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1. Summary
The Convention on Biological Diversity (CBD)’s strategic
plan advocates the use of environmental surrogates, such as
ecosystems, as a basis for planning where new protected areas
should be placed. However, the efficiency and effectiveness of
this ecosystem-based planning approach to adequately capture
threatened species in protected area networks is unknown. We
tested the application of this approach in Australia according to
the nation’s CBD-inspired goals for expansion of the national
protected area system. We set targets for ecosystems (10% of
the extent of each ecosystem) and threatened species (variable
extents based on persistence requirements for each species) and
then measured the total land area required and opportunity
cost of meeting those targets independently, sequentially and
simultaneously. We discover that an ecosystem-based approach
will not ensure the adequate representation of threatened species
in protected areas. Planning simultaneously for species and
ecosystem targets delivered the most efficient outcomes for both
sets of targets, while planning first for ecosystems and then
filling the gaps to meet species targets was the most inefficient
conservation strategy. Our analysis highlights the pitfalls of
pursuing goals for species and ecosystems non-cooperatively and
has significant implications for nations aiming to meet their CBD
mandated protected area obligations.

2015 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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2. Introduction
Protected areas are pivotal for conserving both ecosystems and threatened species [1]. While the
persistence of biodiversity often requires a suite of management strategies, protected areas provide
a buffer from a myriad of threatening processes [2,3]. Gap analyses of the current global coverage
of protected areas (approx. 12% of Earth’s land surface) highlight that many ecosystems and most
threatened species are not well represented [4–9]. In most countries, a lack of systematic planning has
given rise to significant biases in the location of protected areas [10,11]. Typically conservation land
was selected in locations that were not required for other, more lucrative, land uses [11]. Systematic
conservation planning approaches have sought to redress these biases by using spatial data on species
distributions and ecosystems to prioritize locations for new protected areas [12]. The expansion of
current protected area networks has the potential to overcome these biases and improve ecosystem
protection and the survival of threatened species populations, helping to avoid biodiversity loss and
species extinctions [5,6,13,14].

Over the past decade, there has been a major shift towards ecosystem-based planning for the
expansion of protected area networks [15–18]. Ecosystem-based targets use environmental surrogates at
various scales (e.g. bioregions and ecoregions) with the intention of efficiently representing biodiversity
as a whole, including species and processes [15,19]. Ecosystem-based planning is used as an approach to
avoid the often challenging need for unbiased, high-resolution information on the spatial distributions
of species [20–22]. Much of the existing species data have sparse or patchy distributions biased by survey
effort, causing species-driven conservation planning to fail in representing biodiversity as a whole [23].
Ecosystem data are typically spatially contiguous and coarser than species data, thereby providing
more flexibility for locating new protected areas and more options for avoiding conflicting land
uses [8].

Critics of ecosystem-based targets argue that they are too coarse to effectively represent biodiversity,
allowing many species to fall through the cracks [1,20,24,25]. For example, both Araújo et al. [24] and
Lombard et al. [22] found that environmental surrogates perform relatively well for plants but fail to
adequately represent vertebrates, while Rodrigues & Brooks [1] found that environmental surrogates
were poor at representing species. Further, the effectiveness of environmental surrogates decreases for
species that are rare, have patchy or historically driven distribution and/or are data deficient, which is
the case for many threatened species [21,22].

The global goals stated within the Convention on Biological Diversity (CBD) strategic plans in both
2004 and 2010 are a primary reason for the shift from species-based to ecosystem-based planning for
future protected area acquisitions [16]. Specifically, in the 2010 CBD’s Aichi target 11, there is a clear goal
to conserve 17% of terrestrial and inland waters and 10% of marine and coastal ecosystems [16]. The
CBD states that networks should be ecologically representative, but gives no specific stipulation for how
much habitat for threatened species should be protected [16]. The achievement of threatened species
protection under Aichi target 11 is therefore open to interpretation by nations considering the expansion
of their protected area estate.

