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Abstract

In this paper, we propose a novel cross-trees structure to perform the nonlocal cost aggregation 

strategy, and the cross-trees structure consists of a horizontal-tree and a vertical-tree. Compared 

to other spanning trees, the significant superiorities of the cross-trees are that the trees' 

constructions are efficient and the trees are exactly unique since the constructions are independent 

on any local or global property of the image itself. Additionally, two different priors: edge prior 

and superpixel prior, are proposed to tackle the false cost aggregations which cross the depth 

boundaries. Hence, our method contains two different algorithms in terms of cross-trees+prior. 

By traversing the two crossed trees successively, a fast non-local cost aggregation algorithm is 

performed twice to compute the aggregated cost volume. Performance evaluation on the 27 

Middlebury data sets shows that both our algorithms outperform the other two tree-based non-

local methods, namely minimum spanning tree (MST) and segment-tree (ST).
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1. Introduction

Dense two-frame stereo matching has been extensively investigated for decades as a 

traditional low-level vision task, since it is crucial for many applications such as 3D 

reconstruction [1, 2], image-based rendering [3, 4] and anonymous driving etc [5]. 

According to the analysis and taxonomy scheme proposed in [6], stereo matching algorithms 

can be categorized into two groups: local algorithms and global algorithms. Stereo matching 

algorithms are often implemented following a subset of the four steps or all:

1. Cost function/cost volume estimation
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2. Cost aggregation within a support region

3. Disparity computation/optimization

4. Disparity refinement

Global algorithms usually make explicit smoothness assumptions, and minimize a 

predefined energy function to obtain optimal results [7, 8, 9]. Despite of the reliable 

matching results obtained, global algorithms are often time-consuming. All local algorithms 

compute the matching cost (step 1) firstly and then perform the cost aggregation (step 2) to 

get a locally optimized cost volume [6, 10, 11, 12, 13, 14]. We mainly focus on efficient and 

effective local and non-local methods in this paper, and the readers are referred to a recent 

study for a comprehensive study of the global methods [15].

To find a correspondence (x, x′), the problem of the local methods can be concluded as a 

comparison of the similarity of two local patches which around x and x′ respectively. The 

similarity of the two patches are computed by aggregating the costs of the pixels within the 

patches. Hence, the cost aggregation (step 2) procedure has important impacts on the 

accuracy and the efficiency of a local algorithm. The cost aggregation of a pixel in 

traditional local algorithms is usually performed by averaging the costs of the pixel itself 

and all its neighboring pixels. Here, the implicit assumption is that all the pixels which lie in 

a special local support region have similar disparities, as shown in Fig.1(a). Such local 

methods suffer from well known “edge fatten” effect once the local support regions cover 

the depth boundaries. The problem can be explained in the context of image filtering. For 

instance, the box filter always blurs the edges of an image during the image denoising 

procedure. Hence, the problem of the cost aggregation step is how to choose optimal local 

support regions for each pixel. Various researches have been conducted to estimate optimal 

support regions for the cost aggregation, such as various window-based methods [10, 11] 

and adaptive support weights (ASW) methods (also known as local filtering-based methods) 

[12, 13, 14] which have state of the art performance in last years. However, the selected 

support regions of the ASW methods are often limited in a pre-defined window of fixed 

size. Due to this reason, this kind of methods cannot work well for the stereo images with 

large planar surfaces.

Recently, Yang proposed a non-local cost aggregation method based on a MST [16]. As 

shown in Fig.1(b), a pixel is able to get supports from all the other pixels of the image 

through unique paths on the tree structure. Different from aforementioned various window-

based methods and ASW methods, the cost aggregation was performed over the whole 

image for each pixel to establish non-local optimized results. M.Xing proposed a segment-

tree structure to perform the non-local cost aggregation strategy [17]. These work proved 

that the non-local cost aggregation methods outperform the local ones much more.

