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Abstract

Small interfering RNA (siRNA)-mediated RNA interference (RNAi) pathways are critical for the 

detection and inhibition of RNA virus replication in insects. Recent work has also implicated 

RNAi pathways in the establishment of persistent virus infections and in the control of DNA virus 

replication. Accumulating evidence suggests that diverse double-stranded RNAs produced by 

RNA and DNA viruses can trigger RNAi responses yet many viruses have evolved mechanisms to 

inhibit RNAi defenses. Therefore, an evolutionary arms race exists between host RNAi pathways 

and invading viral pathogens. Here we review recent advances in our knowledge of how insect 

RNAi pathways are elicited upon infection, the strategies used by viruses to counter these 

defenses, and discuss recent evidence implicating Piwi-interacting RNAs in antiviral defense.

Introduction

Central to the survival of all organisms is a competent immune system capable of restricting 

or eliminating intracellular pathogens such as viruses. Although several innate immunity 

pathways (e.g. Toll, Imd, JAK-STAT etc.) play virus-specific antiviral roles (reviewed in 

[1–3]), the RNA interference (RNAi) pathway is the most broadly-acting [4] and robust 

antiviral pathway in insects (reviewed in [5–8]). RNAi is also a major antiviral system in 

plants [9] and nematodes [10], and recent evidence suggests that RNAi may also serve an 

antiviral role in mammals [11,12]. The finding that RNAi inhibitors are encoded by diverse 

insect RNA [13–25] and DNA [26,27] viruses further emphasizes the importance of RNAi 

in the evolutionary arms race between virus and host. RNAi pathways restrict virus 

replication (and also silence cellular gene expression) through the production of small non-

coding RNAs called small interfering RNAs (siRNAs). These siRNAs associate with 

Argonaute (Ago) proteins to seek out and destroy viral (or cellular) single-stranded (ss) 

RNAs in a sequence-specific manner. Other eukaryotic small RNAs, such as microRNAs 
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(miRNAs) and Piwi-interacting RNAs (piRNAs), which normally regulate cellular gene 

expression [28] and transposon activity [29], respectively, have also been implicated in 

antiviral defense recently [8]. These various small RNAs are often defined by their origin, 

size, interaction with specific Agos, and functions [8]. Here we focus on recent progress in 

understanding the role of RNAi/siRNAs and piRNAs in mediating antiviral immunity (for a 

review of miRNA-mediated antiviral defense, see [30,31] and Asgari, this issue). Given the 

wide availability of genetic tools in Drosophila melanogaster and the importance of other 

dipterans (e.g. mosquitoes) as vectors for arboviruses (viruses transmitted by arthropods to 

vertebrates), research in insect antiviral RNAi pathways is most advanced in Diptera. Here 

we review key aspects of antiviral RNAi in dipterans, but also draw on examples from 

studies of RNAi-based antiviral immunity in non-dipteran insects.

RNAi, siRNAs, and antiviral defense

Mechanism of the RNAi pathway

RNAi is initiated upon recognition and cleavage of long double-stranded (ds) RNA by 

Dicer-2, an RNAse III family dsRNA endonuclease, into ~19–25-nt long siRNA duplexes 

with characteristic 2 nt 3’ overhangs [32] (Fig. 1). Dicer-2 can recognize dsRNA from 

endogenous (e.g. cellular transcripts with secondary structures) or exogenous (e.g. 

experimentally introduced or viral) sources [33,34]. Dicer-2 cleavage of viral dsRNA 

produces viral siRNAs (vsiRNAs). These siRNAs are then loaded into the Argonaute-2 

(Ago2)-containing RNA-induced silencing complex (RISC) [35]. Upon loading into RISC, 

one of the siRNA strands (the passenger) is degraded in a process dependent upon Ago2 and 

the endoribonuclease C3PO [36]. The other strand (the guide) remains associated with Ago2 

and is 2’-O-methylated on its 3’-terminal nt by the Hen1 methyltransferase, creating an 

active or mature RISC [37,38]. Base-pairing of the guide strand to a complementary target 

ssRNA leads to Ago2-mediated cleavage (slicing) of the target. In Drosophila, the 

biogenesis and loading of siRNAs derived from endogenous and experimentally-introduced 

dsRNA into RISC require the Dicer-2 cofactors and dsRNA-binding proteins Loquacious 

