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1. Summary
Both social and ecological factors influence population process
and structure, with resultant consequences for phenotypic
selection on individuals. Understanding the scale and relative
contribution of these two factors is thus a central aim in
evolutionary ecology. In this study, we develop a framework
using null models to identify the social and spatial patterns
that contribute to phenotypic structure in a wild population
of songbirds. We used automated technologies to track 1053
individuals that formed 73 737 groups from which we inferred
a social network. Our framework identified that both social
and spatial drivers contributed to assortment in the network.
In particular, groups had a more even sex ratio than expected
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and exhibited a consistent age structure that suggested local association preferences, such as preferential
attachment or avoidance. By contrast, recent immigrants were spatially partitioned from locally born
individuals, suggesting differential dispersal strategies by phenotype. Our results highlight how
different scales of social decision-making, ranging from post-natal dispersal settlement to fission–fusion
dynamics, can interact to drive phenotypic structure in animal populations.

2. Introduction
Group dynamics are an important part of an individual’s social landscape. Group size can impact
predation risk through dilution [1], selfish herd dynamics [2] or predator confusion effects [3]. The social
links between individuals can also be important for gathering information about the environment [4–7],
such as finding food [8–10]. Group-living often is typified by a trade-off between these benefits and costs
incurred through competition [1]. However, costs and benefits of joining groups may vary according
to the environment [11], individual phenotypic characters (such as those influenced by dominance or
sex [12]) or with the existing composition of the group (similarity or difference in phenotype, for example
the oddity effect [3]). If the benefits of being in a group vary with the phenotypes of its members,
we should then expect regular patterns of associations to emerge between phenotypes in a way that
maximizes the individual fitness of participants (such as kin structure in cooperative breeders [13]). How
these patterns emerge in populations, whether from social (attraction or avoidance) or spatial (acceptance
or exclusion) effects remains largely unexplored [14].

Fission–fusion societies are common across taxonomic groups. These are typified by groups that
have short-term structural stability and high turnover in membership. Classic examples of animals
that exhibit this social dynamic include primates [15–17], bats [18,19], elephants [20,21], red deer [22],
as well as birds [23–26]. This dynamic structure is thought to result in linkages across all levels of
these populations, from pairwise to landscape community interactions [27]. Such behaviour could be
adaptive if simple pairwise interactions facilitate the emergence of complex patterns at the population
scale [28,29]. For example, larger groups may be better at tracking environmental gradients [30]; thus,
as the environmental signal deteriorates, shifting individual preferences towards a more gregarious
joining policy can lead to group sizes best suited for current conditions [11]. In particular, fission–fusion
dynamics are thought to facilitate behavioural plasticity, which could play a critical role in successful
individual responses to environmental variability.

Individuals may also be able to influence particular selection pressures by choosing their social
environment [31]. For example, males with poor sexual ornamentation could associate with other
poor-quality males, enabling them to increase their relative quality, and subsequently benefitting their
fitness [32]. Given that fission–fusion dynamics vary the membership of individuals across groups,
the opportunities for these individuals to find an optimal social niche may be markedly higher in
these systems than in species with more stable social systems. In this case, although the identities that
individuals associate with in groups can change, the phenotypes of their associates may follow consistent
non-random patterns [33]. For example, large fish may consistently interact with other large fish. Thus,
unlike mechanisms relying on repeated interactions between individuals, such as cooperation [34],
selection could influence individual fitness, regardless of the specific identity of participants in the
groups [35].

In order to determine at what scale structured interactions between phenotypes (such as assortment
or disassortment) could be operating, we recorded the composition of naturally occurring flocks of
birds in a winter woodland population. Using a large dataset collected through extensive sampling of
individuals fitted with passive integrated transponder (PIT) tags, we determine (i) how stable groups are
over time, (ii) how groups varied in size according to population density and time of year, (iii) whether
group composition reflected the local availability of individuals, and finally (iv) whether social or spatial
variation in the distribution of phenotypes led to phenotypic assortment over the length of an entire
winter. In doing so, we investigate the potential for social dynamics (i.e. group formation) to contribute
to evolutionary processes, as non-random association of phenotypes can lead to variable selection [33].