Hence, this paper mainly focuses on the non-local cost aggregation procedure by comparing 

different tree construction techniques [16, 17]. Section 2 is an overview of the previous 

work of the cost aggregation procedure. We briefly review the workflow of the non-local 

framework and the non-local cost aggregation algorithm in Section 3.1 and then introduce 

the cross-trees and the two priors in Section 3.2. A discussion of the strategies for 

Cheng et al. Page 2

Pattern Recognit. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constructing different tree structures is also provided in Section 3.2. Experimental results 

and performance evaluations are shown in Section 4. A detail analysis of the short points of 

the tree-based non-local cost aggregation is given in Section 5. Finally, we draw the 

conclusions and discuss the future work in Section 6.

2. Previous work

The cost aggregation procedure can be considered as two sub-problems:(1) how to estimate 

the optimal support regions; (2) how to aggregate the matching costs of the pixels within the 

estimated support regions (usually, in terms of support weights). We review the related work 

in this section according to the two sub-problems above.

2.1. Various window-based methods

Most early local methods aimed at estimating various windows for different pixels, from 

adaptive [10, 11] to shiftable windows [18]. The optimal windows were often selected based 

on certain local properties to avoid covering disparity discontinuities. Fusiello et al 

developed a multiple window approach by performing cost aggregation in nine different 

window models and chose the window with the smallest aggregated cost as the optimal 

window. However, limited window models are not sufficient to represent support regions 

with arbitrary shapes and sizes. Some researchers proposed to use cross-based structures to 

represent various support regions and developed several competitive algorithms [19, 20].

Most of these methods considered the sub-problem (1) only, and gave all the pixels the same 

weight. It means that these methods were developed based on a simple smoothness 

assumption that all the pixels within the same support region have a constant disparity. Such 

methods may result in over-smooth disparity slices within smooth curved surfaces.

2.2. Adaptive support weights methods

One main resolution is adaptive support weights (ASW) strategy, in which weighted 

supports decide whether the neighboring pixels contribute more or less to the center pixel 

[12, 13]. The support weights that adapt according to similarity and proximity to the central 

pixel of the predefined large support window actually control the real aggregation region 

and power. However, computing support weights iteratively for each central pixel is a time-

consuming task. Many researchers indicated that such strategy can be approximately re-

implemented by using local filter such as bilateral filter [21] and guided filter [14, 22]. In 

this way, both the accuracy and the efficiency of the ASW algorithms have been improved. 

Hereto, the idea that the edge-preserving filters can be employed to aggregate the matching 

costs and to preserve the depth edges simultaneously becomes clear gradually. However, all 

the local filtering-based methods still establish locally optimized results within predefined 

windows which have a fixed size. Detailed comparisons and discussions of the local 

filtering-based methods can be found in two recent reviews [23, 24].

2.3. Tree-based non-local methods

As mentioned above, a MST-based non-local cost aggregation method was proposed 

recently [16]. In the same non-local framework, X.Mei et al. proposed to employ a ST 
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instead of a MST to optimize the non-local cost aggregation procedure [17]. Conceptually, 

they segmented the image at first and then constructed a sub-tree (i.e., a sub-MST) for each 

segment. Finally, a ST was constructed by linking these sub-trees for the non-local cost 

aggregation. The main idea, using the segment prior to avoid connecting two pixels which 

locate at the different sides of a segment boundary (i.e., potential depth boundaries), is 

similar with other segment-based stereo matching methods [25, 26]. Both the MST method 

and the ST method outperform the local methods in aggregation accuracy [14, 21].

Actually, constructing a tree or a graph to improve the optimization procedure is not new in 

many global methods such as Dynamic Programming (DP) and Loop Belief Propagation 

(LBP). Veksler firstly employed DP on a tree instead of a scanline to enforce vertical 

consistency to establish truly global optimization results [27]. Cheng Lei et al. improved the 

tree-based DP method by using a novel tree structure which they called region-tree [28]. 

Zitnick et al. formulated a new MRF for global optimization by over-segmenting the images 

[4].

In conclusion, for both the non-local cost aggregation and the global optimization which are 

based on a tree structure, the critical problem is the construction of the tree. In this paper, we 

focus on the non-local cost aggregation methods only. Hence, we describe the problem in 

the context of the non-local cost aggregation. To construct a tree from a graph, the important 

edges need to be preserved and the edges crossing the depth boundaries must be removed. 

