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Abstract

Diabetes mellitus is a metabolic homeostasis disease that contributes to additional comorbidities 

such as cardiovascular disease (CVD) and cancer. It has a long undiagnosed latent period during 

which there can be irreparable damage to the pancreas and cardiovascular tissues. Recent studies 

have highlighted the roles of several microRNAs in CVD. Determining the microRNAs that link 

diabetes mellitus and CVD is an important topic to be explored. In the present review, we discuss 

the microRNAs that contribute to the progression of diabetes mellitus and CVD and focus on the 

miR-29 family microRNAs whose expression is upregulated by hyperglycemia and 

proinflammatory cytokines, the hallmarks of diabetes mellitus. Upregulation of miR-29 expression 

is a key factor in the loss of pancreatic β cells and development of the first stage of type 1 diabetes 

mellitus (T1DM). Additionally, miR-29-mediated suppression of myeloid cell leukemia 1 

(MCL-1), an important prosurvival protein, underlies Marfan’s syndrome, abdominal aortic 

aneurysm, and diabetes mellitus-associated cardiomyocyte disorganization. Suppression of 

miR-29 expression and subsequent increase in the prosurvival MCL-1, however, promotes tumor 

development. Therefore, miR-29 mimics that suppress MCL-1 are hailed as tumor suppressors. 

The critical question is whether an increase in miR-29 levels is well tolerated in conditions of 

comorbidities in which insulin resistance is an underlying disease. In light of increasing awareness 

of the interconnection of diabetes mellitus, CVD, and cancer, it is of utmost importance to 

understand the mechanism of action of current treatment options on all of the comorbidities and 

careful evaluation of cardiovascular toxicity must accompany any treatment paradigm that 

increases miR-29 levels.

The diabetic heart

Diabetes mellitus has reached epidemic proportions in the United States, with 25.8 million 

(8.3% of the population) diagnosed as having diabetes mellitus and a staggering 79 million 
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with prediabetes who are on the ‘fast track’ to type 2 diabetes mellitus (T2DM).1,2 Diabetes 

has been described as an independent risk factor for cardiovascular disease (CVD); however, 

the underlying mechanisms are unclear.3–7 Diabetes mellitus exacerbates coronary heart 

disease, cardiovascular remodeling, and hypertrophy, as well as CVD-associated 

mortality.6,8–10 One cannot look at diabetes mellitus as an isolated condition, and it is 

important to realize that diabetes mellitus is in many patients part of the metabolic syndrome 

‘package,’ and, assuch, will lead to or is accompanied by other disease conditions, among 

them cancer. This situation makes it imperative that every novel treatment approach has to 

be cross-checked for potential interference with comorbidities.

Traditionally, diabetes has been classified mainly as a disorder of metabolic homeostasis 

characterized by inappropriate hyperglycemia.6,11–13 Recent research, however, strongly 

implicates chronic inflammation as the underlying disease of diabetes mellitus.14–18 In the 

early stages of diabetes mellitus, hyperinsulinemia is a compensatory mechanism to regulate 

hyperglycemia. At this point, the disease is developing, but goes mostly unnoticed, because 

glucose levels remain within the normal range. Even in this asymptomatic early stage of 

impaired glucose tolerance, which is usually brought about by overnutrition or age-related 

changes, however, damage in the tissue takes place, predisposing it to failure on further 

insults. Most patients of T2DM are diagnosed after the age of 40, which is usually preceded 

by years of asymptomatic hyperglycemia and compensatory hyperinsulinemia.11,12,15,19 

During this stage, insulin itself as well as increased nutrients and angiotensin II signals to 

activate, among others, the metabolic sensor mammalian target of rapamycin complex 1 

(mTORC1), which leads to compensatory cardiac hypertrophy.20–24 Excessive activation of 

mTORC1 is implicated in the development of insulin resistance and cardiovascular 

dysfunction.25,26 Shende et al.,27 however, have shown that targeted ablation of cardiac 

Raptor, an essential component of mTORC1, results in rapid deterioration of cardiac 

functions and lethal dilated cardiomyopathy. In these animals, adaptive cardiomyocyte 

growth in response to aortic banding-induced pathological overload was lost.27 Similarly, 

Zhang et al.28 showed that inducible and cardiac-specific Mtor-cKO knock-out mice also 

experienced lethal dilated cardiomyopathy. These animals also were unable to develop 

adaptive hypertrophy when subjected to pressure overload. It was concluded that heart 

failure associated with the loss of mTOR activity is due to an increase in the activity of 

eukaryotic translation initiation factor 4E-binding protein 1.27,28 These observations 

highlight the critical role of mTORC1 signaling in normal cardiac function.