There are 195 parties that are part of the CBD treaty, each with the opportunity to translate these goals
to a national level in ways that may result in various outcomes for biodiversity represented in protected
areas. For example, ecosystems are the base unit of the South Africa National Protected Area Expansion
Strategy, which plans to achieve the 17% representation by targeting different proportions of ecosystems
depending upon their diversity and protection requirements [18]. Similarly, Australia’s National Reserve
System’s (NRS’s) primary goal at the time of research was to protect 10% of each of its 85 bioregions [26]
by representing at least 80% of the different types of ecosystems within each bioregion by 2015, with
a secondary goal to represent core areas for threatened species by 2030 [26]. This plan is an example
of a coarse/fine filter approach, which advocates planning for ecosystems and then filling the gaps for
species [27,28], which is also applied in North America [28,29].

The use of ecosystem-based targets, both in global protected area guidelines and country-level
protected area expansion policy, has occurred in the absence of scientific analyses on how efficiently the
ecosystem-based surrogates represent threatened species. While several studies [1,30,31] have examined
the comparative benefits of both approaches, none have investigated their efficiency in protecting both
species and ecosystems in the context of the CBD’s strategic plan and country-level priority setting. Full
implementation of the 2010 CBD strategic plan across all signatory countries is likely to take considerable
time and resources, but would represent one of the greatest expansions of the global protected area
estate in modern times [8]. An improved understanding of how an ecosystem-based approach is likely
to impact conservation outcomes is therefore timely and will assist countries in translating the CBD
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goals into protected area expansion that efficiently and effectively conserves threatened species as well
as ecosystems.

Here, we conduct a novel assessment of the impact of ecosystem-based planning and the global
CBD goals on protected area outcomes for threatened species at the country level upon which they are
implemented. We assess the potential for efficiency and effectiveness in threatened species and ecosystem
coverage in the expanding protected area network across Australia, arguably the first country to fully
embrace a systematic planning approach using ecosystem-based targets to design the protected area
estate [26,32,33]. A recent continent-wide analysis by Watson et al. [34] found that despite this relatively
systematic approach, threatened species coverage in the protected area estate (which covered 11.6%
of the terrestrial surface) is still inadequate, with approximately 12% of threatened species completely
absent from the protected area network. The Commonwealth of Australia’s plan to expand their reserve
system (known as the NRS [26,35]) follows the guidelines and ecosystem-based approach suggested by
the CBD.

Specifically, we investigate (i) how well threatened species are likely to be captured in the resultant
protected area network if Australia aims to meet its 10% targets for all ecosystems most efficiently (as
current policies suggest) by minimizing the area required; (ii) how well ecosystem-based targets are
likely to be met if Australia’s protected area network is designed to meet targets for threatened species
only; and finally (iii) the efficiency and effectiveness of planning for both sets of targets simultaneously
versus sequentially (e.g. meeting ecosystem targets first and species targets later or vice versa). We define
efficiency as the amount of area required to meet a given set of targets, and effectiveness as the level of
representation of a target in a given protected area network.

3. Material and methods
3.1. Ecosystem spatial data and targets
At the time of this research, Australia was divided into 85 bioregions, hereafter ‘ecosystems’, based on the
Interim Biogeographic Regionalization of Australia (IBRA bioregions [33], v. 6.1), at a spatial resolution
of approximately 10 km2. These ecosystems were derived by compiling geographical information on
continental scale gradients and patterns in climate, substrate, landform, vegetation and fauna, and each
bioregion is considered a distinct ecologically and geographically defined area [35]. The Commonwealth
of Australia [26,35] has set a target of at least 10% representation in each ecosystem in the protected area
estate for the NRS, which is the ecosystem target adopted in this study.