By an important edge, we mean an edge whose two nodes are more likely to have the same 

disparity. Local criterions (i.e., color difference [16], distance [27] etc.), non-local properties 

(i.e., segmentation [17], over-segmentation [4] etc.) or a joint version of the two can be used 

to decide whether an edge should be selected to construct the tree. If an edge is selected, its 

two nodes are connected directly and they can get supports from each other during the cost 

aggregation procedure. Moreover, two nodes which are not connected directly by an edge 

can also get supports from each other through a unique path on the tree; see details in Fig.

1(b). Once the tree is constructed, the support weight between a pair of pixels is decided by 

the distance between them on the tree.

3. Algorithm

Our work is directly motivated by the two non-local cost aggregation methods recently [16, 

17] as well as the local filtering-based methods [14, 21] and a simple tree-based DP 

optimization method [29]. We employ two crossed trees, namely horizontal-tree and 

vertical-tree, and perform the nonlocal cost aggregation algorithm proposed in [16] 

successively to get the aggregated cost volume. For convenience, we use the cross-trees to 

denote the two crossed trees in the residual part of this paper. The constructions of the cross-

trees are simple, efficient and especially independent on any local or non-local properties. 

We make explicit smoothness assumption in our method by truncating the distance (i.e., 

color difference) between two neighboring pixels. However, performing the non-local cost 

aggregation on such trees directly will blur the depth boundaries. Hence, two different 

priors, namely edge prior and superpixel prior, are proposed to prevent the false smoothing 

at the depth boundaries. Based on the two different priors, two different algorithms are 

proposed respectively and each one has competitive performance compared to other non-

Cheng et al. Page 4

Pattern Recognit. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



local cost aggregation methods. By performing the non-local cost aggregation strategy on 

different trees, MST, ST and our method all have competitive rankings on the Middlebury 

website compared to the state of the art local cost aggregation methods.

In this section, we review the non-local framework at first and then propose our methods.

3.1. Non-local cost aggregation

The non-local framework for initial estimation of disparity maps can be concluded in four 

steps as following:

1. Cost function/cost volume estimation

2. Tree construction

3. Non-local cost aggregation on the constructed tree

4. Disparity estimation(WTA)

We mainly contribute to step 2 in this work, and Yang has proposed an efficient algorithm 

for step 3 which we will brief review in the remained part of this section [16]. Steps 1 and 4 

are commonly used techniques in the context of stereo matching.

In the non-local framework, the reference image I is represented as a 4-connected and 

undirected graph G = (V, E). Here, a pixel in I corresponds to a node in V and a pair of 

neighboring pixels are connected by an edge in E with the edge weight computed by using 

(1):

(1)

Here, s and r are two neighboring pixels in I, Is and Ir represent the intensity of s and r 

respectively. Veksler proposed a MIDDT tree by considering distance transform additionally 

to estimate the edge weights [27]. However, using sophisticated similarity costs contribute 

to improving the tree construction while at the price of increasing computational cost. Note 

that using various matching cost functions to compute the edge weight is not appropriate 

here [30, 31, 32]. When we compare two pixels within the stereo images respectively, the 

assumption is that the support regions of the two pixels are also similar if the two pixels are 

the same point in 3D space. In this case, we can use various strategies to compare the two 

pixels by utilizing their neighboring pixels within the local support regions. It is totally 

reasonable. However, when we compare the two neighboring pixels in the same image to 

decide whether they can support each other, we assume that the two neighboring pixels 

which have similar color are likely to have similar disparity. Here, there is no assumption 

that the two pixels' neighboring pixels are also similar because the image textures are not 

repeated everywhere.

For the color images, the edge weight is the maximum w(s, r) value estimated from three R-

G-B channels. Using the max color difference on each channel can guarantee that the two 

neighboring pixels which have similar intensity on all the three channels give high support 
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weights to each other. Using the max rather than other possibilities, such as the mean, is an 

empirical choice according to the experiments.