In both type 1 diabetes mellitus (T1DM) and T2DM, loss of pancreatic islet function and 

autoimmune destruction of the insulin-producing pancreatic β cells underlie the development 

of insulinopenia, which exacerbates hyperglycemia and damages vital organs such as the 

heart.29 We have previously shown that cardiac mTOR is phosphorylated at Ser2448 and 

mTORC1 signaling is activated in heart tissues of young hyperinsulinemic Zucker obese 

rats.25,30 In a 22-week-old Zucker diabetic fatty (ZDF) rat, however, a rodent model for 

severe hyperglycemia and reduced insulin levels, we observed that Ser2448 phosphorylation 

was significantly lower.25 Given the significance of mTORC1 in cardiomyocyte 

protection,28 it is conceivable that a reduction in cardiac mTOR activation during diabetes 

mellitus progression can have a critical role in diabetic heart disease.
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It is increasingly apparent that we need to find early markers for damages occurring during 

the early asymptomatic stages of diabetes mellitus, as well as other incrementally 

developing diseases associated with diabetes mellitus. We also need to understand the 

critical switching point between the benign adaptive mechanisms and those that are able to 

compensate, but at the same time set the stage for irreversible tissue damage. What are the 

signals that control and balance these stages and how do drugs commonly prescribed for 

accompanying conditions affect the outcome of long-term compensatory hyperinsulinemia? 

MicroRNAs, each of which regulates hundreds to thousands of genes and responds to tight 

transcriptional and posttranscriptional regulation through many central pathways itself, are 

promising candidates as such wide-reaching master switches.

MicroRNA precursors are short transcripts of approximately 70 nucleotides, which get 

exported from the nucleus as a hairpin or stem-loop and processed to mature miRNAs of 

22–24 nucleotides. These are then able to regulate the expression of numerous genes by 

complete or partial complementary binding to mRNA to inhibit translation or cause 

degradation of the targeted transcript.31 These small molecules can be actively or passively 

released into the circulation and can serve as markers for various diseases, including 

diabetes mellitus and CVD.32,33 Because diabetes mellitus is an independent risk factor for 

CVD, an intriguing question is which of the miRNAs that serve as a marker for diabetes 

mellitus also contribute to CVD progression.

MicroRNAs that link diabetes mellitus and cardiovascular disease

Several recent papers and comprehensive reviews have discussed the roles of different 

microRNAs (miRs) in cardiomyocyte death,34 cardiac fibroblast signaling,35 heart failure,36 

cardiac development and regeneration,37 and atherosclerosis and myocardial infarction 

(MI).38 In diabetic cardiomyopathy, the expression of microRNAs miR-1, miR-133, 

miR-141, miR-206, and miR-223 is increased, whereas the expression of miR-133a, 

miR-373, and miR-499 is suppressed.39 Zampetaki et al.40 reported deregulation of 12 

miRNAs (miR-24, miR-21, miR-20b, miR-15a, miR-126, miR-191, miR-197, miR-223, 

miR-320, miR-486, miR-150, and miR-28-3p), and Kong et al.41 reported deregulation of 

another seven miRNAs (miR-9, miR-29a, miR-30d, miR-34, miR-124, miR-146a, and 

miR-375) in the plasma of patients with diabetes mellitus. It is unknown, however, which of 

these miRs serve as a marker for both diabetes mellitus and CVD. The miR-29 family 

miRNAs is of special interest in this context because an increase in miR-29 family miRNAs 

is associated with diabetes mellitus41–44 and miR-29 suppresses expression of myeloid cell 

leukemia 1 (MCL-1), a prosurvival protein, which is essential for the survival and function 

of cardiomyocytes,45–47 vascular smooth muscle cells,48–50 and pancreatic β cells.51

