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Abstract
Understanding network features of brain pathology is essential to reveal underpinnings of

neurodegenerative diseases. In this paper, we introduce a novel graph regression model

(GRM) for learning structural brain connectivity of Alzheimer's disease (AD) measured by

amyloid-β deposits. The proposed GRM regards 11C-labeled Pittsburgh Compound-B (PiB)

positron emission tomography (PET) imaging data as smooth signals defined on an un-

known graph. This graph is then estimated through an optimization framework, which fits

the graph to the data with an adjustable level of uniformity of the connection weights. Under

the assumed data model, results based on simulated data illustrate that our approach can

accurately reconstruct the underlying network, often with better reconstruction than those

obtained by both sample correlation and ℓ1-regularized partial correlation estimation. Evalu-

ations performed upon PiB-PET imaging data of 30 AD and 40 elderly normal control (NC)

subjects demonstrate that the connectivity patterns revealed by the GRM are easy to inter-

pret and consistent with known pathology. Moreover, the hubs of the reconstructed net-

works match the cortical hubs given by functional MRI. The discriminative network features

including both global connectivity measurements and degree statistics of specific nodes dis-

covered from the AD and NC amyloid-beta networks provide new potential biomarkers for

preclinical and clinical AD.

Introduction
Alzheimer’s disease (AD) is the most common form of dementia, affecting approximately 10%
of individuals of age 65. The prevalence increases quickly up to age 80, above which the inci-
dence rate exceeds 40%. Today, the estimated number of AD patients in the US alone is 5.4
million, meaning that about one in eight older Americans has AD. By 2050, the AD prevalence
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in the US is anticipated to be 11 million to 16 million, with one new case every 33 seconds, or
almost a million per year [1]. Although AD was first identified over a hundred years ago, cur-
rent treatments only help relieve symptoms of the disease and there is still no cure. Monitoring
preclinical pathological variations in the brain is probably a key to predicting the development
of AD [2].

The advancements of neuroimaging techniques provide a promising tool for the early detec-
tion of AD. Changes in brain histopathology, and consequently in its structure and function,
are known to precede the clinical manifestations of the disease by many years [3]. These modi-
fications can be visualized in vivo using brain imaging modalities. Computerized tomography
(CT) and magnetic resonance (MR) can be used to visualize internal structures of the body in
detail; whereas functional MRI (fMRI) and positron emission tomography (PET) with tracers
such as fluorodeoxyglucose (FDG), enable the measurement of neural-related activities [2].
More recently, Pittsburgh Compound-B (PiB) has been employed as a tracer for monitoring fi-
brillar amyloid-β (Aβ), the principal constituent of AD senile plaques deposited in brains of
AD patients. Since the accumulation of Aβ usually occurs much earlier than the expression of
AD symptoms, PiB-PET provides sensitive and consistent biomarkers in the preclinical stage
of the disease [4–6].

It has been revealed that AD neurodegeneration targets functional brain networks [7]. The
network nature of AD may explain why we have not achieved satisfactory classification rates
by only comparing region-wise differences of neuroimaging data. Regarding the human brain
as a network motivates a paradigm shift from studying isolated brain areas to understanding
their mutual connections. Since many brain diseases such as AD are shown to be tightly associ-
ated with alternations in functional brain networks [8–10], various statistical methods have
been adopted to infer the latent structural and functional connectivity from neuroimaging
data. One of the mainstream techniques is correlation analysis, which estimates the correlation
matrix by computing the sample correlation of the data. However, this method does not rule
out the effect of other brain regions when evaluating pairwise correlations. Another approach
is to use partial correlation, i.e., normalized version of the inverse covariance matrix [11],
which is often ill-conditioned, due to limited amount of samples in practice. Additional regu-
larizations such as network sparsity [12–15] are usually imposed to overcome this problem.
One can also estimate a sparse correlation matrix by a linear regression model with ℓ1-norm
penalty [16], which solves a modified optimization problem compared with that in the afore-
mentioned works. Other techniques to estimate a meaningful structural and functional net-
work span frommultivariate statistical methods, including e.g., principle component analysis
[17], independent component analysis [18], to dynamic models, including e.g., dynamic causal
models [19] and Granger causality [20]. Nevertheless, the first set of approaches, i.e., the multi-
variate statistical models, have potential difficulties in mapping the results to biological entities;
the latter, i.e., the dynamic models, are either computationally demanding or dependent on the
linearity of the data [11, 20].

In this paper, we propose a novel framework for learning brain structural connectivity and
verify its effectiveness. The fundamental assumption of our graph regression model (GRM) is
that the observed data are smooth signals on a deterministic graph. As a consequence, fewer
samples are required to estimate the graph [21, 22]. We formulate the graph regression as an
optimization problem with an adjustable level of uniformity of the connection weights in the
objective function and a set of linear constraints. Since the GRM does not rely on a specific
probability distribution of the data (e.g., multivariate Gaussian distribution), it is more flexible
than the previous statistical methods. We verify the model by utilizing both synthetic and real
data. In the simulated analysis, we demonstrate that our approach can achieve a very accurate
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reconstruction of the true network, yielding better results than those obtained by sample corre-
lation method and ℓ1-regularized partial correlation estimation.

We also apply the GRM to learn the brain Aβ network of AD patients and cognitively nor-
mal elderly subjects. The features of structural connectivity derived from PiB-PET data are par-
ticularly promising for the detection of early stage AD [6]. Our analysis on 30 AD and 40
normal control (NC) subjects supports the effectiveness of our learning method. First, we com-
pare the classification performance of the GRM with that of other approaches. The GRM
achieves the best performance among those methods. Then, we examine hub distributions of
the thresholded networks. It turns out that GRM produces more balanced network structures,
in contrast to those from sample correlation matrices. Moreover, the hubs of the reconstructed
networks obtained by the GRMmatch the cortical hubs given by functional MRI. In addition,
we compare the connectivity discrepancies between the networks of the AD and NC groups.
The consistent differentiable network features discovered through the GRMmight provide bio-
markers that could classify normal, preclinical and clinical subjects more distinctively. The pre-
sented work is a significant extension of [23], where we only learned the Aβ network of AD
patients and compared the algorithm with the sample correlation approach.

Methods
We first define a notion of signals supported on graphs before presenting the proposed GRM.
The relationship between the regression model and several existing methods is also discussed.
Afterwards, we present the computational method used for estimating the optimal graph.

Signals and Fourier transform on graphs
Traditional signal processing focuses on signals that are defined in Eucliden spaces. The Fou-
rier transform, which decomposes a function into a series of harmonic sinusoids, plays a criti-
cal role in this area. Although they have achieved great success, classical signal processing
methods do not meet the need of processing signals with complex intrinsic structures, for ex-
ample brain images, genetic data, and sensor network measurements. This leads to a trend to-
wards signal precessing techniques on graphs [22, 24].