PD (Loqs-PD) and R2D2 [39,40]. Only R2D2, however, is required for loading of vsiRNAs 

into RISC [41]. Thus, invertebrate RNAi systems may recognize or process viral dsRNA 

differently than other exogenous dsRNAs. In support of this, the antiviral RNAi response in 

nematodes requires a Dicer-related DEx-H-box protein that is dispensable for the RNAi 

response to experimentally-introduced dsRNA [42]. Differences in structure or intracellular 

localization between viral and other exogenous dsRNAs may determine the specific host 

factors required for their processing [43]. Although RNAi responses initiate in infected cells, 

studies in dipteran insects have suggested that antiviral RNAi signals (as either vsiRNA or 

longer viral dsRNA) can travel to uninfected cells [44,45], creating a systemic RNAi 

response that blocks viral spread [7,44].

Detection and inhibition of virus replication by the RNAi pathway

RNA and DNA virus replication is significantly higher in dipteran cells or animals that are 

deficient in RNAi pathway components such as Dicer-2, R2D2, and Ago2 [18,19,46–50]. 

Furthermore, virus infection of RNAi-deficient animals is often associated with higher 

mortality rates [18,19,47,51]. More recently, we [52] and others [53] have implicated 
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Dicer-2 and Ago2 in the defense against RNA and DNA viruses in lepidopteran hosts 

[52,53]. These studies illustrate a critical role for insect RNAi pathways in controlling 

infection by diverse viruses.

Using next generation sequencing to identify vsiRNAs in infected cells and subsequently 

mapping vsiRNAs to corresponding viral genomes, recent studies have provided insights 

into the putative viral dsRNAs cleaved by Dicer-2 to generate vsiRNAs [6]. These studies 

have revealed that, depending on the virus, the source of viral dsRNA processed by Dicer-2 

may be from: 1) viral genomes (e.g. for dsRNA viruses); 2) replication intermediates of 

ssRNA viruses; 3) structured elements in viral ssRNA (genomes or transcripts); and 4) 

overlapping viral transcripts that base-pair to form dsRNA (Fig. 1 and Table 1). Intriguingly, 

Dicer-2-mediated recognition of viral dsRNA not only elicits RNAi but can also promote 

expression of Vago, a secreted protein that activates the antiviral JAK-STAT pathway [54–

56]. Therefore, identifying viral RNAs recognized by Dicer-2 may reveal how RNAi and 

JAK-STAT pathways are triggered during infection.

Putative Dicer-2 substrates in RNA virus infection

Replication of ssRNA viruses involves the production of an antigenome-an RNA strand of 

opposite polarity to the genome-that serves as a template for genome synthesis, and vice 

versa. Consequently, ssRNA virus replication results in dsRNA replication intermediates. 

Although genomic strands are present at higher levels than antigenome strands during 

ssRNA virus infection [57], vsiRNAs mapping to genome and antigenome strands are often 

present at similar levels and are typically distributed across the entire length of the genome 

or antigenome [41,50,58–60]. These observations suggest that during ssRNA virus 

replication, dsRNA replication intermediates are major Dicer-2 substrates for vsiRNA 

production [6]. In contrast, the genomic dsRNA itself is likely the major Dicer-2 substrate 

during infection with dsRNA viruses [21,58,61].

It is important to note that these general observations are by no means the rule for all RNA 

virus infections (Table 1). For example, ~87% of the vsiRNAs generated during infection of 

Drosophila cells with Drosophila C virus, a ssRNA virus, map to the genomic strand [62], 

suggesting that dsRNA structures within the viral genome are major Dicer-2 substrates. A 

bias for genome strand vsiRNAs has also been noted during infections of dipteran 

[48,63,64], and more recently, hemipteran hosts [61] with other ssRNA viruses.