The miR-29 family

The human miR-29 family consists of three closely related precursors, with miR-29a and 

miR-29b1 being transcribed from chromosome 7 (7q32.3), and miR-29b2, which has an 

identical sequence to miR-29b1, as well as miR-29c being transcribed from chromosome 1 

(1q32.2).52 Even though the two miR-29 gene-coding fragments are in each case located 

more than 1kb away from each other, both clusters of miR-29 are transcribed together as 
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polycistronic primary transcripts.53–55 In rats, the same two clusters, 29a with 29b1 and 

29b2 with 29c, map to chromosomes 4q22 and 13q27, respectively, whereas, in mice, the 

miR-29 miRNAs cluster on chromosomes 6qA3.3 and 1qH6, respectively. The mature 

sequences of miR-29 family members are conserved among humans, rats, and mice and 

include the identical seed region AGCACC.52

miR-29 and cancer

Members of the miR-29 family have gained interest as tumor suppressors because they are 

silenced or downregulated in several types of cancer.55,56 Even though all of the miR-29 

family members are downregulated together in a concerted fashion, the stability of the 

individual miR-29 family members might vary between tissues and specific cellular 

environments.57 Interestingly, in many patients, the expression of these miRNAs follows the 

pattern of dysregulated developmental pathways paralleled during carcinogenesis. Members 

of the miR-29 family are downregulated during development in response to Hedgehog 

signaling, and both transcripts, miR-29a/b1 and miR-29b2/c, carry Hedgehog-responsive 

glioblastoma transcription factor binding sites.55 In aggressive B-cell lymphomas, miR-29 

has been described to be repressed by MYC via a corepressor complex with histone 

deacetylase 3 and enhancer of zeste homolog 2.58 In osteoblasts, Wnt signaling promoted 

miR-29 expression, whereas the recombinant mouse dickkopf-1 treatment repressed 

miR-29a and miR-29c expression.59 Additionally, miR-29 itself is able to repress 

dickkopf-1, Krement2, and secreted frizzled-related protein 2 and thus provides a positive 

feedback loop for Wnt signaling as observed during osteoblast development.60

Following these observations, several patent applications and clinical studies involving 

miR-29 as diagnostic targets, as well as miR-29 mimics, as treatment options are under 

way.61–63 Patients with acute myeloid leukemia with downregulated miR-29b and miR-29c 

were found to be resistant to chemotherapy treatment, presumably because of the 

upregulation of the antiapoptotic MCL-1.64 Even as anticancer therapies with miR-29 

analogues are being considered, there is some evidence suggesting that in some instances 

miR-29 might have tumor-promoting activities and antiapoptotic behavior.65,66 In non-small 

cell lung carcinoma, suppression of miR-29b expression by c-Myc promotes tumor 

progression.66 Consequently, use of miR-29 for cell protection has been described in a 2013 

patent (US 20130178514 A1) by Deshmukh et al.67

These variations in miR-29 regulation of cell survival are because of the fact that the miR-29 

family has been reported to potentially regulate more than 4000 gene products, which are 

likely to differ between tissues and immediate cellular milieu. Pathological significance of 

direct and indirect targets of miR-29 is highlighted by the selection of miR-29 targets shown 

in Table 1.

miR-29 and fibrosis

Among the many targets of miR-29 are multiple collagens and integrins and several 

metalloproteases, including those belonging to a disintegrin and metalloprotease domain 

family. All of these proteins are involved in profibrotic events.71,72 Therefore, it is not 

surprising that endogenous miR-29 has been found to be reduced in several fibrotic events, 
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notably in the lung,73 kidney, liver, and heart,74,75 and that the addition of exogenous 

miR-29 decreases fibrosis, as was demonstrated in the liver76 and heart.74 Moreover, 

upregulation of miR-29b expression in kidney by the Dipeptidyl peptidase-4 (DPP-4) 

inhibitor Linagliptin is involved in linagliptinmediated suppression of fibrosis in diabetic 

rats.75

Conversely, anti-miR-29b anti-miR treatment induces excess fibrosis.71

miR-29 and diabetes

In diabetic rodent models and humans, an increase in miR-29 family miRNAs is reported in 

different tissues, including liver (miR-29a–c44,77), β cells (miR-29a–c51,78), kidney 