To represent the brain connectivity, we introduce a weighted graph and the associated ma-
trices that describe its structure. Let V (jVj = N) be a set of brain regions and E be a set of edges
expressing their associations. We can characterize the structure of brain imaging data by a
weighted graph G(V, E,W), where the weighted adjacency matrixW withWij � 0 quantifies the
similarity between vertices i and j (Wii = 0, for all i). We assume that the similarity is symmet-
ric, meaning thatWij =Wji for every pair of i, j. Thus, G is an undirected graph. In addition, we
denote by D the degree matrix, which is diagonal with Dii = ∑j Wij corresponding to the degree

of vertex i. Based on this, the graph Laplacianmatrix L is defined by L¼defD�W. In spectral
graph theory, numerous combinatorial and topological properties of graphs are connected to
the eigenvalues and eigenvectors of the graph Laplacian [25, 26]. Moreover, the Laplacian ma-
trix can be viewed as a differential operator on graph, serving as a counterpart of the classical
Laplace differential operator Δ in Euclidean spaces. In mathematical physics, the heat equation
@u
@t
¼ �Du describes the distribution of heat (or many other diffusion processes) in a given re-

gion over time, with u being a function of spatial coordinates and time t. The Laplacian matrix
L of a graph associated with the domain of the diffusion can be obtained by discretizing the
heat equation [27].

When the graph G is a ring graph (namely,W is a circulant matrix with the first row being
[0, 1, 0, � � �, 0, 1]), an interesting observation is that the eigenvectors of its Laplacian matrix are
exactly the bases of the discrete Fourier transform (DFT) [26]. The classical DFT is the
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expansion of a length-N sequence x(0), � � �, x(N−1), in terms of the Fourier basis vectors, i.e.,

x̂DFTðkÞ ¼
PN�1

n¼0 xðnÞe�2pi kNn. Analogously, we can introduce signals supported on graphs and
the associated graph Fourier transform (GFT) as follows. LetH(V) be a Hilbert space defined
on V. A signal x 2H(V) is a N × 1 vector, where each entry is a real value xi assigned to vertex i.
Since the Laplacian matrix is symmetric, we can diagonalize it into L = F Λ FT, where Λ is a di-
agonal matrix with Λii being the ith smallest eigenvalue of L, and F is a matrix whose columns
are the corresponding eigenvectors. Furthermore, since L is a positive semi-definite matrix

[25], its eigenvalues are nonnegative. The GFT of x takes the form of x̂ ¼ FTx, i.e., a projection
of the signal to the space spanned by the eigenvectors of the graph Laplacian. In neuroimaging
study, it can also be viewed as a decomposition of a brain imaging data into different modes on
the brain connectivity network. Accordingly, we have the inverse GFT: x ¼ Fx̂ [22, 24].

Signal variation metric
In the classical Fourier transform, a smooth signal in the time domain exhibits a relatively fast
decay of the magnitudes of Fourier coefficients in the frequency domain. We extend this notion
of signal smoothness to signals defined on graphs via spectral graph theory.

We denote by λi and fi the ith eigenvalue and eigenvector of L. For connected graph, we
have 0 = λ1 � � � � � λN [25]. A key property that will be further justified is that the variation of
fi gets larger as i increases, when we perceive the signal variation on graphs from the differences
between values of each vertex and its neighboring vertices. Consequently, we also refer to the
eigenvectors fis as frequency components of the GFT. Moreover, we define the bandwidth of a

signal x as the maximum eigenvalue λi such that fTi x 6¼ 0. A low-pass signal whose GFT has an
energy concentration on low frequency components is smooth on G [22, 24]. To quantify the
signal variation, we propose the following metric

MGðxÞ ¼
xTLsx

xTx
; ð1Þ

where s> 0 is an adjustable parameter. Since xTLsx ¼ x̂TL sx̂ ¼ P
il

s
i x̂

2
i , we have kfikG ¼ ls

i .

The above facts indicate that indeed a higher frequency component has a larger variation on
the associated graph. Hence, shrinking the variation of a signal means suppressing its high fre-
quency components. Moreover, s controls the impact of eigenvalues of L. In a smooth signal
regularization, if we increase s, there will be a greater penalty on higher frequency components
of x.

From another perspective, a small variation in Eq (1) reflects a better fit between the graph
structure and the signal, assuming that the signal is low-pass on the graph. To further interpret
the variation metric and build connection to other techniques, we examine the cases when
s = 1, 2. By the definition of graph Laplacian, we obtain (1) xT L x = ∑i � j Wij(xi−xj)

2; (2)

xTL2x ¼ kðD�WÞxk22 ¼
P

iðDiixi �
P

jWijxjÞ2. In other words, fitting the signal to a graph

will enforce an equalization (s = 1) or a linear approximation (s = 2) between values of neigh-
boring vertices, respectively. Furthermore, when s = 1, the numerator in Eq (1) becomes the
regularization term of Tikhonov regularization [21, 28]; when s = 2, the objective function of
locally linear embedding (LLE) turns into a special case of the above numerator [29].

The assumption that image data are in proximity to a submanifold, and thus are smooth sig-
nals on a weighted graph in a discretized approximation, has been verified in many relevant
works [27, 30, 31]. The weighted graph could be constructed by the procedures illustrated in
Fig 1, exemplified by the 3D brain image in [6]. We first map each voxel of this 3D brain image
to a vertex of a weighted graph as shown in Fig 1(a). The weight of the edge linking a certain
pair of vertices is computed from the differences of the neighborhoods of the associated voxels,
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as in the graph construction based on 2D images explained in [30]. The amplitudes of the GFT
coefficients of the image are displayed in Fig 1(b), where the decay of the amplitudes demon-
strates the smoothness assumption.

In addition, we can justify the smoothness of the imaging data on brain connectivity net-
works as follows. Through analysis of large amount of data, it has been demonstrated that the
propagation of disease agents of AD obeys a network diffusion model [32, 33]. By using linear
dynamics defined over the brain network, Raj et al. predicted spatially distinct “persistent
modes” of different types of dementia accurately. Meanwhile, it is also shown that the smooth-
ness of the signal on graph will increase as the diffusion process continues [24]. Mathematical-
ly, the dynamics of many neuroimaging data such as amyloid-β deposition measured by
PiB-PET or brain atrophy measured by MRI can be modeled by a diffusion process on graph,
as governed by the following differential equation

dx
dt

¼ �Lx; ð2Þ

where L is the graph Laplacian defined before. With the initial condition xinit = δu0 representing
a unit input at vertex u0, the solution to Eq (2) is

xt ¼ e�tLδu0
¼

XN
i¼1

e�tli fi f
T
i du0

; ð3Þ

where again fligN
i¼1 are the eigenvalues of L and ffigNi¼1 are the corresponding eigenvectors.