3. Material and methods
The study took place at Wytham Woods, Oxford (51◦46′ N, 1◦20′ W). The breeding great tits (Parus major)
in this 385 ha woodland are the focus of a long-term study, with over 1000 nest-boxes monitored annually.
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Since 2007, all breeding adults and chicks have been caught and fitted with PIT tags, in addition to the
standard British Trust for Ornithology metal ring. Morphometric measurements, including age and sex
were recorded for every bird caught as adults (93% of all birds in this study). This marking protocol has
been supplemented by intensive autumn and regular winter catching, in order to ring and tag immigrant
birds, as part of a study into their social ecology (see [8,36,37]). This approach enabled us to maintain in
excess of 90% of the population fitted with PIT tags [23]. Recent studies suggest that social network
analysis is robust against biases that may arise from small proportions of untagged individuals [38].

3.1. Field observations
While pairs of great tits maintain breeding territories during the spring, these dissolve post-breeding
and the population structure turns into loose fission–fusion groups of predominantly unrelated
individuals that roam in search of ephemeral and patchy food sources. In order to sample the social
and phenotypic structure of these groups, we deployed 65 automated feeding stations in a stratified
grid from 3 December 2011 to 26 February 2012. Each feeding station was fitted with two radio
frequency identification antennae (one on each access hole) and filled with sunflower seeds. These were
automatically opened for all daylight hours for 2 days per week, providing synchronous snapshots of
the association patterns in the population. Feeders were filled with sunflower seed in order to minimize
queuing (and therefore competition) as individuals picked up a seed and processed these in a nearby
bush or tree. These feeders also maintained a constant reward, therefore removing any effects of patch
depletion or developing differences between nearby feeding stations. Feeders scanned for PIT tags every
one-third of a second from pre-dawn until after dusk and detected more than 99% of tagged individuals’
visits to feeders. In all, we collected 26 days of data over 13 sampling periods.

3.2. Inferring group membership
Feeding stations provided a highly resolved spatio-temporal data stream of individual visits. As
individuals fed in groups, or flocks, the pattern of visits typically contained bursts of high activity,
separated by periods of low activity. Given the stochastic nature of this system (groups may feed for
different lengths of time), we inferred group membership using a machine learning algorithm based on
Gaussian mixture models [39]. This avoids the need to impose arbitrary temporal boundaries on groups.
Instead, it infers the best-fitting window for each group based on the patterns observed over the entire
dataset, resulting in a more accurate social network than other approaches [40]. By fitting a Gaussian
distribution over closely spaced visits, visits can then be assigned to a burst, or group, to which they
have the highest probability of belonging. This method returns a matrix of groups and the individual’s
membership of these groups.

3.3. Stability
We used a measure of temporal group stability that is similar to the lagged rate of association proposed by
Farine [41]. This measure represents the proportion of individuals that are consistent across two groups
containing a focal individual X and separated by a time period τ , given by

S(τ , X) = 1
Gτ

∑

j,k|(tk−tj)=τ

Gj,k(X)

Gj,!k(X) + Gk,!j(X) + Gj,k(X)
,

where Gj(X) is the number of occurrences of groups containing focal individual X and split by τ , Gj,k(X)
is the number of non-focal individuals occurring in two groups, both containing individual X, and
separated by τ = tk − tj. Gj,!k(X) is the number of individuals occurring only in group j, and Gk,!j(X) is
the number of individuals occurring only in group k. S(τ , X) = 0.5 is equivalent to a group fusing with
another group twice the size, or if two-thirds of a group remains the same in two evenly sized groups,
over a time period τ . We limited this calculation to groups that contained at least one common member
in order to ensure that there was a common link between groups. To estimate how the observed stability
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differed from random, we calculated S(τ , X) for groups in a spatio-temporally restricted null model
(see below). This model constrains the distribution of group sizes and uses the ratio of the observed
to permuted data to estimate the period τ in which non-random associations persist.

3.4. Group composition
When investigating how group composition changed over different group sizes, it was necessary to
pool certain groups together when calculating test statistics (e.g. ‘mean sex assortativity’), due to low
sample sizes for larger groups. Therefore, group sizes larger than 13 were binned into ‘group size classes’
(e.g. [14,15]) that contained at least 5% of the total group memberships (figures 3–5).