(miR-29c79), skeletal muscle (miR-29c43), and adipose tissue (miR-29c43). Importantly, an 

increase in miR-29 levels is seen in the serum of children diagnosed as having T1DM80 and 

adult patients with T2DM.41 Both hyperglycemia and proinflammatory cytokines, the 

hallmarks of diabetes mellitus, upregulate the expression of miR-29 family miRNAs.51,79 

Roggli et al.51 have shown that treatment with a proinflammatory cytokine cocktail 

increased the expression of miR-29 family members in human and mouse pancreatic islets 

and caused cell death. Moreover, an increase in the expression of miR-29 family miRNAs is 

associated with the first stage of T1DM in nonobese diabetic mice.51 Suppression of miR-29 

by anti-miR-29 oligomers protects against diabetic nephropathy.79 Collectively, these 

observations strongly support the idea that miR-29 is a diabetic marker. In islets of pancreas, 

coordinated upregulation of miR-29a–c and subsequent suppression of Mcl-1, a prosurvival 

gene, by miR-29 underlies β-cell death and marks the first stage of T1DM.51 Because 

miR-29 is associated with inflammatory microvesicles,81 it is conceivable that uptake of 

microvesicles containing miR-29 from blood can occur in various tissues of diabetic 

individuals. Given the pathological effect of miR-29 upregulation in the pancreas, it is of 

interest to investigate whether miR-29 upregulation is a common mechanism that underlies 

development of insulinopenia and diabetes mellitus-associated progression of CVDs.

miR-29 and the diabetic heart

It is interesting to note that quantitative trait loci associated with rat miR-29 highlight 

potential involvement of miR-29 in CVDs.47 miR-29b was found to be downregulated in the 

infarcted region of mouse hearts subjected to induced MI by occlusion of the left coronary 

artery, as well as in the cardiac tissues from the border zone of the infarcted region from 

patients with MI.72 Because cardiac fibroblasts express high levels of miR-29 and 

downregulation of miR-29 expression correlates with derepression of collagens and matrix 

metalloproteinases, suppression of miR-29 is implicated in cardiac fibrosis.72 Transfection 

of fibroblasts with miR-29 mimic, however, exerted only a modest suppression of collagen, 

implying that reduction in miR-29 may not be the primary mechanism for cardiac fibrosis 

after MI.72 Interestingly, Ye et al.82 showed that in rat hearts subjected to 

ischemiareperfusion injury, mir-29 antagomiRs significantly reduced myocardial infarct size 

and apoptosis. These observations favor the notion that suppression of miR-29 is protective 

for cardiac tissue in stress conditions such as ischemia-reperfusion injury.
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We have explored the fate of miR-29 expression in heart tissues of ZDF rats to gain a better 

understanding of the role of this diabetic marker in heart disease.47 We observed a 

coordinated upregulation of all of the three miR-29 family members in the hearts of 

insulinopenic, hyperglycemic male ZDF rats. Conversely, we observed an insulin-mediated 

concerted suppression of miR-29 family members in female mouse atrial cardiomyocytes 

HL-1 cells.47 Additionally, we were able to demonstrate how treatment with rapamycin 

resulted in a significant upregulation of miR-29a–c, in both male ZDF rat heart and female 

mouse cardiomyocytes. Although rapamycin is expected to have cardioprotective effects, we 

observed that rapamycin-induced increase in miR-29 levels correlated with a significant 

cardiomyocyte disorganization, indicative of myocardial damage. These observations lead 

us to posit that suppression of miR-29 in cardiomyocytes by hyperinsulinemia could be a 

part of an adaptive mechanism to protect the heart from structural damage in the prediabetic 

stage.47

Increase in miR-29b expression augments expansion of abdominal aortic aneurysm (AAA) 

in mouse models.48,49 Conversely, in-vivo administration of locked nucleic acid anti-

miR-29b greatly increased collagen expression and promoted an early fibrotic response in 

abdominal aortic wall that reduced expansion of AAA. Thus, in the context of AAA, 

suppression of miR-29b and subsequent profibrotic response is a protective mechanism. 