From Eq (3), as time t increases the contribution of the higher frequencies, namely fis associat-
ed with relatively larger λis, will decrease quickly. This makes the observed signals at time t
smooth on the graph.

Graph regression model
In many applications, the graph structure for the observed signals is unknown. The inverse
problem of learning the graph from data (a.k.a., graph regression) is a fundamental task that

Fig 1. An example of smooth signal on graph. The left panel illustrates the mapping a 3D-PET image to a weighted graph that describes the affinity
between every pair of voxels, exemplified by the 3D brain image in [6]. The amplitudes of the first few GFT coefficients of the image are displayed in the right
panel, where the amplitudes have been divided by the the maximum value among them.

doi:10.1371/journal.pone.0128136.g001
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helps discover the relationship among physical units (e.g., brain regions) that yield the data.
We introduce a GRM with regularization on the uniformity of edge weights in this section.

We present the GRM by considering a brain connectivity network. Let {V1, � � �, VN} be the
N brain volumes-of-interest (VOIs) in our study and assume we haveM samples. The observa-

tion taken from the nth region of subjectm is denoted by ~Xn;m, which is an entry of the data

matrix ~XN�M . We assume that X is obtained by normalizing the Euclidean norm of every col-

umn of ~X to 1. Thus, it follows that
PM

m¼1 MGðxmÞ ¼ trðXTLsXÞ, where xm ¼
X1;m; � � � ;XN;m

� �T
is the measurement of subjectm. Then, we formulate the GRM as

min
L

trðXTLsXÞ � b k W k2F; ð4Þ

s:t: trðLÞ ¼ N; L � 1 ¼ 0; ð5Þ

Lij ¼ Lji � 0; 8i 6¼ j; ð6Þ

where k�kF denotes the Frobenius norm. The first term in the objective function fits graph G to
the data by minimizing the total variation of observed signals on G, while the second term con-
trols the uniformity of the connection weights. To prevent the solution of a null graph, we nor-
malize the sum of all the connection weights, i.e., the trace of L in Eq (5). If β> 0, it follows

that we tend to amplify kWk2F , makingWijs more nonuniform. This leads to a shrinkage of
most weights, leaving a few prominent ones. An opposite effect is achieved by a negative β.
Analogously to the Tikhonov regularization or ridge regression [28, 34], we make the above op-
timization problem more stable by regularizing the Frobenius norm ofW. The parameter s
governs the decay speed of the GFT amplitudes of the observed signals on the estimated graph.
A larger s will enforce a faster decay, whereas it may reduce the stability of the solutions similar
to the situation we face when fitting a high-order polynomial to a limited number of data
points. Thus, normally we choose 1� s� 3.

The original learning problem presents a challenge to our analysis, since the derivative of
the regularization term in Eq (4) with respect to L does not have a simple closed-form. To get
around this, we slightly change the objective function to

TðLÞ ¼ trðXTLsXÞ � b k L k2
F; ð7Þ

where we regularize the sum of squares of all the entries in the graph Laplacian. Because the
sum of each row of L is zero, if we shrink or amplify the weights of edges associated with a cer-
tain vertex, its degree will vary accordingly. Hence, we are able to regularize the off-diagonal
and diagonal entries of L together. For the altered objective function, the derivative is given by

@T
@L

¼
Xs�1

r¼0

LrðXXTÞLs�r�1 � 2bL: ð8Þ

Since the constraints in (5) and (6) are linear, the feasible region specified by them is convex
[35]. Hence, we can apply the projected gradient descentmethod discussed in [36] to search for
optimal solutions. For a continuously differentiable objective function and linear constraints, it
has been proven that the projected gradient descent method forces the sequence of projected
gradients to zero and the limit points of this method are stationary points [36, Theorem 2.3
and 2.4].
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Results and Discussions
In this section, we verified the GRM by synthetic data and applied it to learn the structural
brain connectivity of AD patients and NC subjects.

Results on simulated data
We first verified our GRM based on a series of simulated data sets, which consist ofM = 10 up
toM = 300 signals on a random weighted graph. The random graph was built through two
steps. First, we assumed that there were N = 16 vertices in the graph and constructed the graph
structure by connecting each pair of the vertices with a probability of 0.3. Then, if two vertices
were connected, a random weight uniformly drawn from 0 to 1 was assigned to the associated
edge. After that, the signals were generated from linear combinations of the first 6 eigenvectors
of the graph Laplacian L, according to

x ¼ 3
X3

i¼1

ai fi þ
X6

j¼4

aj fj; ð9Þ

where fi is the ith eigenvector of L, αi (1� i� 6) is a uniform random variable in [0, 1]. We
placed higher weights on the first 3 eigenvectors to make the signals smoother on the graph.
Note that this choice was not essential, as long as we generated smooth signals on the graph.

For comparison purposes, we considered two other popular approaches for inferring net-
work structures besides the proposed method. The first one infers the network by computing
the sample correlation in two steps. First, it calculates the sample covariance matrix according
to

S ¼ 1

M � 1

XM
m¼1

xm � �xð Þðxm � �xÞT ; ð10Þ

with �x ¼ PM
m¼1 xm. Then, each element of the correlation matrix C is estimated as Cij ¼ Sijffiffiffiffiffiffi

SiiSjj
p .

The second one estimates the partial correlation with ℓ1-regularization, since the sample corre-
lation matrix is often singular due to the small sample size compared with the data dimension.
This approach is also known as graphical Lasso [13]. For convenience, we use abbreviations SC
and GLasso to indicate sample correlation and graphical Lasso in some of the figures. Given
the sample covariance matrix S and a regularization parameter ρ, it maximizes the penalized
log-likelihood

log detY� trðSYÞ � r k Y k1; ð11Þ
over all positive semi-definite matricesΘ, to obtain an estimation of the inverse of the covari-
ance matrix. The regularization parameter ρ in Eq (11) controls the tradeoff between the likeli-
hood of the data and the sparsity of the network connections.