A subset T of E will be extracted to construct a tree where a unique path P(p, q) can be find 

between any pair of pixels (p, q) in I. The distance D(p, q) = D(q, p) between p and q is 

defined as the sum of the edge weights along P(p, q). Thus the weighted support S(p, q) 

which p and q give to each other is defined as (2) with a user-specified parameter σ:

(2)

For the disparity level d, let Cd(p) denote the matching cost of p. It is straightforward to 

compute the final aggregated cost  of p by using (3):

(3)

During the non-local cost aggregation, p gets weighted supports from all the pixels in I. It is 

different from the local filtering-based methods in which p gets weighted supports from its 

neighboring pixels within a local support region only. Usually, the local support region is a 

predefined square window.

Computing Cd(p) for each pixel p by using (3) iteratively is really time-consuming. Yang 

proved that the non-local cost aggregation can be accomplished in exactly linear time [16]. 

By performing a leaf-to-root and a root-to-leaf cost aggregation on the tree structure 

successively, the final aggregated cost for each node can be estimated (see Fig.2 for details). 

In the leaf-to-root pass, the intermediate aggregated cost  of each node q can be 

computed by using (4):

(4)

Here, Par(q′) denotes the collection of all the children nodes of q. Note that the final cost 

aggregation  equals to  for the root node p in Fig.2. Then for each leaf node q, 

the final aggregated cost  can be computed in the root-to-leaf pass as following:

(5)

For each disparity level, the computational complexity of the cost aggregation is O(n), 

where n is the number of the pixels of the reference image. Hence, the total computational 

complexity of the non-local cost aggregation algorithm is O(n · l), where l is the disparity 

range. To refine the established disparity maps, a non-local post-processing technique based 

on the tree is also proposed in [16].
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3.2. Cross-trees and Priors

Our work exactly follows the non-local framework, and the significant difference is that we 

employ a different cross-trees structure. Moreover, two different algorithms are proposed 

due to the two different priors (edge prior and superpixel prior) incorporated into the non-

local framework. The weights of the edges in G are also redefined according to the pixel 

similarity and the priors.

3.2.1. Cross-trees for non-local cost aggregation—The problem comes back to the 

construction of the tree. Yang constructed a MST which has the minimum sum of the edge 

weights among all the spanning trees of G [16]. The intuition is that an edge is less likely to 

cross the depth boundaries if its two nodes (two neighboring pixels in I) have higher pixel 

similarity. For the MST method, there are two problems need to be emphasized on: 1) the 

tree structure is not unique since there are a lot of edges which have the same weight; 2) the 

edges which lie in highly textured regions are less likely to be selected though neighboring 

color variation enhances the pixels' distinction. Hence, only employing simple local property 

is not enough for constructing a unique optimal tree. Non-local segment prior was 

additionally employed in [17] to enhance the tree construction procedure. Though accuracy 

improvement was achieved, it involved the segmentation task which is especially hard to 

tackle in some cases. Despite of the image segmentation task itself, constructing a sub-MST 

in each segment may still suffer from the problems of the MST construction if the segments 

are large.

Motivated by the problems discussed above, our tree construction aims at being independent 

on the reference image (i.e., not related to pixel similarity), but consistent with the fact that 

disparity maps are mostly spatially smooth. Hence, we make explicit smoothness 

assumption as global methods during the tree construction procedure, and then incorporate 

priors into the nonlocal framework to preserve the depth boundaries.

Instead of the pixel similarity, the proximity is referred only to construct the cross-trees. The 

structures of the cross-trees are shown in Fig.3. We perform the non-local cost aggregation 

algorithm on the two crossed trees successively. The final cost aggregation process for a 

pixel p is illustrated in Fig.4. To sum up, we perform a ‘window-based’ cost volume 

filtering in a non-local way. Different from the local filtering-based methods, the support 

‘window’ for each pixel is set to be the whole reference image.

As mentioned above, we make explicit smoothness assumption by assigning each edge a 

truncated weight as (6) at first, and then preserve the depth boundaries by incorporating a 

prior into the non-local framework later.

