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Abstract

Advancements in genomics and personalized medicine not only effect healthcare delivery from 

patient and provider standpoints, but also reshape biomedical discovery. We are in the era of the “-

omics”, wherein an individual’s genome, transcriptome, proteome and metabolome can be 

scrutinized to the finest resolution to paint a personalized biochemical fingerprint that enables 

tailored treatments, prognoses, risk factors, etc. Digitization of this information parlays into “big 

data” informatics-driven evidence-based medical practice. While individualized patient 

management is a key beneficiary of next-generation medical informatics, this data also harbors a 

wealth of novel therapeutic discoveries waiting to be uncovered. “Big data” informatics allows for 

networks-driven systems pharmacodynamics whereby drug information can be coupled to 

cellular- and organ-level physiology for determining whole-body outcomes. Patient “-omics” data 

can be integrated for ontology-based data-mining for the discovery of new biological associations 

and drug targets. Here we highlight the potential of “big data” informatics for clinical 

pharmacology.
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The digital revolution in healthcare is now. The amount of data is exploding from basic 

science to clinically based genomics and personalized medicine, and continues to evolve in 

healthcare at both the population and the individual levels. Clinical phenotypes are being 

described more quantitatively and biochemically using genomics, transcriptomics, 

proteomics and metabolomics [1–3]. Collecting and analyzing such large data sets, coined 

‘big data,’ will become key to new healthcare innovations. In anticipation, the USA and 
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European Commission announced a national ‘Big Data Initiative’ for policy preparedness 

[4].

Advancements in big data analytics not only affect healthcare delivery from patient and 

provider standpoints but also hold promise to reshape biomedical discovery. For example, 

decoding a single human genome originally took a decade to process, but with the advent of 

‘Big Science,’ modern DNA sequencing and informatics approaches can achieve this within 

a week. With respect to clinical pharmacology, a big data initiative by Medco recently 

helped uncover that the simultaneous use of clopidogrel (Plavix) and proton pump inhibitors 

is associated with increased risk of adverse cardiovascular events [5]. ‘Systems medicine’ 

has brought with it a slew of technologies and novel perspectives to analyze disease as an 

interconnected synergistic system of working parts. Clinical pharmacology is transitioning 

to reflect this interconnectedness, where the traditional unidirectional movement of ‘bench-

tobedside’ is now a bidirectional process that depends on both end points to achieve novel 

therapeutics and better understanding of effects caused by current pharmaceuticals. The 

following sections provide insight into the available resources and techniques being applied 

in this transformation.

Big data in clinical discovery

New-age drug discovery approaches encompass a wide range of big data analytics, from 

high-throughput cellular and protein-binding assays to chemoinformatics-driven databases. 

Many of these databases are undergoing extensive improvements to become central hubs for 

the integration of biological and physicochemical information (Table 1). In addition, new 

patterns and associations are being discovered using external computational tools that mine 

the data. Thus, new therapeutic targets, drug–target associations and drug repurposing 

hypotheses can be established by reassessing this large amount of data through more 

integrative approaches. For example, our group previously devised computational platform 

entitled ‘Train, Match, Fit, Streamline’ (TMFS) for predicting empirical drug-target 

signatures and establishing repurposing hypotheses [6]. While it is important to establish 

these signatures from the low-level biochemical standpoint, their full clinical potential 

remains unfulfilled until placed into a network perspective that places those predictions 

within the context of systems medicine using the aforementioned databases. We are 

currently interfacing TMFS with these public databases for big-data network 

pharmacological applications (unpublished data).

Additional interesting general outcomes from these approaches include the observations that 

the chemical space spanned by drugs does not necessarily correlate with biological activity 

[7], and that singular targets may not be sufficient to alter diseases [8]. It naturally follows 

that combining network systems biology with pharmacology could unveil critical 

associations or even combinatorial therapeutic strategies for recalcitrant diseases. From the 

genomics standpoint, for example, Lamb et al. designed the Connectivity Map, a repository 

for cell type-specific drug-induced gene expression changes [9]. If diseases are associated 

with unique gene signatures, the current thinking is that a drug that induces an inversely 

correlated signature should be therapeutic. By looking broadly into expression patterns, the 

bias of choosing canonical or literature-rich pathways for therapeutic targeting is bypassed. 
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An interesting finding from the Connectivity Map is the ability of rapamycin, an mTOR 

inhibitor, to overcome dexamethasone resistance in the CEM-c1 lymphoid cell line. There is 

an active clinical trial assessing the repurposing potential of rapamycin in children 

exhibiting dexamethasone-resistant acute lymphoblastic leukemia [10].