The simulation results of the above methods are shown in Figs 2 and 3. We tuned parame-
ters of both GRM and graphical Lasso by maximizing the average performance of each algo-
rithm whenM varied from 10 to 300. When the number of samplesM = 300, we observe that
our reconstruction of L in Fig 2(d) resembles the ground truth in Fig 2(a) with s = 2.5, β = −0.1,
while a simple correlation estimator in Fig 2(b) gives us visually noisy results. Fig 2(c) is the es-
timate of the partial correlation with ℓ1-regularization, when ρ = 2 × 10−3. In order to deter-
mine a reasonable regularization parameter in Eq (11), we repeated the learning process with
different values of ρ and found that ρ = 2 × 10−3 yielded the best results for a wide range ofM.
The performance of the algorithm was evaluated by the Normalized Mutual Information
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(NMI) [37] and F-score [38] between the graph learned from the data and the ground truth.
Both criteria have been commonly used in information retrieval [39]. NMI is defined according
to the following formula

NMIðA;BÞ ¼ 2 �MIðA;BÞ
HðAÞ þHðBÞ ; ð12Þ

whereMIðA;BÞ ¼ P
a2A

P
b2Bpða; bÞlog2 pða;bÞ

pðaÞpðbÞ

� �
represents the mutual information between

matrix A and B; H(A) = ∑a2A p(a)log2 p(a) indicates the entropy of A. Here a and b are arbi-
trary entries in the respective matrices; p(�) denotes a probability measure (in practice, the

Fig 2. Simulation results. Simulation results on a 16-vertex random graph with its Laplacian matrix shown in (a). The data includedM = 300 signals on the
graph for (b)–(f) andM = 20 signals for (g)–(i). Each signal was a linear combination of the first 6 eigenvectors of the graph Laplacian. ForM = 20 or 300, the
GRM significantly outperforms the compared methods, namely the sample correlation and the graphical Lasso.

doi:10.1371/journal.pone.0128136.g002
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probabilities are obtained from histogram). In addition, F-score is defined as

F� score ¼ 2 � TP
2 � TPþ FPþ FN

; ð13Þ

where TP, FP and FN are the numbers of true positives, false positives, and false negatives, re-
spectively. NMI assesses the similarity between the estimated graph and the true graph by
checking the frequency that we see a certain pair of connection weights at the same corre-
sponding locations, while F-score measures the similarity by checking if we correctly recover
the locations of the edges. We used these two metrics to obtain a more comprehensive compar-
ison between different algorithms.

In the above simulation, whenM = 300, we see that the NMI and F-score of Fig 2(d) are
(0.6973, 0.8824). Meanwhile, these two measurements of Fig 2(e) and 2(f) are (0.6097, 0.7895)
and (0.6040, 0.7895), respectively. By searching different combinations of s and β, we chose
s = 2.5, β = −0.1 for the GRM. When the number of samples is very small, namelyM = 20, the
NMI and F-score for the GRM are (0.4668, 0.6667) in Fig 2(h). In contrast, those two measure-
ments for the sample correlation in Fig 2(g) and the graphical Lasso in Fig 2(i) are (0.3160,
0.3899) and (0.3161, 0.5806), accordingly. Furthermore, we compared the NMI and F-score by
varying the sampling sizeM from 10 to 300 with a step-size 10. For eachM, we ran the experi-
ment multiple times to take the randomness of the graph realization and data generation into
account. The results are presented in Fig 3, where the left and right panels illustrate the trend
of the NMI and the F-score, respectively. We can see that the GRM outperforms the sample
correlation and graphical Lasso significantly, even whenM = 10. This verifies that our pro-
posed approach can learn a more consistent graph under insufficient samples.

AD and NC study
Table 1 provides the demographics of the cognitively normal elderly control subjects and the
participants with Alzheimer’s disease. All participants of this study were recruited from ongo-
ing neuroimaging studies in aging and during screening for dementia clinical trials at the Mas-
sachusetts General and Brigham and Women’s Hospitals [6]. The evaluation of the

Fig 3. Performance of the graph structure learningmethods v.s. the number of samples. In the left and right panels, we show the NMI and F-score
between the estimated graph and the truth, respectively. The error bar indicates the standard deviation of the measurement. For everyM, we ran the
experiment 100 times by randomly generating the graph structure and the signals.

doi:10.1371/journal.pone.0128136.g003
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participants included a 11C-PiB-PET scan. All subjects were provided written informed con-
sent, prior to any experimental procedures, in accordance with protocols approved by the Insti-
tutional Review Board of Partners Healthcare Inc. The study was approved by and conducted
under the auspices of the Partners Human Research Committee at Brigham and Women’s
Hospital and Massachusetts General Hospital. Each cognitively normal elderly subject was re-
quired to have a normal neurological examination, a Clinical Dementia Rating (CDR) [40]
scale score of 0, a Mini-Mental State Examination (MMSE) over 27 and performance within
1.5 SD on age and education-adjusted norms on cognitive testing [41]. In addition, there was
not any notable medical or neuropsychiatric illness, nor was there a history of alcoholism, drug
abuse, head trauma, or a family history of autosomal dominant Alzheimer’s disease found
from the cognitively normal elderly participants. Each individual with Alzheimer’s disease
showed a CDR scale of 1 and met criteria for a clinical diagnosis of probable Alzheimer’s dis-
ease according to the National Institute of Neurological and Communicative Disorders and
Stroke/Alzheimer’s Disease and Related Disorders Association criteria [42].

All acquisition, preprocessing and image analysis of 11C-PiB-PET were conducted using
standard procedures as published previously (see below for detailed references). The PET scans
were acquired on a Siemens/CTI ECAT HR+ PET scanner at Massachusetts General Hospital
[6]. Amyloid imaging was performed with N-methyl-11C-2-(4-methylaminophenyl)-6-hydro-
xybenzothiazole (PiB). 11C-PiB was prepared as described by [43]. Briefly, after a transmission
scan, 10–15mCi 11C-PiB was injected as a bolus intravenously, which was followed immediate-
ly by a 60-min dynamic PET scan in 3D mode (63 image planes, 15.2cm axial field of view,
5.6mm transaxial resolution and 2.4mm slice interval; 69 frames: 12 × 15s, 57 × 60s). PiB-PET
data were reconstructed with ordered set expectation maximization, corrected for attenuation,
and each frame was evaluated to verify adequate count statistics and absence of head motion.
Individual 11C-PiB-PET scans were spatially normalized using the warping information de-
rived from individual stereotactic normalization of the structural MRI using SPM 5.

As shown in Table 1, the data set consists of 30 AD patients and 40 NC subjects. PET neuro-
imaging data were downsampled from the normalized 2 mm isotropic voxels to 8 mm isotropic
voxels for computational efficiency. Each image has a dimension of 20 × 24 × 18 with
8mm × 8mm × 8mm voxels. In the data preprocessing step, we first masked out the area out-
side of the brain. Next, we applied Automated Anatomical Labeling (AAL) [44] to map the ef-
fective voxels to 116 VOIs. The data were then averaged within each VOI for further analysis.
Among all the VOIs, we picked up 42 regions that were considered to be potentially related to
AD [45]. Those regions are distributed in the frontal, parietal, occipital, and temporal lobes.
Table 2 lists the names of the selected VOIs and their corresponding lobes. The numbers of se-
lected VOIs in the above four brain lobes are 12, 8, 6, and 16, respectively.