Curiously, although vsiRNAs targeting ssRNA viruses are typically distributed across the 

entire length of the viral genome or antigenome, they may target certain regions termed “hot 

spots” more heavily than others (cold spots). Hot spots may occur because those particular 

regions are more accessible to Dicer-2 or because of highly structured RNA produced at 

these loci [8]. For example, vsiRNAs targeting Rift Valley fever virus, a tripartite ssRNA 

virus with three genomic strands (L, M, S), predominantly map in equal numbers to both 

genome and antigenome strands for L and M segments, but largely map to the antigenomic 

strand of the S segment in a specific hot spot region that produces an RNA hairpin structure 

[62]. Hot spots have also been observed during infection with dsRNA viruses from 

Reoviridae, although it has been suggested that these may result from either differential 
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access of Dicer-2 to regions within genomic dsRNA [65] or because of panhandle structures 

encoded by reovirus mRNAs [61].

The hot and cold spots detected during vsiRNA profiling may actually reflect a “decoy” 

mechanism used by viruses to divert host RNAi responses away from targeting essential 

viral RNAs [8,60]. Indeed, it was hypothesized that the heavily targeted RNA hairpin of the 

antigenomic S segment of Rift Valley fever virus may in fact act as such a decoy [62]. 

Furthermore, a prior study found hot spot vsiRNAs targeting the ssRNA virus, Semliki 

forest virus, to be less effective than vsiRNAs derived from cold spot regions of the viral 

genome in restricting virus replication [60]. Similarly, hot spot vsiRNAs targeting vesicular 

stomatitis virus (a ssRNA virus) were found to largely derive from abundant defective 

interfering particles produced during viral replication and these vsiRNAs were not 

efficiently loaded into RISC [62]. Therefore, viruses may benefit from the preferential 

cleavage of abundant decoy RNA transcripts by Dicer-2 because it may prevent processing 

of more limited viral RNAs needed for replication and because vsiRNAs derived from decoy 

RNAs may be less competent for loading into RISC.

Putative Dicer-2 substrates in DNA virus infections

Recent studies in Drosophila have demonstrated that dsDNA viruses also elicit vsiRNA 

production [4,51,62]. These vsiRNAs mostly mapped to hot spots in viral genomes where 

either convergent overlapping transcription and/or production of a structured transcript was 

predicted to generate dsRNA (Table 1). Interestingly, infection of the lepidopteran 

Helicoverpa armigera with Helicoverpa armigera single nucleopolyhedrovirus triggers the 

production of vsiRNAs that predominantly map to late viral genes required for virus 

replication and assembly. It has been suggested that preferential targeting of late genes by 

RNAi may be beneficial to the virus in regulating its own gene expression program and 

ensuring proper replication prior to host cell lysis [53].

RNAi and Persistent Virus Infection

In insects, arboviruses establish persistent infections in which they are not cleared but are 

restricted to a level that prevents more pathogenic (and potentially fatal) acute infections. 

Recently, Goic et al. [66] implicated RNAi in contributing to the establishment of persistent 

infections. Using Drosophila cells or animals, they showed that during infection with Flock 

house virus (FHV) endogenous reverse transcriptases copy FHV RNA into complementary 

DNAs (cDNA) forming FHV-retrotransposon cDNA chimeras. These chimeric cDNAs, 

which may be incorporated into the cellular genome under certain circumstances, are then 

transcribed to produce dsRNAs that are processed by Dicer-2 into vsiRNAs that restrict 

FHV replication. In FHV-infected cells treated with reverse transcriptase inhibitors, FHV-

retrotransposon DNA chimeras are not made, persistent FHV infection is blocked, and 

instead, a more cytopathic FHV infection ensues [66]. These findings suggest that cDNA-

derived vsiRNAs contribute to the initial control of viral replication and help to establish a 

persistent infection. These cDNA-derived vsiRNAs may also serve to amplify the canonical 

antiviral RNAi response (Fig. 1) in organisms such as D. melanogaster, which lack RNA-

directed RNA polymerases (which amplify vsiRNA responses in other organisms such as 

plants) [7]. Recent studies in arthropods have shown that virus-specific dsRNA 
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immunizations can invoke immunity to subsequent challenge with the corresponding virus, 

suggesting an RNAi-based immunological memory is created upon viral dsRNA inoculation 

[44,67,68]. Future studies will be needed to determine if virus-derived DNA chimeras (if 

integrated into the host genome) could provide a mechanism for RNAi-based immunological 

memory of virus infection.