Increase in miR-29b is also associated with aortic aneurysm in Marfan’s syndrome, and 

blockade of miR-29b expression is known to have protective effects in Marfan’s 

syndrome.50 Elastin is also an interesting miR-29 target. It was found that inhibition of 

miR-29 could increase elastin levels in the cells from patients haploinsufficient for ELN and 

in bioengineered human vessels.83,84

Also of note, ischemic conditions create a short-term oxygen and glucose deprivation state. 

In rat brains, miR-29c was downregulated after focal ischemia.85 Interestingly, in high-

glucose conditions, HK-2 cells displayed downregulation of miR-29a, leading to 

derepression of collagen IV deposition in proximal tubule cells as seen during diabetic 

nephropathy.86 A report also described the observed upregulation of miR-29b in response to 

short-term starvation in rat liver.87 The same authors pointed to miR-29b as a ‘female-

predominant’ miRNA. Another group of miR-29 targets includes genes involved in 

metabolism and metabolic disorders, specifically those involved in glucose transport,88 such 

as the transmembrane protein insulin-induced gene 1,43 CAV2,89 monocarboxylate 

transporter 1 (SLC16A1, also known as MCT1),90 and PIK3R1,91 which further confirm its 

critical role in diabetes mellitus.

MCL-1 as a crucial target of miR-29

Among the many targets of the miR-29 family miRNAs, the antiapoptotic MCL-1 caught 

our attention as a critical protein for cardiac health in the diabetic context. MCL-1 is a 

BCL-2 family member that plays a critical role in cardioprotection.45,46 It was reported that 

cardiac-specific ablation of Mcl-1 causes fatal dilated cardiomyopathy, lethal cardiac failure, 

and mitochondrial dysfunction. The observations that blocking cell death is not sufficient to 

overcome the cardiac disease caused by the loss of MCL-1, and that MCL-1 has a specific 
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role in mitochondrial function, have raised concerns regarding the proposed use of MCL-1-

inhibiting therapeutics to treat cancer because they can cause cardiotoxicity.45,46

Evidence suggests that MCL-1 is a direct target of miR-29 in pancreatic β cells51 and in 

cholangiocarcinoma cells.92 The human Mcl-1 gene encodes three transcripts. Isoform 1, 

also known as the long isoform (NM_021960), is the prosurvival protein.93 Recently, 

however, two alternatively spliced isoforms have been identified: isoform 2 (extra short; 

NM_182763)85 and isoform 3 (short; NM_001197320),94–96 both of which are promoting 

apoptosis, which explains conflicting reports on MCL-1 and cell survival. MCL-1 is 

regulated on multiple levels, and an orchestrated fine-tuning of transcription, alternative 

splicing, translation, stabilizing, or prodegradation phosphorylation determines its 

proapoptotic versus antiapoptotic function.96,97

We have scanned all of the three human MCL-1 mRNA isoforms, as well as the rat 

transcript NM_021846.2, and the mouse transcript NM_008562.3 using the Regulatory 

RNA Motifs and Elements Finder RegRNA,98 which uses the miRanda algorithm for target 

prediction,99 to detect potential miR-29 binding sites. This in-silico analysis revealed two 

potential binding sites for miR-29 on the human MCL-1 mRNA, one within the coding 

region and another within the 3′untranslated region (UTR). Interestingly, only the site within 

the 3′ UTR is recognized by all of the miR-29s. The other site seems to be exclusively 

regulated via miR-29b and was found only on transcript isoforms 1 and 3 (Fig. 1a). In 

mouse, only the common site for all of the three miR-29 miRNAs located within the 3′UTR 

is present (Fig. 1b). In rat, however, our analysis yielded one recognition site for miR-29b 

within the MCL-1 protein-coding region (Fig. 1c).