3.5. Within-group membership
We explored how the composition of the groups varied with regard to group size for three different
state variables (sex, age and residency status), all of which are binary states (male or female; juvenile or
adult; immigrant or locally born, respectively). Sex was determined when birds were recaptured (93%
of individuals were sexed) using plumage characteristics (the width of the breast stripe is much larger
in males). Juveniles are defined as birds that were born in the breeding season immediately prior to
the winter (in this case in spring 2011). Immigrants are defined as birds that were born outside of the
study area (dispersed into Wytham Woods), whereas locally born birds were ringed as nestlings within
the study area (the proportion of nestlings born in natural cavities is estimated to be very low [42]).
The demographic structures of groups were calculated as the proportion of individuals from each class
occurring in each separate group, and pooling these data as the mean for each group size. We then
compared these means to groups in permuted data (described below).

Further, we also examined whether group size was associated with the body size of individuals within
them. As a multivariate measure of size for individuals, the first principal component (PC1) of a principal
components analysis using wing and tarsus length (available for 84% of all individuals) was used.
As males were significantly larger in both measures (t-test; wing: t = 28.82, d.f. = 931, p < 0.001, tarsus:
t = 13.63, d.f. = 885, p < 0.001), this measure was generated separately within each sex and standardized
with a mean of 0 with a variance of 1. PC1 correlated strongly with both size measures in both sexes
(Pearson’s correlation coefficient; male wing = 0.998, male tarsus = 0.323, female wing = 0.998, female
tarsus = 0.288). We then calculated the mean size of individuals within each age and sex class for each
individual group, and again compared the mean of these values of each different group size to the
permuted data.

3.6. Within-group assortativity
After determining the content of groups in regard to the different demographic states (above), within-
group assortativity for each demographic state was examined separately. We calculated the binomial
probability that, given the group size and the total number of unique individuals in each class over all
groups of that group size, the observed number of individuals in these classes would have occurred by
chance. For example, if among all the individuals who participated in groups of size two we had an
equal number of males and females, a group containing two males (or two females) would be assigned
0.25, while a group containing one male and one female would have a value of 0.5. It is always the
case that higher values (i.e. closer to 0.5) represent more disassortativity. Following this, an overall mean
was calculated for these values for each group size and again compared to the permuted data to test
for significance.

We also considered whether groups show assortativity by size, both overall and within the different
demographic classes. This was determined by calculating the mean size for each group (and the mean
size of the different classes of individuals within the group to make ‘within class’ comparisons). Then,
for each group size, we obtained a kurtosis score for the distribution of these mean sizes (see [23]), where
high kurtosis scores indicate a peaked distribution (i.e. assortativity), while low scores indicate a flat
distribution (i.e. disassortativity).

3.7. Null models
We used randomization techniques in order to create two contrasting null models. The first assumed
random interactions between individuals but a fixed observation stream, which we call the phenotypic
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null model. In this method, we created 1000 random networks by shuffling the node labels associated
with each individual’s phenotype. The second maintained spatio-temporal distributions of phenotypes;
we call this the spatio-temporally controlled null model. These two randomizations used two general
methods of data randomizations. Phenotypic randomizations consisted of randomly re-allocating the
phenotype of individuals, maintaining the same observation patterns and the same distribution of
phenotypes. Spatio-temporally controlled randomizations used a restricted permutation test following
the methods originally described by Bejder et al. [43] with subsequent improvements by numerous
authors (see [44, pp. 125–127]). This null model randomly swaps the observations of two individuals
observed in different groups, with swaps being restricted to control for space and time. Each step in
the permutation performs one of these swaps, creating an increasingly random dataset. In our case, we
restricted swaps to occur only between groups that were observed at the same location (same feeder)
and on the same sampling period (weekend). The resulting output is a data stream where the size
(and time and location data) of each group remains constant along with the number of observations
for each individual, but the detailed patterns of group membership are changed. This therefore tests
whether structure exists within each location given the variation in the number of observations for
each individual.

These two null models allowed us to partially differentiate between patterns arising from spatial and
social effects [45]. If the patterns between the two randomizations differ, this suggests that phenotypes
are not evenly distributed in space. This is because spatial variation in the number of individuals of each
phenotype is maintained in the spatio-temporally controlled null model, but not in the phenotypic null
model. If the observed data then match the spatio-temporal but not the phenotypic null model, then
any assortment in this phenotype is attributable to spatial effects. If the data differ from both, then we
attribute assortment to be due to social effects given that phenotypes are randomly distributed in space.