Viral countermeasures to antiviral RNAi responses

Given the importance of RNAi in restricting broad classes of viruses, it is not surprising that 

diverse insect RNA and DNA viruses have evolved strategies to counter RNAi responses. 

Virus-encoded suppressor of RNAi (VSR) factors can inhibit the RNAi pathway at one or 

more steps (Fig. 1 and Table 2). For example, B2 proteins encoded by nodaviruses, such as 

FHV [69], Wuhan nodavirus [15,70], and Nodamura virus, bind both long dsRNAs and 

siRNAs [14,71], preventing dsRNA processing by Dicer-2 and siRNA loading into RISC. 

Thus, B2 dsRNA-binding activity may protect viral dsRNA replication intermediates from 

Dicer-2 cleavage [57]. In contrast, the B2 encoded by mosinovirus (MoNV), a mosquito-

specific nodavirus, blocks RNAi triggered by long dsRNA but not by siRNA [16]. However, 

MoNV-infected mosquito cells are resistant to RNAi triggered by siRNA, suggesting that 

another MoNV factor suppresses RNAi at a step after siRNA biogenesis [16]. In addition to 

binding dsRNA, some B2 proteins may also inhibit RNAi through direct interactions with 

Dicer-2 [70,72], further highlighting the multi-faceted mechanism by which these VSRs 

inhibit RNAi.

Besides nodaviruses, dsRNA-binding VSRs have been identified in other virus families 

including Dicistroviridae (e.g. Drosophila C virus (DCV) 1A protein [17,19,73]) and, more 

recently, Birnaviridae (e.g. Culex Y virus and Drosophila X virus VP3 proteins [20,21]) and 

Iridoviridae (Invertebrate iridescent virus type 6 (IIV-6) 340R protein [27]). Each of these 

VSRs bind long dsRNA and likely inhibit Dicer-2 cleavage of viral dsRNA. In addition, 

birnavirus VP3 and IIV-6 340R proteins also bind siRNAs, and may block their loading into 

RISC. Interestingly, Heliothis virescens ascovirus-3e encodes an RNase III enzyme that may 

block RNAi initiation by competing with Dicer-2 for dsRNA substrates and/or by degrading 

siRNAs [26].

Other VSRs, such as Cricket paralysis virus (CrPV) 1A protein, VP1 proteins encoded by 

Drosophila melanogaster Nora virus (DmelNV) and Drosophila immigrans Nora-like virus 

(DimmNV), physically interact with Ago2 and haven been shown to block target cleavage 

by pre-assembled RISC using in vitro slicer assays [17,22,23]. Intriguingly, recombinant 

DimmNV VP1 protein can interact with D. immigrans but not D. melanogaster Ago2 and 

thus can antagonize slicer activity in D. immigrans embryo extracts but not in D. 

melanogaster embryo extracts [23]. In contrast, recombinant DmeINV VP1 proteins interact 

with Ago2 and antagonize slicer activity when added to either D. melanogaster or D. 

immigrans embryo extracts [23]. Whether DmeINV can actually infect D. immigrans and, in 

turn, whether DimmNV can replicate in D. melanogaster is unknown. However, when 

Sindbis virus (SINV), an arbovirus that lacks a VSR, was engineered to encode DmeINV 

VP1, the virus replicated to higher levels than the parental virus in both D. melanogaster and 

D. immigrans animals, whereas recombinant SINV encoding DimmNV VP1 only displayed 
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enhanced replication in D. immigrans and not in D. melanogaster [23]. These results suggest 

that some VSRs may be host species-specific and must therefore be identified and 

characterized using a relevant host [23].

Mosquito-borne arboviruses establish a persistent, non-pathogenic infection in mosquitoes 

despite being targeted by host RNAi machinery [50]. Therefore, it has been unclear whether 

arboviruses use VSRs to evade RNAi systems or whether they lack VSRs because viral 

suppression by RNAi ensures that infections remain non-pathogenic to the vector host. 