(6)

Here, τ is the threshold of the color difference of two neighboring pixels s and r. Truncated 

weights of the edges are corresponding to our global smoothness assumption. Note that the 

proximity is implicitly employed here since the distance is accumulated along a path on the 
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tree. In the other words, the further the two pixels in Euclidean space, the further the two 

pixels on the tree. Fig.5 shows the consistency of the two different spatial measurements.

3.2.2. Edge prior and Superpixel prior—Any pair of neighboring pixels is connected 

on the cross-trees with a truncated edge weight, and the non-local cost aggregation will blur 

the depth boundaries because we assume disparity smoothness everywhere. Due to this 

reason, appropriate priors must be employed to indicate the potential locations of the depth 

boundaries. One of the commonly used priors is the edge prior, as shown in Fig.6(a). 

However, only a small part of the color edges belongs to the true depth boundaries and 

assuming all the color edges as the depth boundaries will degrade the cost aggregation 

within highly textured regions. Motivated by the categorization scheme proposed in [33, 34], 

we propose to employ the superpixel prior in this work. By taking advantage of the over-

segmentation results, many false depth boundaries are removed as shown in Fig.6(b).

Someone may wonder why we employ over-segmentation instead of segmentation. We use 

the segmentation results as a prior to estimate the support regions during performing the cost 

aggregation. As the units of local support regions, the segments need to be compact and 

regular, especially in highly textured regions. From this perspective, segmentation 

algorithms cannot work as well as over-segmentation algorithms. Additionally, the depth 

boundaries are fully connected in this way since the superpixels are compact and regular. In 

this paper, we utilize the SLIC algorithm [35] which have competitive performance on 

adherence to potential disparity boundaries than other superpixel algorithms [36, 37, 38]. 

We have tried more complex constraints such as the segmentation and the global edge 

constraint (GEC) proposed in [33, 34], but the improvement was not obvious.

In our work, the weights of the edges are dependent on the pixel similarity (color difference) 

and the prior we employed. The weight of an edge is rewritten as following:

(7)

Here, e(s, r) ∩ the prior means that the edge between s and r crosses the prior. τ is the 

threshold of the edge weights if the edges do not cross the prior. τ is set to be 6/255 in all 

our experiments to enforce the cost aggregation between pixels at the same side of the prior. 

In this way, we aggregate the costs within planar surfaces and preserve the depth boundaries 

when the prior exists.

Fig.7 shows how the prior selects optimal support regions for the center pixel p. For an edge 

e(q3 → q2) on a path P(q3, p), its weight is defined as the color difference of the two 

neighboring pixels since it crosses the proposed prior. In this case, the distance from q3 to p 

will be raised sharply if the color difference of q3 and q2 is large. Hence, further pixels such 

as q3 will contribute much less to the center pixel p. By cutting the cost aggregation flow on 

different paths, our method can estimate support regions with arbitrary shapes and sizes, 

which is a challenge problem for traditional window-based local methods.
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To a certain extent, our work is also motivated by the cross-based structures methods [19, 

20]. Instead of estimating the cross-based structures locally, we use the priors to locate 

potential local support regions' boundaries and then estimate the support regions as cross-

structures on the horizontal and the vertical scanlines implicitly by cutting the cost 

aggregation flow as shown in Fig.7.

Note that for the superpixel prior, there are over-segment boundaries even between 

neighboring pixels within low-textured regions. Such over-segment boundaries will not 

terminate the cost aggregations from further pixels on the path since the edge weights (equal 

to pixel similarity as defined in (7)) are still low.

3.3. Computational complexity

For all the tree-based non-local methods, we compare the computational complexities of the 

tree construction and the non-local cost aggregation only because the other two steps are 

exactly the same for all the methods in the non-local framework.