Table 1. Participant demographics.

Sample size Avg. age (SD) Avg. education (SD) Avg. MMSE (SD) Avg. CDR

AD 30 (13 male) 73.03 (7.99) 17.5 (1) 25 (1.63) 1

NC 40 (14 male) 76.15 (8.04) 16.24 (2.88) 29.05 (1.1) 0

AD = Alzhemier’s Disease; NC = Normal Control subjects; SD = Standard Deviation; MMSE = Mini-Mental State Examination; CDR = Clinical Dementia

Rating. The age and education are measured in years.

doi:10.1371/journal.pone.0128136.t001
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Brain connectivity learning by GRM
Before applying the GRM to learn the brain connectivity of the AD group, we computed a cor-
relation matrix based upon the measurements taken from the 42 VOIs of each AD patient. We
show the result in Fig 4(c), where the numbering of the VOI areas was based on lobes, and the
four brain lobes are distinguishable in the blocks next to the diagonal. But it is hard to set a sim-
ple threshold to obtain a meaningful binary graph, due to the inhomogeneity of the contrast of
the correlation coefficients within different lobes. To better visualize the network structure, we
show the strongest edges for sample correlation and the other two methods (Fig 4; columns 1
and 2).

Next, we exploited the GRM to learn the Aβ network of the AD group. We tuned the param-
eters of the GRM by minimizing the error of classification between AD and NC with leave-
one-out cross-validation. The same procedure was carried out for determining the parameters
of the graphical Lasso. When s = 2, β = −0.003, our method yielded a Laplacian matrix showed
in Fig 4(f) and connectivity diagrams displayed in Fig 4(d) and 4(e) after thresholding. The
choice of β = −0.003 in our learning model slightly spreads out the significant edges of the esti-
mated graph; meanwhile, the choice of s = 2 allows us to obtain a relatively fast decay of the
GFT coefficients of the data, as well as keep the solution stable (larger s reduces the stability).

In contrast to the noisy sample correlation, the resulting Laplacian matrix in Fig 4(f) ex-
tracts cleaner and potentially more meaningful information from the data. The absolute value
of each off-diagonal term describes the associativity between each pair of brain regions. It
seems that our algorithm automatically adapts a threshold to the local correlation levels and
thus returns the most significant connections within each lobe. If we were to apply a simple
uniform threshold to the sample correlation matrix, almost all edges within the frontal lobe
and very few within the temporal lobe would remain, which is not quite reasonable. Other than
keeping the prominent edges, the GRM also selects a small amount of weak edges in the

Table 2. Names of the VOIs used in the brain connectivity learningmodel.

Frontal Lobe Parietal Lobe Occipital Lobe Temporal Lobe

1 L Superior Frontal Gyrus 13 L Superior Parietal Lobule 21 L Superior Occipital 27 L Superior Temporal Gyrus

2 R Superior Frontal Gyrus 14 R Superior Parietal Lobule 22 R Superior Occipital 28 R Superior Temporal Gyrus

3 L Middle Frontal Gyrus 15 L Inferior Parietal Lobule 23 L Middle Occipital Gyrus 29 L Superior Temporal Pole

4 R Middle Frontal Gyrus 16 R Inferior Parietal Lobule 24 R Middle Occipital Gyrus 30 R Superior Temporal Pole

5 L Middle Frontal Gyrus 17 L Precuneus 25 L Inferior Occipital Cortex 31 L Middle Temporal Gyrus

6 R Middle Frontal Gyrus 18 R Precuneus 26 R Inferior Occipital Cortex 32 R Middle Temporal Gyrus

7 L Middle Orbitofrontal Gyrus 19 L Posterior Cingulate Gyrus 33 L Middle Temporal Pole

8 R Middle Orbitofrontal Gyrus 20 R Posterior Cingulate Gyrus 34 R Middle Temporal Pole

9 L Gyrus Rectus 35 L Inferior Temporal Gyrus

10 R Gyrus Rectus 36 R Inferior Temporal Gyrus

11 L Anterior Cingulate Gyrus 37 L Fusiform Gyrus

12 R Anterior Cingulate Gyrus 38 R Fusiform Gyrus

39 L Hippocampus

40 R Hippocampus

41 L Parahippocampal Gyrus

42 R Parahippocampal Gyrus

L = Left hemisphere; R = Right hemisphere.

doi:10.1371/journal.pone.0128136.t002
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correlation matrix, such as the connection between Right Posterior Cingulate Gyrus and Right
Hippocampus.

For comparison purposes, we also estimated the partial correlation by using the graphical
Lasso. The result with a regularization parameter ρ = 0.002 is displayed in Fig 4(i). We observe
that while there is overlap between Fig 4(i) and 4(f) in terms of notable connections, denser
connections within the frontal lobe as well as between the frontal lobe and the temporal lobe
are found in Fig 4(i). In addition, it appears that the partial correlation in Fig 4(i) bears a simi-
lar structure to the correlation matrix in Fig 4(c) after thresholding.

Following the same routine, for the NC group we also computed the sample correlation and
compared it with the graph Laplacian and the partial correlation given by the GRM and the
graphical Lasso, respectively. The associated matrices and connectivity patterns are presented
in Fig 5. Again the adjacency matrices obtained by both our method and the graphical Lasso

Fig 4. Network learning results of the AD group.Reconstruction results by the GRM (2nd row) from 30 AD subjects compared with those by sample
correlation (1st row) and graphical Lasso (3rd row). We plotted the sagittal and coronal views of the thresholded networks in the first two columns, where 144
prominent links are shown for all cases. The colors and sizes of the nodes indicate the associated brain lobes (frontal lobe is cyan; temporal lobe is pink;
parietal lobe is blue; occipital lobe is purple) and node degrees, respectively; the thicknesses of the edges encode the connection strengthes. Those figures
were generated by BrainNet Viewer (http://www.nitrc.org/projects/bnv/). We used s = 2, β = −0.003 and ρ = 0.002 to simulate (f) and (i), respectively. To ease
visualization, we removed the diagonal entries when displaying the graph Laplacian and partial correlation matrices.

doi:10.1371/journal.pone.0128136.g004
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have high contrast between the strength of the connections along diagonal and that of the off-
diagonal connections. Nevertheless, in the network estimated by the thresholded sample corre-
lation matrix (see Fig 5(a) and 5(b)), the significant connections between the occipital lobe and
the temporal lobe are lost due to the thresholding. Comparing the result from the graphical
Lasso in Fig 5(i) to the connections in Fig 5(f), we find that in the former network there are
more connections within the frontal lobe and less connections between the occipital and the
temporal lobe. Notice that in Figs 4 and 5, for getting a better contrast, we dropped off diagonal
elements when displaying graph Laplacian and partial correlation matrices. Besides, only abso-
lute edge weights are shown after a linear normalization of the maximum absolute value
to one.