3.2. Threatened species data and targets
We considered distributions of 1320 species from the total of 1737 species listed under the Environmental
Protection and Biodiversity Conservation Act. We used maps of species’ distributions at a resolution of
approximately 10 km2, developed for extant terrestrial and freshwater threatened species available in
the Species of National Environmental Significance database [36]. We excluded 95 extinct species and
367 species that are marine, freshwater or migratory, or whose distributions are only estimated with low
certainty. The species we considered, hereafter referred to as ‘threatened species’ are listed as Critically
Endangered, Endangered or Vulnerable [36] (note that the definitions of these categories as applied
within Australia differ slightly from those employed globally by the IUCN Red List, and also that there
are species on the IUCN Red List that are not listed nationally, and vice versa).

Following Watson et al. [34] and building on a method developed by Rodrigues et al. [13] and Kark et
al. [37], we set a series of adequacy targets for these 1320 threatened species based on geographical range
size and level of endangerment. This method develops area-based targets that scale with geographical
range size, requiring species with smaller ranges to be increasingly well protected [5,13,38–40]. A target of
complete coverage (i.e. 100% of remaining extent) by protected areas was set for those species considered
Critically Endangered and those species with a geographical range size of less than 1000 km2. Conversely,
for those species with large range sizes (more than 10 000 km2), the target was set to cover 10% of current
range. For species with geographical ranges of intermediate size (between 1000 and 10 000 km2), the
target was linearly interpolated between these two extremes, with decreasing representation targets
(smaller percentage of their range) set for species with larger range sizes (electronic supplementary
material, figure S1).
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3.3. Spatial prioritization analyses
We determined the amount of each of the 85 ecosystems and 1307 threatened species already covered by
the current protected area estate by intersecting the ecosystem maps and threatened species distribution
maps with the map of the Australian protected area estate [41] (this includes IUCN management
categories I–VI). For both ecosystems and species, we masked out distributions that occurred in cleared
areas (i.e. are not potential for conservation). For some species, the area of remaining available intact
habitat was smaller than their set target. In such cases, we reduced the target for these species to
represent 100% of remaining available intact habitat. Thirteen of our 1320 species had none of their
distribution within areas that were considered intact and available for conservation, and were counted
as gap species and their targets were set to zero. This left 1307 species as our threatened species
target set.

We created a planning unit layer of 10 × 10 km grid cells covering Australia, which was the smallest
resolution computationally feasible and approximately matches the scale of the maps of threatened
species [34] and ecosystems [42]. We intersected the planning unit layer with the protected area layer,
such that each existing protected area was a separate planning unit. We determined the amount of each
species and ecosystem type in each planning unit based on their spatial overlap.

We used the systematic conservation planning software MARXAN [43] to identify solutions for the
expansion of Australia’s protected area network to meet the above targets for ecosystems and threatened
species coverage. MARXAN uses a simulated annealing algorithm to select multiple alternative sets
of areas that meet pre-specified biodiversity targets while minimizing overall cost [43]. It has been
used for identifying proposed conservation areas in Australia and throughout the world (e.g. [44–46]).
When investigating spatial options for expansion, we locked in the current protected area estate and
assumed that targets for all species and ecosystems were of equal importance to meet. We set the
cost of each planning unit as the total area potentially suitable for conservation within the planning
unit, i.e. we assumed that only areas of native vegetation would be suitable for inclusion in the
protected area estate, and we used area is a universal surrogate for the costs of protected area
management [43].

We used MARXAN to identify 500 solutions for each of five scenarios (table 1). First, we identified
the additional area required to protect all the ecosystem-based targets (by being added to the current
network) and assessed how well the selected network covered the adequacy targets for the 1307
threatened species (table 1, scenario 1). Next, we determined the minimum amount of newly protected
land needed to meet the range-based targets for threatened species and assessed how well this solution
met the representation targets set for ecosystems (table 1, scenario 2). In our third and fourth scenarios
(table 1), we investigated how much additional land area would be required to be added to the network
formed in scenarios 1 and 2 to achieve all targets for both species and ecosystems, i.e. achieving 100%
of all targets in a stepwise way. Lastly, for scenario five, we established the minimum amount of land
needed to create a protected area network for both ecosystems and species targets when planning
simultaneously (table 1).