Big data in systems medicine & pharmacology

Genomics has been particularly useful in oncology. Genetically, tumors are intrinsically 

heterogeneous and undergo further genetic changes upon exposure to stresses (i.e., hypoxia) 

or phenotypic changes (i.e., epithelial-to-mesenchymal transformation). These changes often 

allow tumors to escape current pharmacological interventions. To better understand these 

changes, and perhaps their predictability, notable efforts such as The Cancer Genome Atlas 

(TCGA), Oncomine and the University of California Santa Cruz Cancer Genome Browser 

document genome-wide changes of various cancers (Table 1). Investigators are able to 

access this information to analyze differential expression patterns across cell lines, disease 

progression states, treatment, etc. With big data, subtleties have been uncovered to provide 

insight into resistance mechanisms and new pharmacological targets. A recent example is 

characterizing acquired resistance to vemurafenib in melanoma, in which MAPK pathway 

reactivation and PI3K-PTEN-AKT activation were discovered to be two core resistance 

mechanisms [11]. This information aids in devising second-stage or combinatorial strategies 

in anticipation of resistance in BRAF V600E-mutant melanoma patients.

While genomics has its strengths, protein expression patterns and metabolite composition 

provide more nuanced insight into end point phenotypes. As techniques for quantifying and 

characterizing proteomes and metabolomes become cheaper and more sensitive, there are 

more initiatives employing these methods for disease characterization and therapy. For 

cancer, the National Cancer Institute released in September 2013 the first public proteomic 

data of colorectal tumor samples previously analyzed by the TCGA - the first 

complementation of proteomic and genomic data on the same tumors. This coupling is 

instrumental in establishing genotype–phenotype associations and elucidating precisely 

which signaling pathways contribute to pathogenesis and serve as avenues for therapy. 

Similarly, for cancer, metabolites not only serve as diagnostic aids but also as potential 

biomarkers that demarcate disease progression, response to therapies and new therapeutic 

targets [12,13]. As biological, chemical and clinical data continue to increase at an 

exponential pace, computer-assisted data mining platforms that integrate the information and 

convey it in meaningful contexts tailored to appropriate investigators provide an invaluable 

resource for drug discovery and repurposing.

Big data & toxicity prediction

Unintended deleterious effects continue to hamper the success of drug development, 

especially during late-phase clinical trials and post-market surveillance. These effects 

compromise health outcomes and incur losses in research and development. Toxicity is 

attributed to a variety of factors, but common culprits include dosing, patient-specific 

sensitivities (i.e., allergic responses, cytochrome pharmacogenomics) and prolonged clinical 

symptom detection time. Multiple databases exist that couple drugs with side effects and 
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serve as the basis for informatics and network studies that aim to predict side effects for new 

drugs (Table 1). These efforts attempt to associate chemistry/structure or biological 

pathways with molecular and clinical side effects.

While current databases are immensely useful for studying observed drug–side effect 

associations, still many rare occurrences or non-intuitive phenotypic links are not captured. 

Data mining efforts are attempting to uncover these missed associations by semantically 

linking drugs to clinical or cellular side effects and then discovering the causative genes and 

pathways. For example, Xu and Wang developed a rank-prioritized cancer-specific drug-

side effect lexicon from the entire MEDLINE corpus and found that cancer drugs that share 

side effects tend to have overlapping gene targets and indications [14]. More recently, van 

Haagen et al. utilized ‘concept recognition’ to mine MEDLINE for biomedical concepts and 

found that generic concepts, such as ‘diagnosis’ or ‘etiology’, are crucial for inferring 

plausible protein–protein interactions [15]. These examples are just a sample of many that 

are adopting whole-literature semantic data mining techniques for building veritable 

associations that are useful not just for predictions or assessments in toxicological systems 

pharmacology, but also for therapeutic drug discovery and repurposing.