Thus, a site for miR-29b in the coding region of MCL-1 is conserved in all of the three 

species. What is intriguing about the fact that miR-29b may have a stronger impact on the 

expression of MCL-1 is the previously reported observations on its involvement in 

aneurysms48–50 and a very recent paper that described miR-29b as a potential antifibrotic 

therapeutic agent in the heart.74 The observation that human MCL-1 has two sites, one 

specifically for miR-29b and other for all of the three miR-29 family miRNAs, may imply 

that human MCL-1 is tightly controlled by events that not only change the expression levels 

of miR-29 family miRNAs but also specifically influence the stability of miR-29b. Because 

high glucose and proinflammatory cytokines upregulate miR-29 family miRNAs, this 

diabetic marker may be an important factor that modulates MCL-1 expression in heart and 

vasculature in diabetic patients and contributes to the progression of CVD.

The rapamycin dilemma

Rapamycin is a macrolide that has both immunosuppressant and antiproliferative 

properties.100–105 Interestingly, it has several modes of action because it has been 

independently studied for its antifungal106 and antiproliferative properties.107,108 

Rapamycin was used as the immunosuppressant for the Edmonton immunosuppression 

protocol that was designed to avoid the diabetogenic effects of corticosteroids as well as to 

minimize the adverse effects of tacrolimus. This was based on early studies that showed 

rapamycin had a few adverse effects and under the assumption that rapamycin would not 
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have detrimental effects on pancreatic islet survival and function. Rapamycin is produced 

commercially as sirolimus and its derivative everolimus, and these drugs are widely used as 

prophylaxis in organ transplantation and to prevent vascular restenosis. Several studies are 

also exploring the efficacy of rapamycin in antitumor treatments.

Many patients who develop ischemic vascular disease as a consequence of diabetes as well 

as those who eventually will require heart, kidney, or liver transplants will receive 

rapamycin treatment. Rapamycin is an original inhibitor for the nutrient sensor kinase 

mTORC1 and has been widely used in transplant prophylaxis and the standard of care to 

prevent vascular restenosis.103–106 An earlier observed adverse effect of sirolimus 

(rapamycin) treatment was hyperlipidemia.109 Sirolimus is also implicated in new-onset 

diabetes in patients receiving organ transplants.110,111 Studies on obese sand rats (P. 

obesus), a model of nutrition-dependent T2DM, showed that rapamycin treatment worsened 

hyperglycemia and impaired insulin biosynthesis as well as glucose-stimulated insulin 

secretion from pancreatic islets.112 The metabolic effects of long-term rapamycin treatment 

(2 mg/kg/day) in an obese animal model, KK/HIJ mice, included reduction in body weight 

and adiposity, coupled with impaired glucose tolerance and increase in plasma reactive 

oxygen species.113 Similarly, in Sprague–Dawley rats, Houde et al.114 reported that 

rapamycin treatment (2 mg/kg/day) induced increased gluconeogenesis in addition to severe 

glucose intolerance and insulin resistance. These researchers found that increases in the 

expression of hepatic gluconeogenic master genes, PEPCK and G6Pase, and transcriptional 

regulator peroxisome proliferator-activated receptor-γ coactivator-1α combined with an 

enhanced nuclear recruitment of FoxO1, CRTC2, and CREB contribute to the rapamycin-

induced increase in gluconeogenesis. In both these studies, rapamycin treatment also 

induced hyperinsulinemia.

We have shown recently that in male ZDF rats, 6 weeks of a lower-dose rapamycin 

treatment (1.2 mg/kg/day) resulted in a significant suppression of fasting plasma insulin 

levels.47 The obese male ZDF rat has become a widely used animal model of T2DM that 

exhibits a full course of diabetes mellitus development starting with hyperinsulinemia, 

progression of diabetes mellitus to diminished plasma insulin and uncontrollable 

hyperglycemia, and other diabetes mellitus–associated conditions such as retinopathy and 

neuropathy.25,30,43,44,52,53,115,116 Hyperglycemia develops between 7 and 9 weeks of age in 