The networks learned by the GRM and graphical Lasso differ from each other significantly.
Since many weak connections might be due to noise, we thresholded the networks learned by
GRM and graphical Lasso so that both of them remained 187 edges. We will discuss the choice
of thresholds when we analyze the hub locations. After thresholding, we find that the two
methods merely share 57.81% (137 out of 237) of edges in the AD group and 43.85% (114 out

Fig 5. Network learning results of the NC group.Reconstruction results by the GRM from 40 NC subjects compared with those by sample correlation and
graphical Lasso. For both GRM and graphical Lasso, results are obtained by keeping the same parameters as in the previous AD case. More detailed
descriptions of the figure generation can be found in the caption of Fig 4.

doi:10.1371/journal.pone.0128136.g005
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of 260) of edges in the NC group, which means that the two methods have yielded slightly
more similar network structures in the AD group when compared with the NC group. In the
next subsection, we compare the GRM and the graphical Lasso in more detail.

AD and NC classification study
To justify that our method provides effective bio-markers, we preformed a classification study
of AD versus NC based on the PiB-PET data and leave-one-out tests. Each time we removed
one subject from the whole data set and treated the rest of the data and the removed subject as
training and testing data respectively. For the GRM, we first learned the weighted graphs of the
AD group and NC group with the training data. Then, we compared the variations of a testing
data point on these graphs according to (1). We classified the testing data to AD or NC group
by selecting the graph that yielded a lower signal variation. The receiver operating characteris-
tic (ROC) curve of the GRM is shown in Fig 6. We also compared its performance with that of
the sample correlation and graphical Lasso. For the graphical Lasso, we computed the likeli-
hood of a testing data point xtest under each of the learned Gaussian graphical models and
chose the model that had larger likelihood. The likelihood function is defined in terms of the

probability density function f ðxjŶ Þ as follows:

‘ðŶjxtestÞ ¼ f ðxjŶÞ ¼ ð2pÞ�N
2det ðŶÞ12 e�1

2ðxtest�m̂ÞT Ŷðxtest�m̂Þ; ð14Þ

where Ŷ is an estimate of the inverse covariance matrix; m̂ is the sample mean; N denotes the

Fig 6. ROC curves of PiB-PET data classification. ROC curves of PiB-PET data classification for the
proposed GRM and sample correlation (SC), graphical Lasso (GLasso). When using GRM, we compare the
variations of the testing data point on the graphs learned from the training data of the AD group and NC
group, respectively. When using SC or GLasso, we compare the Mahalanobis distances or the likelihood of
the new data point under the two Gaussian graphical models, accordingly. The GRM significantly
outperforms the other two methods.

doi:10.1371/journal.pone.0128136.g006
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dimension of the model. However, for the sample correlation method, the reciprocal of deter-
minant of the sample covariance matrix is infinity, since the matrix is singular. Thus, we have
calculated the Mahalanobis distances of xtest under the two Gaussian graphical models defined
below:

dMðxtestÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxtest � m̂ÞTðSþ sIÞ�1ðxtest � m̂Þ

q
; ð15Þ

where S is the sample covariance matrix of the training data and σ is a small quantity to elimi-
nate the singularity of S. We tuned the parameters of the above methods optimally using grid
search. The parameters that we have used in classification are listed in Table 3. The ROC curves
in Fig 6 shows that the GRM can achieve a better classification result than that of the sample
correlation and graphical Lasso. The latter two methods have a very close performance. We
have summarized the performance metrics of those classification methods in Table 3, from
which we find that our method has a significantly higher area under the curve (AUC) than that
of the sample correlation or graphical Lasso, with a p-value of 0.028 or 0.014, accordingly.
Meanwhile, it achieves the highest accuracy among the three methods.

Network metrics computation
To further evaluate the differences among the discussed approaches, next we computed three
typical network metrics: global efficiency, clustering coefficient, and maximized modularity.

It has been shown that human brain networks exhibit small-world network topologies,
which provide a good balance between clustering effect and global connectivity [46, 47]. The
classical small-world network model [48] proposed the clustering coefficient and the character-
istic path length of binary networks. The characteristic path length is simply the average short-
est path length between every pair of nodes. The information it carries can also be expressed in
the global efficiency, which is the mean of the reciprocal of pairwise distances. For weighted
networks, we could use the generalized clustering coefficient Cwu [49] and the global efficiency
Eglobal [50] to assess the small-worldness of the network as defined in S1 Appendix. A small-
world network has a large generalized clustering coefficient, like regular lattices, simultaneously
possessing a high global efficiency, like random graphs. Recent findings have demonstrated
that the loss of small-worldness is associated with AD [47]. Hence, we can employ Cwu and Eglo-
bal as discriminative metrics between the networks of the AD and NC groups.

In addition, we evaluated the maximized modularity of the networks. Modularity is a quan-
tity measuring the strength of division of a network into modules (a.k.a., blocks, clusters or
communities) [51]. For completeness, we include the definition of network modularity in S1
Appendix. The results of these three network measurements are listed in Table 4, where we
also consider another network construction method based on normalized mutual information

Table 3. Performance metrics and parameters of PiB-PET data classification.

AUC ACR SEN SPE Parameters

SC 0.9008 0.8286 0.8000 0.8500 σ = 0.001

GRM 0.9783 0.9286 0.9667 0.9000 s = 2, β = −0.003

GLasso 0.8825 0.8286 0.8333 0.8250 ρ = 0.002

AUC: area under the curve; ACR: accuracy; SEN: sensitivity; SPE: specificity.

doi:10.1371/journal.pone.0128136.t003
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between measurements taken from different brain regions. We will further discuss this method
in the end of this section.

It is necessary to point out that the clustering coefficient and global efficiency are dependent
on the scales of the edge weights. For instance, if we double all the weights, by the definitions in
S1 Appendix, the clustering coefficient and global efficiency will also be doubled. Hence, it is
not meaningful to directly compare these two quantities across different methods. Neverthe-
less, for a given metric, we can compare its relative differences between the AD and NC groups
over different graph learning algorithms.