For an N × N image, let n denote the number of the pixels in I and m = O(n) denote the 

number of the edges. For both the MST and the ST constructions, the computational 

complexity of the edge weights estimation is O(m). The computational complexity is 

O(log2m+2mlog2n+n) for the MST construction, and O(m +2mα(m)) for the ST1 

construction. Here, α(m) can be approximated as a small constant for practical applications 

according to [17]. For ST2, the tree construction time is doubled compared to ST1 because 

ST1 need to be performed at first to provide initial depth results. Our cross-trees structure 

needs n – N subtraction operations for constructing each tree and the total computational 

complexity is O(2(n – N)).

The computational complexity of the non-local cost aggregation (O(n·l)) is doubled in our 

algorithms and ST2 since we both need to process two trees successively. We use Cross_E 

to denote our cross-trees+edge prior-based algorithm and Cross_Sp to denote our cross-

trees+superpixel prior-based algorithm. Table 1 shows the comparison of the computational 

complexities of the entire five algorithms. For Cross_E and Cross_Sp, additional 

computations are needed to detect the color edges and to establish superpixels respectively. 

The exact execution time of each algorithm will be provided in the experiments (Section 4).

4. Experimental results

The performance of our method and the other two non-local cost aggregation methods (MST 

and ST) is compared in this section. Both qualitative evaluations and disparity maps are 

provided. Our method contain two algorithms: Cross_E and Cross_Sp. The ST method also 

contains two algorithms: initial ST-based algorithm ST1 and depth map enhanced ST-based 

algorithm ST2.

Code

The results of ST1 and ST2 are estimated by using the C++ code which has been published 

by the paper authors [17]. We implement our algorithms and re-implement MST in the same 

code framework. Hence, all the functions are the same in the five algorithms except the 
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functions of the tree construction and some pre-processing steps. This is an equitable way 

for comparing the cost aggregation accuracy and the running time of the algorithms.

Data sets

We use 27 Middlebury data sets [39], including the four commonly used data sets (Tsukuba, 

Venus, Teddy and Cones), to give a more reliable evaluation of the performance of the five 

algorithms. Moreover, we test MST, ST1 and Cross_E on many stereo video data sets from 

the Microsoft i2i dataset [40].

Parameter setting

For all the test data sets, the parameter of both our algorithms is constant: σ = 0.05. σ is set 

empirically to permit a pixel to get weighted supports from other pixels on the tree, and to 

cut the cost aggregation flow on a path at where it crosses the prior we employed.

For both our algorithms, the priors define the support region for a pixel p and σ controls the 

support weights of p's neighboring pixels within the estimated support region. A larger σ 

means that the cost of pixel p will be smoothed powerfully, and such parameter setting may 

result in over-smooth disparity maps. On the contrary, a smaller σ means a less powerful 

filtering of the cost of pixel p which will lead to noisy disparity maps.

For the Cross_Sp algorithm, the number of superpixels nsp is set to be n/(10 × 10). Here, we 

suppose that the stereo images can be over-segmented into superpixels with an approximate 

size 10 × 10. In the other words, we suppose that the superpixels with an approximate size 

10 × 10 will not cover the depth boundaries under this constraint for the test stereo images. 

A 10 × 10 superpixel, within highly textured regions of the reference image, usually has a 

clear distinction to find reliable corresponding points in the other image for the pixels within 

it.

However, nsp should be changed to a larger value to segment the stereo images into smaller 

patches (superpixels) for stereo images which contain tiny elements (less than 10 × 10 

pixels). In this way, the superpixels will not cover the tiny elements' boundaries while 

degrade the distinctiveness. Hence, nsp should be set as a trade-off between details 

preservation and superpixels' distinctiveness for matching.

For the MST, ST1 and ST2 algorithms, the parameters are set to be the same with the 

settings in the original papers. The AD-Gradient cost function proposed in [14] is used for 

all the five algorithms to compute the cost volume.