Indeed, engineering of Sindbis virus to encode FHV B2 enhances viral pathogenicity in 

mosquitoes [50]. However, recent evidence suggests that the flaviviruses, West Nile virus 

and Dengue virus, may produce a structured sub-genomic flavivirus RNA (sfRNA) to act as 

a decoy for Dicer proteins, preventing the processing of essential dsRNA replication 

intermediates [25]. Furthermore, the Dengue virus NS4B protein displays VSR activity and 

can block human Dicer cleavage of dsRNA through an unknown mechanism without 

binding dsRNA [24]. Future studies are needed to unravel the molecular functions of these 

flavivirus-encoded VSRs. Given that several insect-restricted viruses establish persistent 

infections yet encode VSRs, it is likely that multiple virus- and host-specific factors such as 

virus replication kinetics, VSR potency, and RNAi response efficiencies determine whether 

persistent infections will be established [74].

Collectively, these findings indicate that diverse insect viruses from diverse families have 

independently evolved strategies to counter the RNAi pathway. However, because most 

VSRs have been studied in isolation, future studies with VSR-deficient strains will be 

needed to determine their effect(s) on the replication and associated pathogenicity of the 

viruses that encode them.

piRNAs and antiviral defense

Insect piRNAs are 24–30 nts and are defined by their preference for uridine at their 5’ ends 

(U1 bias), 2’-O-methylation of their 3’ terminal nucleotide, and interaction with Piwi-clade 

Ago proteins, which include Piwi, Aubergine (Aub), and Ago3 in Drosophila [29]. piRNAs 

are initially processed from antisense ssRNA precursors transcribed from genomic loci 

termed piRNA clusters [75]. These “primary” piRNAs associate with Piwi or Aub. Primary 

piRNAs guide the cleavage of sense-stranded piRNA precursors, generating the 5’ ends of 

secondary piRNAs that associate with Ago3 and display an adenine bias at position 10 (A10 

bias). In turn, the sense-stranded secondary piRNAs guide the Ago3-mediated cleavage of 

antisense piRNA precursors to generate the 5’ ends of antisense-stranded secondary piRNAs 

[76]. This self-enforcing loop of secondary piRNA biogenesis is known as the “ping-pong” 

amplification cycle. piRNAs are abundant in the germline, where they silence transposable 

elements and protect genomic integrity [29]. However, virus-derived piRNAs (vpiRNAs) 

were identified in a Drosophila ovarian somatic sheet (OSS) cell line harboring covertly-

replicating RNA viruses, suggesting that the piRNA pathway might also function in antiviral 

defense in somatic cells surrounding ovarian germ cells [58].

vpiRNA-like small RNAs were also found during profiling of small RNAs in Dengue virus 

type-2- and cell fusing agent virus-infected cells derived from Aedes aegypti and Ae. 
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albopictus. However, like the vpiRNAs observed in the Drosophila OSS cell line, the 

majority were of positive polarity, and there was no clear evidence for ping-pong 

amplification [77]. Interestingly, a recent study found vpiRNAs with characteristics of ping-

pong amplification (e.g. U1 and A10 biases) in the head and thorax tissues of Aedes 

albopictus infected with Chikungunya virus [78]. The presence of ping-pong vpiRNAs in 

the soma of mosquitoes may be due to the broad expression of an amplified family of Piwi 

clade Agos (including Ago3 and 7–8 Piwi proteins) in mosquito tissues as opposed to 

Drosophila, where Ago3 and Aub appear to be restricted to the germline [5,78]. Several 

other recent studies have identified vpiRNAs in mosquitoes and mosquito-derived cell lines 

infected with RNA viruses (Table 3).

How viral transcripts enter the piRNA biogenesis pathway and a definitive role for piRNAs 

in antiviral defense remain to be determined. The strongest evidence implicating piRNAs in 

antiviral defense comes from studies showing increased susceptibility of dipteran hosts to 

infection upon inactivation or knockdown of Piwi clade Agos [48,79,80]. More recently, 

Schnettler et al. [81] have shown that knockdown of Ago2 or Piwi4 enhances Semliki Forest 

virus replication in Aedes aegypti-derived cells, suggesting roles for both RNAi and piRNA 

pathways in restricting virus replication. The use of genome-editing tools to inactivate Ago 

genes should help sort out the specific contributions of RNAi and piRNA pathways to 

antiviral defense in mosquitoes.