For clustering coefficient, we observe that the value of the NC group is larger than that of
the AD group among all the approaches. But the percentage difference of the GRM is the most
significant: GRM (81.59%)> SC (12.27%)> GLasso (8.99%)> NMI (0.56%). For global effi-
ciency, similarly we find that the measurement of the NC group is higher that that of the AD
group in the SC, GRM, and MI. The only exception is the GLasso which results in a smaller
global efficiency in the NC group. Among the three former methods, again the GRM has the
largest percentage difference of the measurements: GRM (33.32%)> SC (10.96%)> NMI
(0.47%). For the GRM, from the above comparison, we see that the resulting network of the
AD group exhibits a remarkable loss of small-worldness in contrast to the NC group. The SC
and NMI also have a similar trend in terms of the clustering coefficient and global efficiency
but both with a less significance. However, the maximized modularity of either SC or NMI is
much smaller than that of the GRM. This means that the modular structure of the network
learned by SC or NMI is not as evident as that of the network from the GRM. The above find-
ings of the alternation of the network efficiency and clustering coefficient from the GRM are
coherent with the discovery in the literature [46, 47].

In what follows, we interpret the physiological meanings of the connectivity by studying the
hub locations and comparing the thresholded networks between the AD and NC groups.

Degree distribution and hub location study
We compared degree distributions of the weighted networks learned by different methods and
evaluated the difference among the thresholded networks by investigating locations of network
hubs, namely brain regions with rich connections to other areas [52–57]. These hubs are in-
triguing due to their potential role in information integration and relevance to brain diseases
[5, 53]. For comparison purposes, we selected the same number of most significant edges in the
networks given by different methods.

We first directly compared degree distributions of the weighted networks. In Table 5, we
display the average degree of the vertices of each network. Although the scales of the average
degrees are very different for the listed methods, we can assess the average degree difference

Table 4. Measurements of the weighted graphs obtained by different methods.

Graph metric SC (AD) SC (NC) GRM (AD) GRM (NC) GLasso (AD) GLasso (NC) NMI (AD) NMI (NC)

global efficiency 0.7352 0.8257 0.1429 0.2143 0.1721 0.1581 0.6800 0.6832

clustering coefficient 0.7720 0.8230 0.0079 0.0429 0.0243 0.0267 0.6778 0.6816

maximized modularity 0.0107 0.0121 0.4743 0.4053 0.4762 0.4525 1.8 × 10−16 4.7 × 10−17

SC = Sample Correlation; GLasso = Graphical Lasso; NMI = Normalized Mutual Information. We use AD or NC inside the parentheses to denote the

subject group.

doi:10.1371/journal.pone.0128136.t004
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between groups. Thus, in the third row, we have calculated the percentage difference between
the AD and NC groups. We observe that the GRM has the largest relative difference of the av-
erage degree. In addition, among all the methods, only SC and GRM exhibit significant differ-
ence between groups. This result together with the global efficiency and clustering coefficient
measurements in Table 4 indicate that the graphs learned by the GRM are more distinct with
each other.

Then, we applied different thresholds to the sample correlation, the graph Laplacian and the
ℓ1-regularized partial correlation matrices of the AD and NC groups, so that the resulting net-
works all had 187 edges. Here we only retained 21.7% of all possible edges in the network be-
cause we would like to focus attention on the topology of relative sparse (low-cost) networks
[50], which represent the strongest functional connections [50]. This is widely justified by the
known sparsity of anatomical connections in human and non-human nervous systems; for in-
stance, in Caenorhabditis elegans, less than 6% of all possible unweighted synaptic connections
exist between neurons [58]. We plotted the degree of every vertex in the associated thresholded
networks of the AD and NC groups in Fig 7.

In Fig 7, by ranking the vertex degrees in the AD group network from the GRM, we discover
four hubs at Right Middle Frontal Gyrus, Left Posterior Cingulate Gyrus and Left/Right Middle
Temporal Pole, distributed in the frontal, parietal and temporal lobes, respectively; while the
top four hubs given by the sample correlation method are Left Superior Frontal Gyrus, Left
Middle Frontal Gyrus, Left Middle Orbitofrontal Gyrus, and Left Anterior Cingulate Gyrus (all
belonging to the frontal lobe), which implies that the network structure is not very balanced.
Besides, the hubs resulted from the graphical Lasso are Right Middle Frontal Gyrus, Left Mid-
dle Temporal Pole, Left Inferior Temporal Gyrus and Left Hippocampus, close to the hubs
found by the GRM. In parallel, we compared the hubs in the NC group networks learned by
different methods. From the results of the GRM, we find the top four hubs in Left Middle Fron-
tal Gyrus, Right Inferior Parietal Lobule, Right Inferior Temporal Gyrus and Right Fusiform
Gyrus; while the top four lobes discovered by the sample correlation are Left/Right Superior
Frontal Gyrus, Right Middle Frontal Gyrus, Parietal Lobule. In addition, the hubs obtained by
graphical Lasso are Left/Right Middle Frontal Gyrus and Left/Right Inferior Parietal Lobule.
This distribution is similar to that obtained by the GRM. Nevertheless, according to the results
of the AD and NC groups, the hub locations found by the GRM are more dispersed in the
brain and they fit better with the distributed pathology in AD [52].

Moreover, we qualitatively compared the above outcome to the hub locations revealed by
fMRI literature. Previous investigation on the fMRI correlation network disclosed that the typi-
cal cortical hubs included medial prefrontal cortex, bilateral parietal/angular cortex, posterior
cingulated cortex/precuneus and bilateral lateral temporal cortex [5, 52, 57]. We observe that
there is a strong correspondence between the hubs found by the fMRI and the PiB-PET data.

Table 5. Average degree of the weighted networks learned by different approaches.

Average degree SC GRM GLasso NMI

AD 29.1206 1.9744 2.6482 27.8782

NC 33.8538 4.1738 2.7325 28.0100

(NC-AD)/NC 13.98% 52.70% 3.09% 0.47%

p-value 1.9 × 10−22 7.6 × 10−14 0.0890 0.7932

The third row denotes the relative difference between the AD and NC groups.

doi:10.1371/journal.pone.0128136.t005
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Fig 7. Degree distributions of the thresholded networks. Degree distributions of the thresholded AD and
NC networks obtained by different methods. The horizontal and vertical axes correspond to the brain region
index and vertex degree, respectively. The magenta lines delineate the four brain lobes: namely, the frontal,
parietal, occipital, and temporal lobe (from left to right).

doi:10.1371/journal.pone.0128136.g007
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Comparison between the AD and NC groups
Comparing the degree distributions of the AD and NC groups presented in Fig 7, we find that
there are many nodes (mainly in the parietal, occipital, temporal lobes) with large discrepancies
in degree between the two groups in Fig 7(a); nevertheless, the degree distributions of the AD
and NC groups are more congruent with each other when we adopt either the GRM or the
graphical Lasso to learn the network structures. According to Fig 7(b) and 7(c), some distinc-
tive nodes between the two groups in terms of their degrees are Right Inferior Parietal Lobule
and Left/Right Middle Temporal Pole (for the GRM); Left Inferior Parietal Lobule, Left Middle
Temporal Pole and Left Hippocampus (for the graphical Lasso).