Table 2 shows the quality evaluation of the initial disparity maps established by using the 

five algorithms. We firstly perform the non-local cost aggregation algorithm on the different 

trees and then establish the disparity maps with the WTA strategy. To compare the 

aggregation accuracy, no post-processing is performed in this step and only the non-

occluded regions are evaluated. In Table 2, the normal numbers are the percentages of the 

bad pixels in the disparity maps with error threshold 1 and the subscript numbers are the 

relative rank in each row. ST1 and ST2 outperform MST for most of the test data sets as 

declared in the authors' paper [17]. The initial disparity maps established by using the five 

Cheng et al. Page 10

Pattern Recognit. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



algorithms are shown in Fig.8. Both our algorithms perform better than other methods 

within planar surfaces for the reason that the truncated edge weights enforce strong cost 

aggregations within these regions where no prior is detected or the color difference is low.

Among the 27 test data sets, Cross_E ranks 1 for 8 stereo pairs, Cross_Sp ranks 1 for 10 

stereo pairs and ST2 ranks 1 for 9 stereo pairs. The average rank and the average error are 

computed in the last two rows of Table 2. Both our algorithms are competitive and rank 1 

and 2 respectively. Cross_Sp has both the best overall accuracy and the best overall rank.

For the four standard Middlebury data sets, we test the five algorithms on a PC platform 

with Core i5 3.00GHz CPU-8GB Memory-64 bit OS. The average execution time for each 

algorithm is: MST-0.44s, ST1-0.49s, ST2-0.97s, Cross_E-0.49s, and Cross_Sp-0.69s. 

Cross_E and ST1 have the similar efficiency with MST. Cross_Sp is slower than Cross_E 

due to the superpixel algorithm we employed [35]. ST2 is the slowest algorithm since it 

requires an initial estimation of the depth map and an enhanced construction of the tree.

We use the Cross_Sp algorithm to establish the initial disparity maps for both the left and 

the right images of a stereo pair. After the crosschecking, we employ a constant time 

weighted median filter (WMF) as the post-processing technique [41]. The final disparity 

maps of the four standard Middlebury data sets are shown in Fig.9. Table 3 is the 

performance evaluation on the Middlebury test bed. Compared to the results which other 

authors submitted to the Middlebury website, our method ranks 2 among the four methods. 

GF had been the best local method when the original paper was published [14]. Actually, the 

gaps between the average error rates of the algorithms are really narrow and different post-

processing techniques have significant effect on the final results. In this paper, we mainly 

focus on the cost aggregation accuracy (i.e., the initial disparity maps without post-

processing).

Additional results of the Illkay and the Simon stereo video data sets from the Microsoft i2i 

dataset are shown in Fig.8. We only compare the MST, ST1 and Cross_E algorithms for 

video processing because they are much faster than Cross_Sp and ST2 and have the similar 

efficiency. Cross_E establishes the most smooth disparity maps within the foregrounds and 

has the best performance near the foregrounds' depth boundaries.

5. Discussion

A challenge problem of local stereo matching methods is locally repeated texture. In such 

case, a pixel of the reference image can often find several correspondents in the other image 

because local methods measure the similarity of a correspondence locally. In this section, we 

show the performance of the non-local algorithms on three challenge test data sets: Midd1, 

Midd2 and Plastic. For all the images, there is large repeated texture in the backgrounds or 

foregrounds. As shown in Table 4, the average error rates of the algorithms are all over 30%. 

The bad results mainly locate in repeated texture regions as shown in Fig.11.

Actually, all tree-based non-local methods are proved to be still establishing locally 

optimized results within large planar surfaces due to the Gaussian kernel of the support 

weights. As we have discussed in Section 3, the distance between two pixels increases 
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progressively along a path. Fig.12 shows that a leaf node contributes to the root node only 

when the distance between them is smaller than a value which is related to the parameter σ. 

Hence for a given σ, the maximum size of the support regions is limited. It means that ‘non-

local’ methods still establish ‘local’ optimized results when there are large planar surfaces 

with repeated texture.

6. Conclusions and Future Work

We proposed a novel cross-trees structure for the non-local cost aggregation. Based on two 

different priors, two algorithms are implemented to address the stereo matching problem. 

Compared to the other two top-ranked non-local cost aggregation methods, both our 

algorithms have better overall rank and overall accuracy for initial disparity map estimation. 