All five scenarios were evaluated by: (i) the total number and percentage of targets that were fully
met; and (ii) the average proportion of coverage for each set of targets (species and ecosystems) in
the top solution for each scenario (coverage was calculated per target, and if more than 100% of a
target was met, it was capped at 100% when averaging across all targets in the set). We compared
the dissimilarity between scenarios (1–5) using Jaccard distances for both the added protected areas
only and the entire network including the existing protected areas (electronic supplementary material,
table S1).

We also investigated the sensitivity of our results to: (i) the measure of cost we used (area) by
comparing with a cost based on forgone agricultural opportunities [47]; and (ii) the possible impact
of the reserve expansion being driven by current location of protected areas, by testing a scenario where
protected areas were not locked in. First, we re-ran scenarios 1–5 (table 1) with the cost of protecting a
planning unit based on its current agricultural profitability, instead of its area (higher profitability values
represent higher opportunity costs). We used a GIS agricultural profit map ($ ha−1) from Marinoni et al.
[47] to calculate a per planning unit annual profitability value in $ ha−1 and multiplied it by the area
of the planning unit potentially suitable for conservation, and used this value as the planning unit cost.
Negative values were rounded to zero and a transaction cost of $10 000 was added proportionally to the
planning size as the minimum land value [44]. Second, we re-ran the analysis without locking in existing
protected areas, thus capturing a scenario where no fixed current protected areas network exists and all
non-cleared areas are available for conservation.
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4. Results
There is a large degree of variation in the coverage of ecosystems (bioregions) and threatened species
in the current protected area network (table 1). Forty-eight (56.5%) ecosystems have achieved their
target of 10% protected; however, some ecosystems are poorly represented, and on average ecosystems
have attained 72.6% of their target level of protection. The protected area estate is performing worse
for threatened species, with only 284 (21.5%) threatened species reaching their range-based target. On
average, across all species, 47.3% of the target area is covered in the current network (table 1).

We found that a minimum of 29.5 million hectares must be added to the existing protected area
network to achieve 10% representation of each ecosystem. The solution with the sole target of achieving
10% of each ecosystem in the smallest amount of area requires approximately 15.4% (table 1) of terrestrial
Australia to be in protected areas (figure 1a). One of the main reasons that the required national-level
coverage is greater than the 10% target is because some ecosystems, mostly arid ecosystems [48], have
been protected to a level above 10%. Another reason is that many planning units are selected to meet
targets for ecosystems that only occur in a small portion of the unit. Expansion aimed solely at increasing
ecosystem representation would incidentally increase the number of threatened species adequately
captured by 3.2% and increase the average proportion of adequacy targets met across all species from
47.3% up to 52.2% (table 1).

Expanding the current protected area network to represent all threatened species adequately without
considering ecosystem targets would require an additional 54.9 million hectares. This equates to a
protected area system that is approximately 144 million hectares in size (or 18.7% of Australia; table 1
and figure 1b). In this scenario, the number of ecosystems protected to a 10% level would increase from
48 to 60.

If the protected area network is expanded to meet ecosystems and threatened species targets
simultaneously, an additional 72 million hectares would require protection (approx. 21.0% of Australia’s
land surface; figure 1c and figure 2). Planning to meet these same goals sequentially, starting with
ecosystems targets and then adding areas to meet threatened species targets, would require 79.5 million
hectares (21.9% of the land; table 1 and figure 2) to be added to the existing network, which is
approximately 7 million hectares more than the most efficient scenario that integrated these targets.
Planning sequentially, starting with threatened species targets and then adding areas to achieve the
10% ecosystems representation target, will require a similar amount of land as planning simultaneously
(table 1 and figure 2).