While reanalyzing current data is critical, it is equally important to clarify the temporality of 

toxicity and tailor current technologies to characterize the toxicity time course. Toxicity is 

presently observed as a clinical phenomenon with well-defined symptoms. However, it is 

vital to realize that these symptoms develop in relation to time, dose and mechanism of 

exposure, while sub-clinical toxicity at the cellular level occurs long before symptom 

detection. Thus genomic, proteomic and metabolomic profiles of different organs and body 

fluid compartments are likely to change over the course of toxicity and indicate different 

stages of progression. Assessing these profiles could prove beneficial for patient-specific 

monitoring of drug-induced toxicity, pre-treatment prognosis of toxicity and post-toxicity 

treatment options. Current ‘omics’ applications are characteristically epitomized by Gao 

[16] and Clayton [17]. The work of Gao et al. eschews the coming of toxicoproteomics, 

where systematic protein quantitation enables pathway elucidation, protein–protein 

interaction and protein subcellular localization as exposure outcomes for drugs, toxicants 

and other environmental stressors [16]. Similarly, Clayton et al. developed personalized 

pharmacometabolomics, where pre-dose urinary metabolite profiles are predictive of drug-

induced hepatocellular toxicity [17]. These cases are not reliant on the actual clinical 

symptomology: they can characterize toxic effects to high resolution in any tissue or body 

compartment at any time during any intervention. Toxicity, like disease, begins as a 

molecular phenomenon before clinical detection, and the combination of big data, high-

resolution, molecular-level informatics with clinical outcomes greatly benefits 

pharmacological developments.

Big data & electronic medical records

An underutilized source of individual patient phenotypes is electronic medical records 

(EMRs). EMRs are rich with clinical data that chart patient progression with respect to 

disease and medications with other demographic information. Family history, diet, 

medications and occupational exposures are just some of the documented information and 
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could be invaluable in discerning uniquely observed treatment or toxicity effects. 

Furthermore, the combinatorial aspect of assessing outcomes in polypharmacology becomes 

unrealistic in a controlled clinical trial setting but can be viably studied using EMRs.

Some investigator groups have peered into EMR potentiality for drug development and 

safety. For instance, Hanauer et al. extracted data from clinical problem summary lists for 

327,000 patients and discovered novel disease association pairs using the Molecular 

Concept Map tool [18]. One novel relationship they reported is between osteoarthritis and 

granuloma annulare, both of which are treated by niacin. Associated diseases may have 

common pathogenic pathways with shared drug targets, thus aiding in target discovery as 

well as drug repositioning. With respect to pharmacovigilance, Castro et al. utilized EMRs 

to confirm that the antidepressant citalopram is associated with QT interval prolongation 

[19].

EMR information is uniquely positioned to aid in the discovery of new therapeutic targets 

when coupled with patient-derived ‘omics’ data. In other words, combining genotype–

phenotype biomedical information with environmental and social contributors would 

provide a holistic systems view of a patient and highlight patient-specific changes for 

personalized pharmacology. To date, no such platform exists as both EMR standardization 

and ‘omics’ translation to clinical medicine are yet to be universally adopted. We anticipate 

that this merger will occur as clinical breakthroughs continue to emerge from each space.

Expert commentary & five-year view

It is clear that ‘multi-omics’ big data are mainstay in current research efforts and will soon 

be the case in the clinical setting. Utilizing such technologies and strategies would help 

improve the efficiency of research and clinical trials, identify and develop new effective 

medicines more quickly and build new tools for physicians to meet the promise of 

personalized medicine. The coming ubiquity of these technologies coupled with the need to 

approach healthcare from an interconnected systems standpoint will lead to a new era of 

health data acquisition with new difficulties to consider, such as data structure and 

management, data privacy and data analytics. Corporate efforts and start-ups are currently 

engaging the wider community encompassing patients, scientists and physicians to make 

these technologies more efficient and affordable for individualized use. One example is 

23andMe, which offers to sequence the DNA of a consumer for $99 and provide raw genetic 

data. Proteomics is also becoming more industrialized, as evident by new companies such as 

Applied Proteomics, Inc.