Concluding remarks

The findings that: 1) antiviral RNAi genes are among the most rapidly evolving immunity 

genes in insects [82,83]; 2) RNAi-deficient animals are hypersensitive to virus infection; and 

3) divergent viruses encode VSRs, all point to a central role for RNAi in the evolutionary 

arms race between viruses and insect hosts. Recent profiling of vsiRNAs has provided 

insights into the viral signatures recognized by Dicer-2, but the relative effectiveness of 

different vsiRNAs in restricting virus replication is still largely unknown. This is an 

important point because vsiRNAs generated in hot spot regions, although more abundant, 

can be less effective than vsiRNAs from cold spot regions of the viral genome in restricting 

virus replication [60]. Furthermore, because vsiRNA and endogenous small RNA profiles 

might be altered by VSR activities [63,73,84], it will be important to both identify and 

characterize VSRs to understand how they modulate RNAi processes and contribute to viral 

pathogenesis. Important challenges for the future will be to understand the relative 

contribution of the siRNA, miRNA, and piRNA pathways in antiviral immunity and to 

characterize the potential effects of virus infection and virus-encoded factors on each 

pathway. Identifying viral factors that specifically inhibit the piRNA pathway would help to 

solidify a role for piRNAs in antiviral defense and may also provide new tools for answering 

many questions that remain regarding their biogenesis.
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Highlights

• Insect RNA interference (RNAi) pathways detect and restrict viruses

• Dicer-2 detects diverse viral dsRNA signatures and initiates the RNAi pathway

• RNAi may play a role in establishing persistent, non-pathogenic virus infections

• Both RNA and DNA viruses encode inhibitors of RNAi

• The RNAi-related piRNA pathway may also restrict virus replication in insects
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Figure 1. 
Antiviral RNAi pathway in insects (adapted from [90]). Dicer-2 recognizes and cleaves viral 

dsRNA arising from a variety of sources (see also Table 1), into predominantly 21 or 22 nt 

long small interfering RNA (siRNA) duplexes. These siRNA duplexes are loaded into the 

RNA-induced silencing complex (RISC) containing Ago2, the passenger strand is degraded, 

and the guide strand is 2’-O-methylated at the 3’ end. This mature RISC then targets viral 

RNA complementary to the guide strand for cleavage (slicing) by Ago2, thereby restricting 

virus replication. Recent work suggests that cellular reverse transcriptases can convert viral 

RNA into DNA forms early in infection [66]. Transcription of virus-derived DNA produces 

dsRNAs containing viral sequences that can enter the RNAi pathway, resulting in siRNA 

production that serves to dampen virus replication, allowing for the establishment of a 

persistent infection [66]. Both RNA and DNA viruses encode RNAi suppressors (shown at 

right) that target the RNAi pathway at one or more steps (see also Table 2). Virus 
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abbreviations: Flock house virus (FHV); Nodamura virus (NoV); Wuhan Nodavirus 

(WhNV); mosinovirus (MoNV); Drosophila C virus (DCV); Drosophila X virus (DXV); 

Culex Y virus (CYV); Invertebrate iridescent virus type 6 (IIV-6); West Nile virus (WNV); 

Dengue virus (DENV); Heliothis virescens ascovirus-3e (HvAV-3e).
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Table 2

Known/putative RNAi suppressors encoded by insect viruses and arboviruses. Adapted from [6].