Comparing the observed patterns of group membership with null models derived from permutation
allowed us to reduce the potential impact of pseudoreplication in our data. Both the null models
maintained the same underlying structure of interactions, such as group sizes, number of observations
for each individual and the temporal properties of group structure (group size increases as a proportion
of time of day [36]). Although our data comprise many repeated observations of the same individuals and
occasionally even the same groups, these repetitions are repeated in the permuted data. Taking the ratio
of measures calculated on both observed and permuted data provides a measure of how non-randomly
groups and occurrences are repeated.

We repeated the phenotypic randomization 1000 times. We ran 1 000 000 iterations of the spatio-
temporal randomizations, as only a single observation is swapped on each iteration (whereas phenotypic
randomizations shuffle all nodes; see [44, p. 130]). Where possible, we compared our data to the
distribution of the spatio-temporal randomizations (taken after every 1000th iteration), but where this
was not possible (for example for the group stability measure that is highly computationally intensive)
we used only the final randomized group membership matrix after the 1 000 000th iteration.

3.8. Social network analysis
We used the R [46] package asnipe [41] to calculate the simple-ratio association index between all
interacting dyads. This index scales edge weights between 0 (never observed together) and 1 (always
observed together). We then calculated the assortativity index [47], which is derived from the Pearson
correlation coefficient for weighted-edge networks in the R package assortnet [14].

4. Results
We detected a total of 1053 individual great tits, consisting of 274 adult females, 252 adult males, 234
juvenile females, 229 juvenile males and 64 individuals of unknown sex (that were never caught post-
fledging and not included in subsequent analyses). Across the 13 sampling periods, most individuals
were detected on a large majority of the sampling periods (mean = 9.4, median = 11). Overall, we logged
3 347 038 unique detections of individuals over the 13 sampling periods, forming 73 737 unique groups
with a mean size (±s.e.) of 4.7 ± 0.01 individuals and a typical group size (i.e. group size experienced by
the average individual, ±s.e.) of 7.5 ± 0.01 individuals per group.
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Figure 1. Groups show higher stability than expected from random, both in terms of (a) the (log) time-gap between groups and (b) the
size of the initial group. Groups were most stable in the period of 1–10 min, after which stability was non-random, but much lower, up
to approximately 2 h (see electronic supplementary material, figure S1, for independent curves). Small and large groups were the most
stable relative to chance. Solid lines show the ratio of the observed stability to the stability calculated from randomized data.
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Figure 2. Group size was proportionately smaller as local population size increased. For each location, we calculated the number of
individuals recorded at the site in each sampling period.We found that both (a)maximumgroup size and (b) average group size saturated
with increasing population size. (c) We found no effect of season on this relationship, where time of year represents the period ranging
from 3 December 2011 to 26 February 2012.

4.1. Stability of group membership
We found that groups had significantly higher stability in the first 10 min after being observed when
compared with the same data after 1 million randomizations of the spatially and temporally restricted
null model (figure 1a). As the inter-group time interval increases, the difference between the observed
stability and the stability of random groups approached zero. Group composition was therefore stable
over short periods of time (less than 10 min), with only a few stable associations being maintained over
longer periods (see also [23]). Stability also varied according to group size, with small and large groups
being more stable than expected by chance (figure 1b).

4.2. Group size distributions
We found a strong divergence from a 1 : 1 relationship between the number of individuals present on a
given day and the group sizes observed (figure 2a). Logistic models of the mean and maximum observed
groups sizes had significantly greater support than linear models applied to the same data (electronic
supplementary material, table S1). This suggests that the relationship between population size and mean
or maximum group size saturated, in this case at a maximum of eight and 24 individuals per group,
respectively (figure 2a,b, horizontal dashed lines). Further, the relationship between mean group size
and population size appeared to remain rather stable between weeks over the winter (generalized linear
mixed model controlling for population size with location as a random effect suggests a very weak
decrease in group size each week: t = −1.85, B ± s.e. = −0.012 ± 0.006, p = 0.06; figure 2c).
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Figure 3. There was a significantly greater proportion of females in large groups that were juvenile (a) and lower proportion of males in
large groups that were adults (b). The black lines show the observed data, the blue polygons show the 95% range of permutation data
from the ‘spatio-temporally controlled null model’, and the red polygons show the 95% range of permutation data generated from the
‘phenotypic randomization null model’. In groups of over 18 individuals, the observed proportions of the age classes ofmales and females
in each differ from the phenotypic randomization null model only. This suggests that juvenile females were disproportionately found in
areas with large flocks, whereas adult males were absent from areas containing large flocks.