Performance evaluation on the Middlebury test bed also shows that our method is 

competitive. The future work should emphasize on constructing more effective trees to 

resolve the challenge problem as we discussed above. New ideas for performing the non-

local cost aggregation are needed too.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Cost aggregation of the center pixel. (a) Local support region within the square frame: the 

center pixel gets supports only from its neighboring pixels. (b) Tree: an unique path can be 

found between the center pixel and each pixel of the image. The dot line denotes that many 

pixels on the path are not shown here.
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Figure 2. 
Two-pass non-local cost aggregation. Here, the pixel p is treated as the root node of the tree. 

(a) leaf-to-root pass: The intermediate aggregated cost of each pixel is computed in a 

straightforward way. (b) root-to-leaf pass: The final aggregated cost for each pixel can be 

computed by using the results of (a).
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Figure 3. 
Illustration of the proposed cross-trees structure. Left: horizontal-tree; right: vertical-tree. 

The edges denoted as dot lines are the extra edges we add to connect different rows or 

columns for constructing a tree. The weights of these edges are set to be a large number to 

prevent cost aggregation between different rows or columns in practical applications.
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Figure 4. 
Sequential non-local cost aggregation of a pixel p. The horizontal arrows denote the non-

local cost aggregation on the horizontal-tree and the vertical arrows denote the non-local 

cost aggregation on the vertical-tree.
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Figure 5. 
The proximity in Euclidean space and the distance on the tree.
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Figure 6. 
Priors incorporated into the non-local framework. Left: edge prior; Right: superpixel prior. 

The edges are detected by using Canny edge detector. The superpixels are estimated by 

using the SLIC algorithm [35].
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Figure 7. 
Non-local cost aggregation for pixel p on the cross-trees structure with a prior. Green arrows 

represent cost aggregation flow on horizontal scanlines and red arrows represent cost 

aggregation flow on the vertical scanlines. A cross-based structure which consists of these 

color arrows is the support region of pixel p.
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Figure 8. 
The initial disparity maps without post-processing. The 1st row: Baby2; The 2nd row: 

Reindeer; The 3rd row: Lampshade1; The 4th row: Wood2. The bad pixels in the disparity 

maps are marked red. See the regions of (e) and (f) within the yellow rectangular boxes, 

both our algorithms establish more smooth disparity maps within planar surfaces. Details are 

best viewed in the electronic version.
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Figure 9. 
Experimental results of the Middlebury data sets. The 1st row: the reference images; The 2nd 

row: the disparity maps established with ST2. The 3rd row: the disparity maps established 

with Cross_Sp+WMF. The 4th row: the disparity maps established with GF. The 5th row: the 

disparity maps established with MST.
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Figure 10. 
For the stereo video data sets, the disparity maps of a frame are established by using the 

MST, ST1 and Cross_E algorithms respectively. The 1st row: Ilkay; The 2nd row: Simon. 

Cross_E performs much better than the other two algorithms in the foregrounds. The non-

local post-processing technique proposed in [12] is employed in all the three algorithms.
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Figure 11. 
The initial disparity maps without post-processing. The bad pixels in the disparity maps are 

marked red (see details in electronic version). The 1st row: Midd1; The 2nd row: Midd2; The 

3rd row: Plastic.
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Figure 12. 
Gaussian kernel of the support weights, σ = 0.1. The horizontal axis shows the un-

normalized distance between two nodes p and q on the constructed tree, and the vertical axis 

shows the values of support weights. As we can see, the root node can only get effective 

support weights from leaf nodes which are near enough (for example, D(p, q) < 80, S(p, q) > 

0.05).
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Table 1

Computational complexities of the tree construction and the non-local cost aggregation.

Methods
Computational Complexity

Tree Construction Non-local Cost aggregation

MST O(m + log2m + 2mlog2n + n) O(n · l)

ST1 O(2(m + mα(m))) O(n · l)

ST2 O(4(m + mα(m))) O(2(n · l))

Cross_E O(2(n – N)) O(2(n · l))

Cross_Sp O(2(n – N)) O(2(n · l))
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