exclude the
contribution of phenotypic effects caused by individual dosage-
sensitive genes or noncoding elements. However, we observed
that controlling for total length of a CNV as opposed to the total
number of genes in a CNV had little effect on the logistic regres-
sion of CNV pathogenicity, suggesting noncoding elements play
a minor role overall in CNV pathogenicity (Table 2). Furthermore,
the contribution of functionally clustered genes to these patients’
disorders is reinforced by the observation that patients that possess
CNVs that affect geneswithin the same functional cluster aremore
likely to demonstrate phenotypic similarity even when those pa-
tients’ CNVs do not overlap (Fig. 5). Although there remain
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many aspects of functional clustering that warrant further study,
we have shown that consideration of clusters of functionally relat-
ed genes within the genome provides a useful addition to existing
methods of interpreting the clinical significance of large copy-
number variants and will aid in the diagnosis and treatment of pa-
tients with rare genetic disease.

Methods

De novo CNV data sets

DenovoCNVsobserved inpatientswithdevelopmental abnormal-
ities are considered likely pathogenic (Zhang et al. 2009; Coe et al.
2012; Malhotra and Sebat 2014). We obtained 626 de novo CNVs
and the respective patient phenotypes, compiled from a consor-
tiumof clinical genetics laboratories, andwe identified on a variety
of arrays from the Database of Chromosomal Imbalance and
Phenotype in Humans Using Ensembl Resources (DECIPHER)
(Firth et al. 2009). DECIPHER patient phenotypes were described
using the London Neurogenics Database (LND) terms (Bass
2002). In addition, a second independent set of 426 de novo
CNVs, identified in a large cohort of patients with intellectual dis-
ability and/or multiple congenital abnormalities using the
Affymetrix 250K NspI SNP array, were obtained from the
Department of Human Genetics, Radboud University Medical
Center, Nijmegen, The Netherlands (NIJMEGEN; dbVar Study:
nstd85) (Vulto-van Silfhout et al. 2013). NIJMEGEN phenotypes
were described using a uniform clinical form using Human
Phenotype Ontology (HPO) terms, as described in Vulto-van
Silfhout et al. (2013). Patientshadbetweenoneand56distinct phe-
notypes (Q1 = 5, Q2 = 9, Q3 = 15) such as autism, craniofacial mal-
formations, cardiac defects, or other morphological or behavioral
abnormalities. The most common phenotypes were nervous sys-
tem abnormalities (>90% of patients), intellectual disability
(80%), eye abnormalities (43%), and facial abnormalities (39%).

Manyarrays have poor resolution (Vissers et al. 2005; Lee et al.
2007), resulting in many false positives for CNVs <100 kb in size
(Hehir-Kwa et al. 2007; Lee et al. 2007; Tucker et al. 2011), whereas
CNVs >100 kb are likely to pass validations (Cooper et al. 2011),
leading several studies using CNVs from different arrays to remove
small CNVs (Itsara et al. 2009; Tucker et al. 2011). In addition, the
pathogenicity of small de novo CNVs is unclear (Vermeesch et al.
2011). Very large CNVs containmany extraneous genes that intro-
duce substantial noise to functional analyses. To reduce noise
when looking for clusters of functionally related genes within
CNVs, both DECIPHER and NIJMEGEN CNVs >5 Mb or <100 kb
in sizewere filtered out, leaving 427 and237 denovoCNVs, respec-
tively (Table 1).We checked thatour findingswere robust to this fil-
tering (Supplemental Fig. S3).

The 626 DECIPHER de novo CNVs were recorded in hg18 co-
ordinates, whereas the 426 NIJMEGEN de novo CNVs were identi-
fied in hg17 coordinates that were mapped to hg18 using liftOver
(Rhead et al. 2010). Genesweremapped to these CNV regions from
Ensembl 54 (Flicek et al. 2010) such that some exonic sequence
from every transcript for the gene was within the CNV region.
Using this criterion has been shown to reduce the length bias of
mapped genes over other mapping criteria (Webber 2011).

Collapsing paralogs

Human paralogs were identified using both Ensembl 54 (Flicek
et al. 2010) andOPTIC databases (Heger and Ponting 2008), which
both use phylogenetic methods to identify paralogs, using zebra-

fish as the out-group. All paralogous relationships identified in ei-
ther resource were included when identifying instances of
paralogy. Within each gene set (CNV or gene-number-matched
randomization or genome-wide cluster of functionally related
genes), paralogous geneswere collapsed such that the firstmember
of the family encountered is retained, and all other members are
removed. In addition, the functional similarity between paralo-
gous genes is set to zero when identifying genome-wide clusters
of functionally related genes to prevent the expansion of clusters
due to arrays of tandemly duplicated genes. We also repeated the
significance of genome-wide clustering of functionally related
genes after removing all genes with any paralogs; this did not
change the significance of results (data not shown).

