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Abstract

Bioassay-directed fractionation of an antiproliferative ethanol extract of the roots of Ocotea 

macrocarpa (Lauraceae) afforded the new butanolide macrocarpolide A (1), and the two new 

secobutanolides macrocarpolides B (2) and C (3), together with the known butanolides 

linderanolide B (4) and isolinderanolide (5). The structure elucidation of all compounds was 

carried out based on NMR and mass spectroscopic data analyses. The absolute configurations of 

all compounds isolated were determined by comparison of their optical rotation values with those 

found in literature. Compounds 1–5 showed good antiproliferative activities against the A2780 

ovarian cell line, with IC50 values of 2.57 ± 0.12 (1), 1.98 ± 0.23 (2), 1.67 ± 0.05 (3), 2.43 ± 0.41 

(4), and 1.65 ± 0.44 µM (5), respectively.
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As a part of the Madagascar International Cooperative Biodiversity Group (ICBG) 

program,2ab an ethanol extract of the roots of Ocotea macrocarpa was found to have 
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moderate activity against the A2780 ovarian cancer cell line (IC50 3.9 µg/ml). This extract 

was thus selected for further evaluation for the presence of novel anticancer agents. The 

plant genus Ocotea, the largest member of the Lauraceae family, comprises approximately 

350 species that are distributed throughout tropical and subtropical climates. Most species 

are found in the Americas from Mexico to Argentina, seven species are found in Africa, one 

specie is found in the Canary Islands, and about 34 recognized species are found in 

Madagascar.3ab Some species are used in traditional medicine, including for treatment of 

fever and malaria.4 Chemical investigations on various Ocotea species have led to the 

isolation of a wide range of secondary metabolites including alkaloids, flavonoids, lignans, 

and terpenoids, many of which exhibited interesting antiproliferative, antifungal, 

antiherpetic, antiinflammatory, and antimicrobial activities.5abcdefg

Bioassay-guided isolation of an extract of the roots of Ocotea macrocarpa produced five 

bioactive compounds: one new butanolide (1), two new secobutanolides (2 and 3), and two 

known butanolides, linderanolide B (4)6 and isolinderanolide (5).7 The structures of the 

known compounds were determined by a comparison of their 1H NMR and mass spectra 

data with literature data, together with a comparison of their optical rotation values with the 

literature values.

Compound 1 was isolated as a colorless oil. The molecular formula was determined to be 

C20H34O3 by HRESIMS ([M + H]+, m/z 323.2586, cal. for C20H35O3
+ 323.2581). The IR 

exhibited the characteristic absorption bands at 3450 cm−1 for a hydroxyl group, and 1760 

and 1700 cm−1 for an α,β-unsaturated-γ-lactone.8 The UV spectrum of 1 had an absorption 

maximum at 226 nm. The IR, UV and 1H NMR spectroscopic data of 1 were comparable to 

those of 4 and 5, suggesting that 1 had the same β-hydroxy-γ-methylene-α,β-unsaturated γ-

lactone skeleton. The proton signal at δH 7.10 (dt, J = 7.8, 2.0 Hz, 1H, H-1′) in 1 differed 

significantly from the corresponding signals in 4 and 5 at δH 6.68 (td, J= 7.8, 2.0 Hz, 1H, 

H-1′), suggesting the E configuration for Δ3(1′) in 1.89 The 1H NMR spectrum of 1 also 

displayed resonances assignable to two exomethylene protons appearing at δH 4.96 and δH 

4.72 (dd, J = 2.8, 1.4 Hz, each 1H, H2-6), one oxymethine at δH 5.26 (brs, 1H, H-4), and two 

deshielded methylene protons at δH 2.50 and δH 2.43 (dt, J = 14.8, 7.2 Hz, each 1H, H2-2′). 

The positions of these protons were assigned from HMBC experimentation (Fig. 2). The 

exocyclic olefinic signals at δH 4.96 and δH 4.72 (H2-6) were correlated with both a 

quaternary carbon at δC 157.8 (C-5) and a methine carbon at δC 66.7 (C-4). Carbon 5 also 

correlated with the oxymethine signal at δH 5.26 (H-4). Furthermore, clear long range 

correlations between both the oxymethine proton at δH 7.10 (H-1′) to the carbonyl carbon at 

δC 166.1 (C-2) were observed in the HMBC spectrum.

In addition, a broad peak at δH 1.25–1.31 (28H, H-3′–14′) and a triplet at δH 0.88 (J = 7.0 

Hz, H-15′) were attributed to the methylene protons in a long alkyl chain and the terminal 

methyl group in 1, respectively. Compound 1 showed an [α]21
D value of −11.11 (c 0.27, 

MeOH), indicating the S configuration at C-4 as described for previously reported 

butanolides.910ab The complete assignments of all protons and carbons of 1 (Table 1) were 

accomplished by further interpretation of its HMBC and HSQC spectra. Thus, the structure 

of 1 was elucidated as (3E,4S)-4-hydroxy-5-methylene-3-pentadecylidene-dihydro-furan-2-

one, and named macrocarpolide A.
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Compound 2, a colorless oil, had a molecular formula of C23H42O4, as deduced from its 