With the role of the ‘e-Patient’ being not only a consumer of healthcare but also a driver of 

discovery, patient data access is currently a hotly debated topic [20]. Additionally, there will 

be a need to seamlessly interface data production with patient-specific health records. We 

envision the development of specialized software that directly interacts with EMRs that not 

only deposit patient-generated data but also simultaneously encrypt it in compliance with 

health privacy laws. This process could lead to a tiered system, modeled after the TCGA, for 

example, where data access to a particular tier is limited to a specific audience, thereby 

promoting involvement across both patients and clinician researchers. Moreover, data 
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centralization will be a key initiative for current and future taskforces to avoid the 

fragmentation of the extremely large set of data and promote both national and international 

collaborative efforts. This centralization would allow for integrative data analytics using 

high-performance computing establishments and cloud platforms. Taking heed of these 

needs early is essential for establishing streamlined data acquisition, retrieval, analysis, 

dissemination and ultimately discovery.

Combining these technologies will advance modern clinical pharmacology. Patient-specific 

pharmacodynamics and pharmacokinetics can be elucidated, allowing for individualized 

therapeutic indices, combinatorial approaches and novel avenues for circumventing drug 

resistance. First-line therapies and their adjustments will be tailored to time- and therapy-

dependent changes in the patient epigenome, transcriptome, proteome and metabolome. 

Furthermore, emerging technologies such as implantable ‘lab-on-a-chip’ diagnostic devices 

will enable real-time monitoring of patient physiology and even provide immediate point-of-

care clinical decision support based on the aforementioned patient-specific data and mining 

of the available open-access databases via wi-fi, Bluetooth or cellular networks. Over the 

course of the next 5 to 10 years, current clinical protocols will become antiquated as the 

field progresses toward big-data-driven, evidence-based standards.

Conclusion

In summary, biological, chemical and clinical repositories are becoming core initiatives of 

multiple academic, governmental and industry big-data and ‘omics’ ventures. In order for 

big-data approaches to revolutionize healthcare, centralization and standardization of EHR 

collection is essential to facilitate collaboration and effective mining of the data to enable 

plausible pharmacological discoveries. High-throughput automated data acquisition methods 

are being implemented in every sector of the biosciences, and the rate at which the data are 

generated outpaces their analysis. The limiting factor in the application of these data is 

connecting patterns and idiosyncrasies to disease processes and therapeutic outcomes with 

biological plausibility. It is possible that supercomputers and cloud-based parallel high-

performance computing (i.e., IBM’s Watson and Oracle’s cloud platform, respectively) 

could derive veritable biological hypotheses that are continuously reformulated for accuracy 

as the data are being constantly fed. As big data in the biosciences continues to grow, 

clinicians, scientists and IT specialists must approach the information in an interdisciplinary 

fashion to promote standardization and a new epoch of discoveries in the realm of clinical 

pharmacology.
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Key issues

• Big data in medicine is quickly transitioning from the research sector to the 

public community space, thus driving new biomedical discoveries, reassessment 

of current healthcare policies and reshaping of clinical practice.

• Creating effective individualized healthcare programs can be achieved with the 

implementation of big data in systems and clinical medicine.

• We provide insight into the influence of big data, in the form of ‘omics’ and 

electronic medical records, on clinical pharmacology, as well as the evolving 

computational tools and platforms used for analytics.

• The current perspective envisions not only the discovery of novel drug–gene 

signatures and gene networks through big data but also the refined 

characterization of pharmaceutical-induced toxicity.

• In conclusion, big data further enables systems and clinical pharmacological 

approaches at an integrative and holistic level that can be applied to an 

individual for patient-specific treatment and healthcare maintenance.
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Table 1

Table of open-access resources available to the public for bioinformatics and chemoinformatics in drug 

discovery and toxicology.