4.3. Group composition
Non-random distribution of individuals according to their phenotypes was found among groups, and
this differed with group size. Non-random group composition can be driven by spatial distribution
of phenotypes (inferred here from the observed data differing significantly from the ‘phenotypic
randomization’ null model) or socially driven, i.e. active decisions by individuals regarding group
membership (inferred here from the observed data differing significantly from the ‘spatio-temporal
controlled’ null model, or both). Indeed, we found evidence for all three situations in regards to the
demographic states considered here.

Although groups of all sizes contained the expected proportions of adult females and juvenile males
(electronic supplementary material, figure S2), we found that large groups contained more juvenile
females but fewer adult males than expected by the phenotypic randomization model (figure 3). These
comparisons were carried out simultaneously over multiple bins, and although standard Bonferroni
corrections are not appropriate here due to the non-independence of the data, we found that, for the
largest group sizes, the observed proportion of juvenile females and adult males fell outside of the entire
range of the data generated from phenotypic randomization. As the spatio-temporal null model matched
the observed data (figure 3), this suggests a spatially driven pattern, such that areas containing large
groups also contain higher proportions of juvenile females in comparison to adult males.

A similar pattern was also found for the proportion of juveniles that were immigrants in small
groups (less than 8), which was significantly lower than the phenotypic randomization null model but
predicted very well by spatio-temporally controlled permutations (figure 4), suggesting a non-uniform
distribution of juvenile immigrants across the study area. However, no such pattern of non-random
group content based on residency status was observed among adult birds (electronic supplementary
material, figure S3).

As well as the proportion of individuals of different phenotypes included in groups, we also found
non-random assortment in regards to different demographic characteristics. Groups were found to be
more evenly distributed with regard to sex (i.e. sex ratio closer to equal) than expected by both null
models, which also fall within each other’s range, thus suggesting a primarily socially driven pattern
(figure 5a). By contrast, groups tended to show assortativity by age, as the proportion of either adults
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Figure 5. Groups were significantly (a) more evenly distributed by sex but (b) more assorted by age class than expected from the
randomized datasets. In these plots, the y-axis shows the ratio of the null models to the observed data (observed data are y = 1). The
phenotypic nullmodel is shownby the red polygon and the spatio-temporally controlled nullmodel is shownby the blue polygon. The sex
ratio of groups up to a size of 10 is significantly closer to even (observed is more than random) than both the spatio-temporally restricted
and the phenotypic randomizations (see electronic supplementary material, figure S6, for these shown as binomial probabilities). These
groups also tend to contain more individuals that are either adults or juveniles than expected (groups are significantly less mixed than
expected, observed is less than random). Plots show the ratio of the 95% confidence intervals of the randomizations to the observed data.
Areas where the polygon overlap 1 are non-significant (the permutation is equal to the observed value). Plots are presented this way due
to the difficultly of directly interpreting binomial probabilities, and the biological insignificance of the exponential decay as group size
increases (see electronic supplementary material, figure S6).
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or juveniles in each group was higher than expected by chance (figure 5b), and again appeared largely
driven by local social group structure rather than variation due to spatial disaggregation.

The mean size of individuals within groups did not differ from either the spatial or population-
wide distributions of phenotypes (electronic supplementary material, figure S4). This was true within
all demographic classes of individuals, apart from a slight trend for larger juveniles than expected by
the node permutation model in mid-size groups (electronic supplementary material, figure S4). We also
found no major patterns of phenotypic assortment in groups according to individual size among any of
the different demographic classes (electronic supplementary material, figure S5), suggesting that these
did not differ dramatically from either the spatial or population-wide distributions of phenotypes.