HRESIMS spectrum (m/z 383.3157 [M+H]+, calcd. for C23H43O4
+, 383.3156). The IR 

spectrum of 2 showed absorption bands characteristic of hydroxyl (3458 cm−1), ester (1734 

cm−1), and ketone (1715 cm−1) groups. The UV absorption at 222 nm together with its IR 

and 1H NMR spectroscopic data indicated a secobutanolide skeleton.910b Comparison of 

the 1H NMR spectroscopic data of 2 with those of 1 revealed that the 1H NMR of 2 
exhibited additional signals at δH 3.73 (s, 3H, 1-OMe) and δH 2.15 (s, 3H, H-3′), but lacked 

the signals at δH 4.96 and δH 4.72 in 1. This fact confirmed the presence of a methoxy and 

an acetyl group, and the absence of the α,β-unsaturated-γ-lactone ring in 2. In the HMBC 

spectrum, protons of the acetyl group at δH 2.15 (H-3′) showed correlations to an 

oxymethine group at δC 73.5 (C-1′). The methoxy protons at δH 3.73 (1-OMe) correlated 

with a carbonyl carbon at δC 166.7 (C-1), and the olefinic proton at δH 7.08 (t, J= 7.7 Hz, 

H-3) exhibited cross peaks with both the oxymethine carbon (δC 73.5, C-1′) and the 

carbonyl carbon (δC 166.7, C-1). Those correlations confirmed the assignment of a 

secobutanolide skeleton to 2. By the same analysis used to characterize compound 1, the 

deshielded methylene group of 2 was assigned at C-4 by the HMBC correlation between δH 

2.35 (q, J = 7.6 Hz, 2H, H-4) and the quaternary olefinic carbon at δC 129.9 (C-2). 

Furthermore, the presence of an E trisubstituted double bond was evident from the 

characteristic chemical shift of the olefinic proton at δH 7.08 (H-3), compared to that of 

known compounds with a Z conformation (δH 6.69).910b

The positive optical activity (+2.23, c 2.24, MeOH) of 2 indicated that C-1′ possessed the S 

configuration.11abc Similarly to 1, the complete assignments of all protons and carbons of 2 
(Table 1) were accomplished by further interpretation of its HMBC and HSQC spectra. 

From the above data, compound 2 was assigned as (2E)-2-[(1S)-1-hydroxy-2-oxo-propyl]-

nonadec-2-enoic acid methyl ester, and named macrocarpolide B.

The molecular formula of compound 3 (C21H38O4, HRESIMS m/z: 355.2856 [M+H]+, 

calcd. for C21H39O4
+, 355.2843) differed from that of 2 by C2H4, suggesting a two-carbon 

deletion in the side chain. Analysis of the UV, IR and 1H NMR spectra revealed 3 to be a 

similar secobutanolide to 2, with the same E geometry of the trisubstituted double bond [δH 

7.08 (t, J = 7.0 Hz, 1H, H-3)], but with two carbons less in the alkyl chain. Similarly to 2, 

the S configuration at C-1′ was deduced by the positive optical rotation value of +2.27 (c 

0.88, MeOH).11abc The complete assignments of all protons and carbons of 3 (Table 2) were 

accomplished by interpretation of its HMBC and HSQC spectra. Therefore, compound 3 
was assigned as (2E)-2-[(1S)-1-hydroxy-2-oxo-propyl]-heptadec-2-enoic acid methyl ester, 

and named macrocarpolide C.

Compounds 1–5 showed good antiproliferative activities against the drug-sensitive A2780 

ovarian cell line12 as previously described13 using paclitaxel (IC50 0.073 ± 0.015 µM) as the 

positive control. Their IC50 values were 2.57 ± 0.12 (1), 1.98 ± 0.23 (2), 1.67 ± 0.05 (3), 

2.43 ± 0.41 (4), and 1.65 ± 0.44 µM (5). The similar IC50 values for the five compounds 

suggests that they have a similar mechanism of action, possibly as Michael acceptors.
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Figure 1. 
Structures of compounds 1–5.
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Figure 2. 
Key HMBC correlations of 1 and 2.
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Table 1

1H and 13C NMR data for compound 1.a

Posn δH
b δc

c

2 166.1 (C)

3 127.4 (C)

4 5.26 brs 66.7 (CH)

5 157.8 (C)

6
4.96 dd (2.8, 1.4)

91.5 (CH2)
4.72 dd (2.8, 1.4)

1′ 7.10 dt (7.8, 2.0) 150.3 (CH)

2′ 2.50 dt (14.6, 7.7) 29.8 (CH2)

2.43 dt (14.6, 7.7)

3′ 1.25–1.31 28.3 (CH2)

4′ 1.25–1.31 29.8–29.5 (CH2)

5′ 1.25–1.31 29.8–29.5 (CH2)

6′ 1.25–1.31 29.8–29.5 (CH2)

7′ 1.25–1.31 29.8–29.5 (CH2)

8′ 1.25–1.31 29.8–29.5 (CH2)

9′ 1.25–1.31 29.8–29.5 (CH2)

10′ 1.25–1.31 29.8–29.5 (CH2)

11’ 1.25–1.31 29.8–29.5 (CH2)

12′ 1.25–1.31 29.8–29.5 (CH2)

13′ 1.25–1.31 32.1 (CH2)

14′ 1.25–1.31 22.8 (CH2)

15′ 0.88 t (7.0) 14.3 (CH3)

a
Assignments based on analysis of 2D NMR spectra.

b
Data (δ) measured at 500 MHz; brs = broad singlet, dd= doublet of doublets, dt = doublet of triplets. J values are in Hz and are omitted if the 

signals overlapped as multiplets. The overlapped signals were assigned from HSQC and HMBC spectra without designating multiplicity.

c
Data (δ) measured at 125 MHz; CH3, CH2, CH, and C multiplicities were determined by HSQC experiment.
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