There are substantial differences in the spatial configuration of the protected areas network expansion
between the five scenarios (electronic supplementary material, table S1). The majority of the difference
lies between scenarios 1 and 2 (selection for ecosystems or selection for species, figure 1a,b, Jaccard
dissimilarity distance of added protected areas dj = 0.982). When planning for ecosystems only (figure 1a),
we get a map of protected areas which are arranged relatively evenly throughout Australia as a result
of the nature of the ecosystems, which are large non-overlapping spatial features. When planning for
threatened species (figure 1b), the resulting network is concentrated around the coastline, reflecting the
fact that species distributions are usually small dynamic units affected by internal and external processes
and reflect past land-use changes [49]. Larger protected areas might be more effective in promoting
persistence for biodiversity and might be more robust to climate change [50,51]. However, a species-
based approach is likely to protect more areas that are threatened by habitat loss and valuable for
recreational use by society [52].

The same pattern of cost-effectiveness holds when using agricultural profits as the cost layer instead
of land area, indicating that our analysis was robust to using either of these costs surrogates (electronic
supplementary material, figure S2). Planning for ecosystems only marginally improves protection for
threatened species and filling the gaps to reach 100% of species targets delivered the most costly scenario
(electronic supplementary material, table S2). Planning for both targets simultaneously again proved the
most cost-effective approach, followed by sequentially planning first according to species targets and
then adding areas to achieve ecosystem targets (electronic supplementary material, table S2).

When performing the same analyses but assuming that no current protected area network exists,
scenarios follow the same overall pattern, with simultaneous planning (scenario 5) being the most
cost-effective closely followed by sequential planning starting with species (scenario 4). Again,
sequentially planning starting with ecosystems (scenario 3) was the least cost-effective option (electronic
supplementary material, table S3). Planning according to ecosystems only (scenario 1) required less area
than the current protected area network but only protected 9% of the species while planning according
to species achieved 60% of the ecosystems targets (electronic supplementary material, table S3).
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Figure 1. Spatial distribution of proposed protected areas and existing protected areas for each of the planning scenarios. Grey areas
represent the current protected areas; black areas represent the proposed additional protected areas for each scenario’s best solution.
(a) Achieving 10% ecosystem targets; (b) achieving threatened species coverage targets; and (c) achieving both threatened species and
ecosystem targets simultaneously.
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Figure 2. Comparing the efficiency of the two stepwise scenarios and the simultaneous scenario (scenarios 3–5): from the existing
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the gaps for the opposite target-type (ecosystem or species). The plain bars (left y-axis) show the increase in land area (as% of Australia’s
land area). The diagonally striped bars represent percentage of species targets met (right y-axis). The horizontally striped bars represent
percentage of ecosystem-based targets met (right y-axis).



8

rsos.royalsocietypublishing.org
R.Soc.opensci.2:150107

................................................
5. Discussion
If implemented by signatory nations, the CBD 2010 strategic plan will lead to the largest increase in
global protected area establishment in history [7,8]. Importantly, national protected area plans adopted
by governments often follow the global CBD guidelines, which have explicitly promoted an ecosystem-
based approach to achieve the expansion [16,53]. We tested whether an ecosystem-based approach, by
itself, would be effective in adequately conserving threatened species, using Australia as a case study.
We found that prioritizing future protected areas based on representing the 85 major ecosystems is likely
to fall well short of capturing adequate amounts of many (approx. 75%) threatened species’ ranges.

We found that planning for the expansion of protected area networks to meet targets for ecosystems
and species at the same time will achieve both sets of targets with fewer resources and less land. This
result contrasts with the stepwise coarse/fine filter approach, which we show is likely to be a less efficient
way to achieve targets for both species and ecosystems together. Our results concur with other analyses
which show that if the goal is to protect species and ecosystems, a dual approach is most effective [21,22,
49]. Simultaneous planning is most efficient because the planning units that collectively meet both goals
most efficiently can be identified, avoiding the selection of planning units that become redundant once a
secondary goal is added.