Creating the PLN

We were interested in the functional similarity between genes
found within each de novo CNV. Interactions between genes
can be obtained or inferred from genome-wide databases of known
pathways and functions, expression patterns, protein–protein in-
teraction (PPI) experiments, sequence information, and knockout
phenotypes displayed by model organisms. Each of these data
types has errors and covers a subset of genes. Thus we combined
multiple data sources (Supplemental Table S1) together into a sin-
gle integrated network, which represents genes as nodes and the
likelihood or strength of an interaction as weighted edges between
them, using the method described in Honti et al. (2014). Briefly,
data sets were rescored according to the regression of the data set
against the similarity of mouse phenotypes annotated to the 1–1
orthologs and then summed after weighting each data set accord-
ing to the strength of its relationship with phenotypic similarity.
This network was combined with the semantic similarity between
mouse knockout phenotypes by weighting each according to their
ability to predict human phenotypic similarity from the HPO us-
ing the same methodology. Semantic similarity between pheno-
type terms was calculated using the average information content
(IC) (Resnik 1995) of the most informative disjoint common an-
cestors. This was combined for all terms assigned to a pair of genes
by taking the average of the similarity between the most similar
pairs of terms (maximum best-match) and the average of the sim-
ilarity between all best-matching term pairs (average best-match)
(Pesquita et al. 2009). The resulting single integrated functional
network had 10-fold greater coverage and greater specificity than
it did prior to the integration of mouse phenotype information
(Supplemental Fig. S2). We name the final integrated functional
network the Phenotypic Linkage Network (PLN). The final PLN
is available in the Supplemental Material.

We confirmed the overlap of de novo CNVs with functional
clusters in two other networks: HumanNet (Lee et al. 2011), anoth-
er integrated functional network; andCOXPRESdb (Obayashi et al.
2008), a coexpression-only network. Functional clusters within
these two additional networks were defined as with the PLN
described below. However, we focused on results obtained using
the PLN due to its greater coverage of genes compared to
HumanNet (Supplemental Table S2) and the improvement of inte-
grated functional networks over coexpression or protein–protein
interaction-only networks when predicting gene function
(Troyanskaya et al. 2003; Deng et al. 2004; Lee et al. 2004).

Identifying clusters of functionally related genes

The PLN contained roughly 11 million direct edges, which are on
7.4% of all possible pairwise similarities. To increase the coverage,
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we calculated the shortest paths through this network that gave a
similarity metric for 142,864,287 gene pairs (>98% of all possible
pairwise comparisons between the 17,039 genes in the PLN).
Shortest paths were calculated by converting original network
similarity edges into distances using dist = 1/(1 + sim). Dijkstra’s
shortest-path algorithm was applied to the distances (Dijkstra
1959). The resulting shortest paths were converted back to similar-
ities using the inverse function: sim = 1/dist− 1 (shortest-path
similarities).

Clusters of functionally related genes were identified using
single linkage hierarchical clustering using a height threshold
equal to the top 1% shortest paths in the network. To identify ge-
nome-wide clusters of functionally related genes, this approach
was augmented with a distance threshold (equal to 2.1 Mb based
on the clusters of functionally related genes identified in CNVs)
(Supplemental Fig. S6), such that two genes must also be located
within that distance in the genome to be assigned to the same clus-
ter (similar to the neighborhood model) (Li et al. 2005). Results
were replicated using a 5% shortest-paths threshold and at a
0.1% shortest-paths threshold as well as a 1.3-Mb distance and
5-Mb distance threshold. We focused on results considering only
the top 1% most similar genes within the network, as at this
threshold less than half the genes within the CNVs whose mouse
orthologs’ disruptions had been phenotyped were found in the
same cluster, indicating that the genes shared a specific function
rather than simply being well-studied genes.

Randomizations

The patient de novo CNVs contained many more genes than ran-
dom sequences of equal length (Supplemental Fig. S11), as previ-
ously reported for autistic patients (Sanders et al. 2011). Thus the
genes affected by each de novo CNVwere compared to 10,000 ran-
domly chosen, equally sized sets of genes that were contiguous on
a chromosomal arm, “gene-number-matched randomizations,”
to determine the expected functional similarity between the genes
affected by these CNVs. Genes not present in the relevant gene
network were excluded and paralogs collapsed such that random-
izations had the same number of genes remaining as the original
CNV.

Genome-wide clusters of functionally related genes were
compared to “network node label permutations,” where the
gene locations in the genome and topology of the network were
maintained, but the genes represented by each node in the net-
work were randomly scrambled.

Shared phenotypes were compared to “phenotype permuta-
tions” in which the number of distinct phenotypes assigned to
each patient and the frequency of each phenotype in the total pa-
tient population was preserved, but the identities of the pheno-
types assigned to each patient were randomly permuted.

Known disease genes

Known disease genes were obtained from the OMIM database
(OMIM 2012). Only OMIM disease genes classed as confirmed
and where the molecular basis or mutation in the gene is known
or where the gene is part of a known contiguous gene syndrome
were considered known disease genes; these were mapped to
1648 Ensembl genes. In addition, 297 curated human haploinsuf-
ficient genes (HIS) were obtained from Dang et al. (2008).
Significance of the enrichment of these disease genes in clusters
of functionally related genes (versus all CNV genes) was calculated
using a one-sided hypergeometric test. For the logistic regression,

both apparently benign and de novo CNVswere filtered to remove
CNVs >5Mb or <100 kb in length. The presence/absence of a func-
tional cluster (at least two functionally related genes), at least one
known disease gene, or at least one known HIS gene were each
treated as a binary predictor.