Virus Family RNAi
suppressor

Proposed mechanism of
RNAi suppressor

References

RNA virus

Flock House virus Nodaviridae B2 Binding long dsRNA prevents cleavage by 
Dicer-2; Binding siRNA prevents incorporation 

into RISC; Dicer-2 binding

[13,14,57,69, 72]

Nodamuravirus Nodaviridae B2 Binding of long dsRNA prevents cleavage by 
Dicer-2; Binding siRNA prevents incorporation 

into RISC; inhibition of Dicer-2 activitya

[14,57,71]

Wuhan Nodavirus Nodaviridae B2 Binding long dsRNA prevents cleavage by 
Dicer-2; Binding siRNA prevents incorporation 

into RISC; Dicer-2 binding

[15,70]

Mosinovirus Nodaviridae B2 Binding long dsRNA prevents cleavage by 
Dicer-2

[16]

Drosophila C virus Dicistroviridae 1A Binding long dsRNA prevents cleavage by 
Dicer-2

[17,19]

Cricket paralysis virus Dicistroviridae 1A Inhibition of AGO2 slicer (endonuclease) 
activity

[17,18,22]

Drosophila X virus Birnaviridae VP3 Binding long dsRNA prevents cleavage by 
Dicer-2; Binding siRNA prevents incorporation 

into RISC

[20,21]

Culex Y virus Birnaviridae VP3 Binding long dsRNA prevents cleavage by 
Dicer-2; Binding siRNA prevents incorporation 

into RISC

[21]

Nora Virus Unassigned VP1 Inhibition of Ago2 slicer (endonuclease) 
activity

[22,23]

Dimm Nora-like virus Unassigned VP1 Inhibition of Ago2 slicer (endonuclease) 
activity

[23]

Dengue virus Flaviviridae NS4B Inhibition of Dicer-2 activity a [24]

West Nile virus Flaviviridae sfRNA Inhibition of Dicer-2 activity a [25]

Dengue virus Flaviviridae sfRNA Inhibition of Dicer-2 activity b [25]

DNA virus

Heliothis virescens ascovirus-3e Ascoviridae Orf 27 (RNase 
III)

Degradation of siRNA [26]

Invertebrate iridescent virus type 6 Iridoviridae 340R Binding long dsRNA prevents cleavage by 
Dicer-2; Binding siRNA prevents incorporation 

into RISC

[27]

a
Experimental data obtained using human Dicer, inhibition of Dicer-2 in insects is presumed.

b
Presumed function based on similarity to WENV sfRNA and ability to inhibit RNAi in insect cell assays.
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Table 3

Viruses for which vpiRNA-like small RNAs have been rep orted in insect host infections.

Virus Family Viral
Genomea

Insect Host
(cell line or

in vivo)

References

Drosophila X virus Birnaviridae dsRNA D. melanogaster (cell line) [58]

Drosophila birnavirus Birnaviridae dsRNA D. melanogaster (cell line) [58]

American nodavirus Nodaviridae (+)ssRNA D. melanogaster (cell line) [58]

Drosophila A virusb Tetraviridae (+)ssRNA D. melanogaster (cell line) [58]

Nora virus Unassigned (+)ssRNA D. melanogaster (cell line) [58]

Drosophila C virus Dicistroviridae (+)ssRNA D. melanogaster (cell line) [58]

Dengue virus Flaviviridae (+)ssRNA Ae. aegypti (cell line and in vivo); Ae. albopictus (cell line) [77,86]

Cell fusing agent virus Flaviviridae (+)ssRNA Ae. aegypti (cell line); Ae. albopictus (cell line) [77]

Sindbis virus Togaviridae (+)ssRNA Ae. aegypti (cell line); Ae. albopictus (cell line) [87,88]

Chikungunya virus Togaviridae (+)ssRNA Ae. albopictus (cell line and in vivo); Ae. aegypti (cell line and in vivo) [78]

Semliki Forest virus Togaviridae (+)ssRNA Ae. albopictus (cell line); Ae. aegypti (cell line) [81]

La Crosse virus Bunyaviridae (−)ssRNA Ae. albopictus (cell line); Ae. aegypti (cell line) [87,88]

Schmallenberg virus Bunyaviridae (−)ssRNA Ae. aegypti (cell line) [65]

Rift Valley fever virus Bunyaviridae (−)ssRNA Ae. albopictus (cell line); Ae. aegypti (cell line) [89]

a
Positive and negative polarity ssRNA virus genomes are indicated by (+) and (−), respectively.

b
Drosophila tetravirus referred to in [58] is believed to be a strain of Drosophila A virus [6].
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