Category Database Description

Drug BindingDB
ChEBI
ChemBank
ChEMBL
DrugBank
PharmGkb
SuperTarget
Therapeutic
Target Database
ZINC

Binding affinities of small, drug-like molecules to protein 
targets
Small chemical compounds containing structural, nomenclature 
and ontology information
Biomedical measurements derived from cell lines treated with 
small molecules
Manually curated bioactive molecules with drug-like properties 
maintained by the EBI
FDA-approved and experimental drugs with drug target, bio- 
and chemoinformatic data
Pharmacogenomic-focused genetic, molecular, cellular and 
clinical data for drugs ~7300 drug–target associations with 
~5000 manually annotated
Known therapeutic protein targets with pathway information 
and corresponding drugs
~21 million compounds that are commercially available and 
prepared for virtual screening

Disease National Organization 
of Rare Diseases
Online Mendelian
Inheritance of Man

NORD contains information on rare human diseases
Catalog of human genes and genetic disorders maintained by 
the Johns Hopkins University

Protein–protein/–gene/–other interactions BioGRID
DGIdb
ExPASy STRING
MatrixDB
MINT
Database of 
Interacting Proteins

~730,000 raw protein and genetic interactions from major 
model organisms
Drug gene interaction database curated from multiple well-
established databases
Known and predicted protein–protein interactions from 
experimental repositories and computational methods
Interactions between extracellular proteins (i.e., collagen and 
laminins) and polysaccharides
Molecular interaction database focusing on experimentally 
validated protein–protein interactions
Manual and computational curation of experimentally 
determined protein–protein interactions

Genomics Gene Expression
Omnibus
Oncomine
The Cancer
Genome Atlas
UCSC Cancer
Genome Browser
G-DOC

Public functional array- and sequence-based genomics data 
repository
Cancer microarray database that can be subdivided by 
treatment, patient survival and other demographics
Large-scale genome sequencing platform for multiple cancers 
led by the NCI and the NHGRI
Interactive annotated cancer genome-browser website hosted 
by the University of California, Santa Cruz
Broad collection of bioinformatics and systems biology tools 
for analysis and visualization of four major ‘omics’ types: 
DNA, mRNA, microRNA and metabolites

Proteomics dbDEPC
GeMDBJ Proteomics
Plasma Protein 
Database
PRIDE
The Human Protein 
Atlas
UniProt

Database of differentially expressed proteins in human cancer
Clinical and cell line protein LC-MS/MS and 2D-difference gel 
electrophoresis for expression levels
Initiative of the Human Proteome Organization to characterize 
human plasma and serum proteome
Centralized standards-compliant mass spectrometry proteomics 
and post-translational modifications
Immunohistochemistry-based protein expression profiles of 
various human tissues, cancers and cell lines
Comprehensive protein sequence and annotation data

Metabolomics BiGG
HMDB
HumanCyc
SMPDB

Genomic-based reconstruction of human metabolism for 
systems biology simulation and flux modeling
Human small molecule metabolites with associated chemical, 
clinical and molecular biology information
Human metabolic pathway/genome bioinformatics database 
constituting over 28,000 genes
Small molecule pathway database with >400 unique human 
pathways not found in other databases
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Category Database Description

Toxicology Chemical Effects in 
Biological Systems
Comparative
Toxicogenomics 
Database
EPA ACToR
FDA Adverse Event
Reporting System
OpenTox
SIDER
T3DB
TOXNET

Developed by the National Institute of Environmental Health 
Sciences to house toxicology studies
Curation of chemical–gene, chemical–disease, and gene–
disease associations and constructs networks
Aggregated Computational Toxicology Resource to query 
multiple EPA chemical toxicity databases
Adverse event and medication error reports submitted to the 
FDA for post-market safety surveillance
Interoperable framework for predictive toxicology and 
community platform for creation of applications
Adverse drug reactions on marketed medicines extracted from 
public documents and package inserts
~37,000 pollutant–, pesticide– and food toxin–target 
associations with 50 related bioinformatics data fields
Integrated database system of hazardous chemicals, toxic 
releases and environmental health by the NLM

Structural biology/ontology/enzymology/pathways BRENDA
Gene Ontology
Ingenuity
KEGG
RCSB PDB
Reactome
SCOP

Comprehensive repository for molecular and biochemical 
information of enzymes classified by the IUBMB
Gene and gene product annotations across multiple species 
with supported tools for analytics
Web-based applications for analyzing genomic and pathway 
data
Five databases that connect molecular interaction networks to 
recapitulate the human biological system
The Protein Data Bank containing protein crystal structures and 
ligand binding affinities
Manually curated and peer-reviewed pathway database with 
cross-references and visualization tools
Structural classifications of proteins deposited in the PDB 
using a tree-like hierarchy
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