The efficiencies gained by simultaneous planning on a continent the size of Australia are modest,
but could become enormous once multiplied up to a global scale. Assuming the same patterns hold,
the efficiencies gained by planning for threatened species and ecosystems together across the world
would equal an area the size of a third of all EU countries. Our results have significant implications
for how nations should interpret the CBD strategic plan. Implementation of the ecosystem-based targets
alone is likely to mean future protected areas will not be optimal to meet each country’s commitment to
protecting threatened species, nor the overall aim of the CBD. Considering the biodiversity crisis most
nations currently face [54] and the limited amount available for conservation [55], future acquisitions of
protected areas need to be efficient in achieving ecosystem and threatened species representation.

The disparity between protected area network expansion for threatened species targets versus
ecosystem-based targets is due to the differences in the spatial resolution of the two types of features.
Ecosystems are large and non-overlapping, permitting flexibility in which planning units are selected
for conservation and promoting a spatially even spread of protected areas. Alternatively, species
distributions are often smaller, can overlap, are spatially aggregated and reflect land-use history [49,52].
As such, the areas still available to these species are spatially skewed and usually small compared with
the large and widely distributed ecosystems [49,56]. While many nations do not have extensive spatial
data on their threatened species, the IUCN Red List assessments make this freely available when it does
exist [57].

We do not attempt to present a future plan for Australia’s protected area network, which would entail
the inclusion of further social, economic and biological considerations. We assume all areas are available
for protected area expansion, but in reality factors such as opportunities for landholder engagement,
public accessibility and feasibility would impact on this availability [39,58,59]. Further, while a well-
managed, well-placed protected area network provides a key component required to facilitate the
persistence and recovery of threatened species [52,60–62], many threatened species require a more
intensive management programme than gazetting of protected areas alone [63,64]. The full costs of
protecting and managing areas include the opportunity costs of not developing a site, direct costs such
as infrastructure, maintenance and salaries, and the costs of planning and implementing management
programmes [65,66].

Additional ecological considerations required in a real-world protected area expansion task also
include the consideration of species distributions under climate change, minimum protected area size,
and connectivity and corridors, which may be important for improving the likelihood that species will
persist in reserves over the long term. Future research will need to consider the dynamic nature of threats
such as land-use change and climate change, presenting a need to assess both species and ecosystem
range shift to these changes. Moreover, given the role of biodiversity-driven ecosystem services such
as pollination, pest control and recreation [67], it may be important for real-world planning to consider
ecosystem services. Data and targets for threatened species, ecosystems and protected areas are regularly
updated but the minor changes that have recently occurred are not likely to affect the conclusions of our
analyses [36,68,69].

We found that expanding the protected area network to meet the targets used in this study would
result in forfeiting (or shifting the locations for generating) almost 5 billion dollars in annual potential
agricultural profit. Due to the simplifications we made in our analysis, it is likely that a real-world
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comprehensive protected area network in Australia would require a larger total area being needed to
meet ecosystem and species targets, as the most ‘efficient’ options may not be available nor sufficient to
ensure species persistence. We also note that protected areas can provide alternative sources of income
by creating jobs, helping to develop rural areas and tourism revenues and providing benefits for human
health and wellbeing while helping to protect the intrinsic values of nature [70]. Regardless of the cost
and size of the resultant protected area estate, an efficiency approach such as the one we present serves
to minimize the costs of providing these benefits to society.

Biodiversity loss is a global problem. However, the expansion of protected area networks is typically
planned at a national level. In countries such as Australia, where ecosystem and species databases
exist, planning for both ecosystems and species can occur simultaneously to deliver the most efficient
solutions. Countries with protected area expansion plans inspired by interpretations of the CBD
guidelines [17,18,26] need to consider the best available data on both species and ecosystems if both
are to be efficiently protected.
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cited.
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