4.4. Assortment in the social network
The social network contained a single fully connected component, with a link density of 0.08 (8% of
possible dyadic edges are present). These edges were significantly disassorted by sex (assortativity
coefficient r = −0.034 ± 0.0009), which indicates that mixed-sex dyads had a higher probability of both
occurring and reoccurring. Age (in years) was significant assorted (r = 0.047 ± 0.0014), suggesting that
individuals of the same type, particularly juveniles, had a stronger tendency of repeatedly associating
during the winter. Finally, we found significant overall assortment by immigration status (r = 0.037 ±
0.0019), which was mostly driven by assortment in adults (r = 0.11 ± 0.0034).

5. Discussion
We used an automated detection system to collect data on the patterns of association between individuals
in a large free-ranging bird population to understand how individuals of different types associate and
what mechanisms produce non-randomness in association. We showed that although groups were
highly unstable in membership over short periods of time, interactions between different phenotypes
in the population were not themselves random. In some cases, our results suggest that the patterns of
group membership arose through association preferences by individuals, potentially based on both their
own phenotypes but also the existing composition of the group. In others, group structure appears to
be shaped by the variation in the distribution of phenotypes across space. For example, adult males
(which are often more dominant [48]) tended to avoid large groups, whereas juvenile females (generally
subdominant phenotypes [49]) were found in larger groups more often than expected.

These findings have important implications: (i) individuals may have different social strategies as
a function of their phenotypes and (ii) differences in short-term strategies can maintain long-term
variation in interaction rates between phenotypes as measured in our winter-long social network. As a
consequence, fission–fusion dynamics may influence the pressures of selection operating upon different
phenotypes [35]. For example, in species such as great tits, where residency is an important predictor
of dominance [48], associating with other immigrants may help reduce the overall competition a newly
arrived individual experiences. This effect of mediating selection pressure by choosing with whom to
associate (beyond the simple changes in group size [28]) may play an important role in shaping the
evolution of this social system.

Although phenotypic assortment may be relatively common in nature, no study has, to our
knowledge, linked short-term group membership dynamics to long-term association patterns in a social
network. In fish, several studies have found that groups will assort by size (reviewed in [50]), often in
preference to species identity [51,52]. Also, assorted group composition appears to play a particularly
important role in avoiding predation, either by minimizing an individual’s risk relative to the group [53]
or by maintaining movement synchrony [54]. Body size assortment can also emerge simply through
spatial variation in the distribution of phenotypes, for example when fish of different age classes (and
therefore different sizes) inhabit different niches [55].

We found that groups were often more mixed by sex than expected from chance across a wide range
of group sizes. This was almost certainly a result of social decisions, leading to significant disassortment
over the entire study period. In socially monogamous birds, this is perhaps not unexpected. For example,
Wilkinson [56] found that groups of bullfinches (Pyrrhula pyrrhula) were more mixed by sex than expected
by chance. By contrast, brown-headed cowbirds (Molothrus ater) showed the strongest links between
females within the fission–fusion social dynamics of that species, despite being brood parasites and
having been raised in the nests of other species [57]. The authors concluded that assortment may play an
important role in developing skills needed for breeding in that species [57].
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................................................
Individuals in our study were also assorted with regard to their status as immigrant or locally born

birds. This appeared to be driven by spatial sorting rather than social decisions in the flocks. Recent work
in this population suggests that by associating with other recently arrived individuals, late arrivals could
reduce the selection operating on their dispersal phenotype [35]. In parids, there is a strong interaction
between residence and dominance, with birds that hold or have previously held a territory having
relatively higher dominance than non-residents [48,58]. This may lead to spatial partitioning if resident
birds exclude immigrants from core or high-quality zones, and these immigrants associate in marginal
or bordering areas. This effect may even include resident juveniles being dominant over recently arrived
adults [48]. Alternatively, immigrant birds may have greater similarities in their activity levels; for
example, immigrants are typically more ‘bold’ along a spectrum of slow explorer to fast explorer [59,60],
and consequently have been found to be more closely associated in this population [23].

Although these groups were very unstable in time, they maintained consistent relationships between
and within particular phenotypes and maintained strikingly consistent group sizes regardless of season.
Importantly, patterns of structure in group membership led to long-term assortment in the social network
that were driven by both social and spatial mechanisms. Our findings suggest that the social decisions
made by individuals on a day-to-day basis may have an important role in shaping the strength or
direction of selection operating on different phenotypes, even in fission–fusion societies.
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