ZDF rats along with compensatory hyperinsulinemia. Plasma insulin levels are initially 

normal, then elevated, and finally decreased by 20 weeks. This is similar to the progressive 

loss of glucose-induced INS secretion seen in diabetic humans. We observed that rapamycin 

treatment expedited diabetes mellitus progression that resulted in a quicker loss of 

compensatory hyperinsulinemia.47 Loss of compensatory hyperinsulinemia was observed 

within 1 week of rapamycin treatment in 9-week-old ZDF rats (Fig. 2). This is not surprising 

because disruption of FKBP12.6 impairs glucoseinduced insulin secretion.117,118 These 

findings are in accordance with growing evidence indicating that rapamycin promotes 

diabetes mellitus by inhibiting pancreatic β-cell proliferation and β-cell adaptation to 

hyperglycemia.110,112–114,118–128

Rapamycin treatment increased in the expression of cardiac miR-29 family miRNAs in ZDF 

rats.47 Such an increase in miR-29 levels may regulate fibrosis and atrial fibrillation.129,130 

Slusarz and Pulakat Page 8

J Cardiovasc Med (Hagerstown). Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



It also suppresses, however, the expression of MCL-1. We observed that an increase in 

miR-29 family miRNA expression in ZDF rats correlated with progression of diabetes 

mellitus, loss of cardiac Mcl-1 expression, and increase in the magnitude of cardiomyocyte 

disarray.47 Thus, upregulation of cardiac miR-29 expression in response to the progression 

of diabetes mellitus or mTORC1 inhibition by rapamycin treatment can promote myocardial 

damage and diabetes mellitusassociated CVD (Fig. 3).

Inhibition of mTORC1 by rapamycin has several beneficial effects in organ transplant 

prophylaxis, cancer treatment, and other conditions such as restenosis. Rapamycin can, 

however, weaken myocardium because it increases the expression of miR-29 family 

miRNAs in cardiomyocytes and suppresses the prosurvival MCL-1 (Fig. 3b). Therefore, if 

rapamycin is used in cancer therapy, or in transplant rejection prophylaxis, it needs to be 

used in conjunction with antidiabetic prophylactic treatment.

Chronic inflammation is a hallmark of diabetes mellitus. Oxidized low-density lipoprotein 

(oxLDL) that promotes atherosclerosis also enhances proinflammatory response. Both 

proinflammatory cytokines and oxLDL are known activators of miR-29 

expression.51,131–133 In human aortic smooth muscle cells, oxLDL-induced increase in 

miR-29b expression plays an important role in epigenetic modifications of MMP-2/MMP-9 

genes seen in atherosclerosis. This is another example of the role of miR-29 in promoting 

CVD.

An increase in miR-29 in the liver was originally considered to be a beneficial effect 

because loss of miR-29 expression in liver contributes to fibrosis. Kurtz et al.,134 however, 

showed that in male ZDF rats and female C57BL/6J mice that were fed a high-fat diet, 

hepatic miR-29 levels were significantly increased. This observation further confirms the 

idea that upregulation of miR-29 in insulin sensitive tissues is a common phenomenon in 

diabetes mellitus. Importantly, the insulin-sensitizing drug pioglitazone reversed this effect. 

These authors showed that the insulin-regulated transcription factor FOXA2 is a modulator 

of hepatic miR-29 expression and that miR-29 serves as a feedforward negative 

modulator.134

Suppression of miR-29 by either anti-miR-29 oligomers or drugs to mitigate diabetes 

mellitus progression and diabetes mellitus-associated CVD, however, must be handled with 

caution. This is because lowering miR-29 expression is likely to result in cancer. Thus, the 

treatment paradigms must be focused on normalizing/balancing miR-29 levels in different 

tissues to achieve overall health status and prevent development of negative adverse effects.

Conclusion

In summary, miR-29 family members are regulated in a concerted fashion in multiple 

tissues, including heart and pancreas, and are early markers of diabetes mellitus. They are 

downregulated under hyperinsulinemic conditions, but increase dramatically in response to 

loss of hyperinsulinemia and elevated plasma glucose levels. Rapamycin treatment results in 

miR-29 upregulation and can lead to new-onset diabetes. Increased miR-29 will, on one 

hand, suppress profibrotic gene expression, but in the heart it is associated with myofibril 