Neither the phenotypic consequences of HIS genes nor
OMIM disease genes were recorded in rigorously defined terms,
so they could not be easily compared to the patients’ phenotypes
as recorded in DECIPHER and NIJMEGEN. However, gene-pheno-
type annotations from HPO (Robinson et al. 2008) could be easily
compared to the patients’ phenotypes in NIJMEGEN, which were
also recorded using HPO terms, and to the patients’ phenotypes in
DECIPHER, which were recorded using LND terms that were
mapped to HPO (see below). Each gene had all terms ancestral to
the terms found in the HPO database assigned to them by imput-
ing on the hierarchy of HPO terms. The patients’ phenotypes were
not imputed to avoidmatches between distinct but related pheno-
types (e.g., epilepsy and autism). Significance of the enrichment of
these phenotype-specific genes in clusters of functionally related
genes (versus all CNV genes) was calculated using a one-sided bi-
nomial test.

In addition, we compared the predictive power of the pres-
ence of at least one functional cluster with the presence of a HIS
gene or an OMIM known disease gene using logistic regression
with or without also including the number of genes affected by
each CNV as a fourth predictor. When the number of genes affect-
ed by each CNV was included, we limited CNVs to those affecting
at least two genes so that all the CNVs had the opportunity to af-
fect a functional cluster (we also test higher thresholds since func-
tional clusters should be more important in very large CNVs). In
addition, we directly compared the presence of a functional cluster
with the LOD score of there being a haploinsufficient gene within
theCNV as defined byHuang et al. (2010) and calculated using the
provided imputed HIS scores and software. These CNV LOD scores
were dichotomized by using a logistic regression of CNV pathoge-
nicity against the continuous HIS-LOD score and finding the value
where this regression predicts a 50% chance of the CNV being
pathogenic (this was equal to a HIS-LOD of 5.09). CNVs with a
LOD score above this threshold were assigned a 1 and those below
were assigned a 0 in the dichotomized version. We also replicated
this logistic regression using a published set of case-control CNVs
for patients with developmental disorders (Cooper et al. 2011);
since 15,000 control CNVs in this set affected exactly two genes
(out of less than 30,000 control CNVs affecting at least two genes),
we startedwith a threshold of CNVs affecting at least three genes in
this data set.

Mapping phenotypes

DECIPHER patient phenotypes were recorded using LND, whereas
NIJMEGEN patient phenotypes were recorded using HPO; tomake
the phenotypes comparable we used an existingmapping file from
the HPO website (Dolken et al. 2012) (http://www.human-
phenotype-ontology.org/contao/index.php/downloads.html) and
used the most general mapping for each term if matches were
not 1–1. HPO and LNDphenotypes without any knownmappings
were excluded from both CNV data sets.

CNVs hitting genome-wide functional clusters

We compared the overlap of genome-wide functional clusters hit
by different data sets to the expectation using a binomial model
where p is the product of the proportion of clusters hit/not hit
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by the respective data sets. This model does not account for differ-
ent sizes of functional clusters. However, 71% of the time when a
cluster of functionally related genes is hit by a CNV from a partic-
ular data set, it is completely hit by aCNV from that data set regard-
less of the size of the cluster of functionally related genes,
suggesting clusters of functionally related genes are small com-
pared to the size of CNVs. Thus, a cluster of functionally related
gene sizes is unlikely to be an important factor in the likelihood
of a cluster of functionally related genes being hit by a CNV
from each data set. All P-values were calculated using a one-sided
binomial distribution.

Phenotype similarity

Ancestral phenotype terms were imputed for each patient by as-
signing all ancestral terms of the phenotypes assigned to the pa-
tient using the respective ontology (HPO for NIJMEGEN and
LND for DECIPHER). The similarity between two patients’ pheno-
types was calculated using a simplified version of Goodall’s proba-
bility index (Goodall 1966), called Goodall3, proposed by Boriah
et al. (2008). Thismeasure has a key advantage over themore com-
mon Jaccard similarity (Jaccard 1901) by accounting for the fre-
quency of each phenotype in the cohort. Goodall3 weights the
concordant presence/absence of each phenotype by the probabil-
ity of it happening by chance (based on the observed frequency of
each phenotype in the whole data set). This was summed for each
pair of patients over all phenotypes observed in at least one patient
in the entire cohort. In addition, Goodall3 was one of the best in-
dices of the 14 different indices evaluated by Boriah et al. (2008).
Significance was assessed using a two-sided Wilcoxon rank-sum
test (also known as a Mann-Whitney U test), which compares
the median of the distribution of phenotypic similarities between
all pairs of patients in each category (Fig. 5A).

Data access

The PLN is available in Supplemental File 4 and at http://wwwfgu.
anat.ox.ac.uk/downloads/webber-resources/PLN/.
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