We can also compare the brain connectivity patterns learned by GRM between the AD and
NC groups in more detail. To facilitate the comparison, we solved the optimization problem
Eq (7) with the constraints in Eqs (5) and (6) by setting s = 2, β = −0.003 for both groups.
Then, we thresholded the resulting adjacency matrices in order to pick up the same number of
significant edges from the associated networks. This ruled out the connectivity difference be-
tween the two groups due to the disparity of the scalings of the edge weights, whereas the dis-
tinction of the network organizations was preserved. Fig 8(a) and 8(b) illustrate the binary
graphs after thresholding with 187 edges in both cases. Each blue cell corresponds to an edge
between two vertices. Since the matrices are symmetric, the total number of blue cells is twice
the number of edges in each graph. In every plot, we highlighted the four brain lobes by frames
in red. From top left to bottom right, there is frontal lobe, parietal lobe, occipital lobe and tem-
poral lobe, respectively.

In general, the resulting networks in Fig 8(a) and 8(b) both a have fewer number of intra-
lobe connections than inner-lobe connections. However, there are notable discrepancies be-
tween them. First, the temporal lobe of AD has a larger amount of connections than NC. In
particular, the number of connections between the temporal lobe and frontal lobe in AD group
is 32, significantly larger than the number of corresponding connections 13 in the NC group.
In terms of particular regions, the connections between Left/Right Middle Temporal Pole (No.
33–34) and other regions increase remarkably in the AD group. These Aβ connectivity incre-
ments can be explained by advance of the disease [6]. Although the classic regions Left/Right
Hippocampus and Left/Right Parahippocampal Gyrus (No. 39–42) also have slightly denser
connections in AD than NC, this trend is more prominent in Left/Right Middle Temporal
Pole. Besides, we notice that the Right Inferior Temporal Gyrus (No. 36) has fewer connections

Fig 8. Comparison between the AD and NC networks learned by GRM. (a)-(b) correspond to the adjacency matrices of thresholded networks with both
187 edges, respectively; (c) visualizes the degree distribution differences between the AD and NC networks, with respect to the network density. Both the
horizontal and vertical axes in the first two diagrams represent the brain region index.

doi:10.1371/journal.pone.0128136.g008
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to the regions outside the temporal lobe in AD than NC. We observe that the connections with-
in the frontal lobe of AD are less than those of NC from Fig 8. In addition to the previous
study, we evaluated the impact of the thresholds that we applied to the weighted networks. In
Fig 8(c), we have considered the degree difference between the AD and NC groups with various
network densities (i.e., the number of edges after thresholding over the total number of possible
edges). The horizontal axis is the percentage of edges we keep and the vertical axis corresponds
to the degree of a certain brain region in the AD network minus that in the NC network. We
observe that there are a few brain regions such as Anterior Cingulate Gyrus (No. 11), Right
Middle Temporal Pole (No. 34), Right Inferior Temporal Gyrus (No. 36), exhibiting large dis-
crepancies over a wide range of network densities. The above differentiable network features
discovered through the GRMmight provide biomarkers that can classify AD and NC subjects
more distinctly.

Other network construction
We have compared our proposed GRM with a mainstream method, namely sample correla-
tion, and the state-of-the-art approach, namely the graphical Lasso. We notice that people also
use normalized mutual information (NMI) between observed data of every two brain regions
to construct brain connectivity networks. However, this might not be a good way to construct
networks with a very small amount of observations, as in our case.

In what follows, we discuss the networks constructed with NMI. By calculating the NMI, we
obtained the adjacency matrices of the AD and NC groups in Fig 9. First of all, from the adja-
cency matrices, we can not discriminate the block-structure along the diagonal as that appears
in the networks learned by the GRM and the graphical Lasso. This is confirmed by calculating
the modularity. From Table 4, we observe that the maximized modularity of the network of ei-
ther the AD group or the NC group is close to zero and significantly less than that of the corre-
sponding network yielded by GRM or GLasso. It indicates that the obtained networks by NMI
are almost like random networks, contradicted with the well-accepted findings of the modular
structure in brain networks [51].

Fig 9. Adjacencymatrices obtained by NMI. Adjacency matrices obtained by computing the normalized mutual information between observations of every
pair of brain regions, for the AD group (left panel) and the NC group (right panel), respectively.

doi:10.1371/journal.pone.0128136.g009
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Moreover, we computed the clustering coefficient and global efficiency of the weighted
graphs obtained by NMI. Since the definitions of these two quantities are based on weighted
graphs, it allows us to directly analyze the networks without thresholding. As shown in Table 4,
the clustering coefficient and global efficiency of the networks of the AD and NC groups are
(0.6778, 0.6800) and (0.6816, 0.6832), respectively. Although we observe that the clustering co-
efficient and global efficiency for the AD group are lower than that of the NC group according-
ly, the percentage differences 0.56% and 0.47% are very small.

Conclusion
We have proposed a GRM to estimate the brain network structure based on neuroimaging
data. Our assumption was that the data were smooth signals on a potential graph. The learning
procedure was formulated as an optimization of the fit between the graph and the data, with a
uniformity level regularization on the connection weights. Both synthetic and real data sets
were used to evaluate the proposed method. Results on simulated data indicated that our ap-
proach can obtain a very close reconstruction of the ground truth. We then applied the GRM
to learn the structural brain connectivity of AD and NC subjects from PiB-PET imaging data.

We believe that the resulting connectivity patterns were easy to interpret and consistent
with established knowledge of AD. For either the AD or NC group, our obtained networks
were more balanced when compared with the corresponding networks generated from the
sample correlation. Moreover, the revealed hub locations matched the cortical hubs given by
previous literature using fMRI. We discovered consistent changes between the network of AD
group and that of the NC group, by studying the variations of clustering coefficient, global effi-
ciency, maximized modularity, and intra-lobe/inter-lobe connections. The GRM yielded more
distinct network structures between the AD and NC groups, when compared with the other
methods. Those differentiable network features could potentially help detect AD at elderly or
preclinical stages.

Supporting Information
S1 Appendix. Definitions of network metrics. Definitions of the clustering coefficient, global
efficiency, and modularity for weighted networks.
(PDF)
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