Slusarz and Pulakat Page 9

J Cardiovasc Med (Hagerstown). Author manuscript; available in PMC 2015 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disorganization. Moreover, suppression of miR-29 that causes a profibrotic effect is 

beneficial in conditions of aortic aneurysm and prevents expansion of AAA. Even though it 

appears in a central position to regulate whole myriads of genes to regulate proapoptotic/

antiapoptotic and fibrotic programs, miR-29 appears too capricious a master switch to target 

lightheartedly.
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Fig. 1. 
Human (a), mouse (b), and rat (c) transcripts of MCL-1 with miR-29 miRNA binding sited, 

shown to scale. MCL-1, myeloid cell leukemia 1.
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Fig. 2. 
Suppression of fasting plasma insulin in male ZDF rats at 9 weeks of age treated by 

subcutaneous implanting of pellets designed to deliver rapamycin at a concentration of 1.2 

mg/kg/day. Procedures are described previously64. Control rats (ZDF Con) received placebo 

pellets. n = 6 for fasting plasma analysis (6 hours of fasting) for ZDF Rap and ZDF Con rats. 

Glucose and insulin were measured by an automated hexokinase G-6-PDH assay and an 

ELISA kit specific for rat insulin, respectively as described previously64. After only one 

week, plasma insulin levels were dramatically reduced (P<0.001). Plasma glucose levels 

showed a trend in reduction, with P = 0.059884.
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Fig. 3. 
Cartoon diagram showing the effect of insulin and rapamycin on the expression of miR-29 

family miRNAs and MCL-1 in cardiomyocytes and their implications in cardiac pathology 

associated with overnutrition and insulin resistance. (A): Steps in insulin-induced mTORC1 

activation in hyperinsulinemia. mTORC1 inhibits AMP Kinase (AMPK). AMPK 

phosphorylates Tuberin (TSC2) that inactivates RHEB (Ras Homolog Enriched in Brain), an 

activator of mTORC1. Inhibition of AMPK by insulin further stabilizes mTORC1 signaling. 

In cardiomyocytes, mTORC1 signaling suppresses miR-29 family miRNAs and improves 

expression of MCL-1 that maintains cardiomyocyte structure and function. (B):Effects of 

Insulinopenia and rapamycin treatment on mTORC1. mTORC1 inhibition increases 

expression of miR-29 family miRNAs, and suppresses MCL-1, and results in myocardial 

damage and heart failure.
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Table 1

Selected direct and indirect targets of miR-29

Target genes Organism Tissue/disease miR-29 References

ATS5, B4GT1, C1RA, CALU, CERU, CFAB, 
CO1A1, CO1A2, CO3, CO3A1, CO4A1, 
CO4A2, CO5A1, CO5A2, CO6A1, CO6A2, 
CO8A1, CPXM1, CSF1, CYTC, DKK3, 
EPDR1, FBN1, FBLN3, FBLN4, FSTL1, 
GELS, IBP7, INHBA, LAMA4, LAMB2, 
LAMC1, LEG1, LG3BP, LOXL1, LOXL2, 
LOXL3, LTBP2, LYOX, NEUS, NID2, MMP2, 
PCSK5, PEDF, PGS1, PPIA, PRELP, PXDN, 
SAP, SPA3N, SPRC, SVEP1, TIMP2, VEGFD, 
QSOX1

Mouse Cardiac fibroblasts 29b 71

COL1A1, COL1A2, COL3A1, FBN1, ELN Human, mouse Myocardial ischemia–reperfusion injury 29a, b 72,82

INSIG1, CAV2, SLC16A1 (MCT1), PIK3R1 Human, mouse, rat Glucose transport 29a–c 43,88–90

Mcl-1 Human, mouse, rat Islets, β cells, vascular smooth muscles, 
cardiomyocytes

29a–c 47,51,92

COL4 Human Proximal tubule cells; diabetic nephropathy 29a 78

DKK1, Kremen2, sFRP2 Human, mouse Osteoblasts 29a, c 60

TCL1A Human B-cell chronic lymphocytic leukaemia 29b 68

DNMT3A, DNMT3B Human Lung cancer 29a–c 69

ATPSF1, ATPSG1, ATPSG2, ATPSG3, BSG, 
CCDC56, CHCHD#, DDX17, DKC1, EIF4A3, 
HNRNPM, HIST1H1E, HIST1H28D, 
HIST1H28K, HIST2H2AB, HK1, MT-ATP6, 
PHB2, PRDX3, RPL7, RPL14, SLC25A12, 
SNRPD1, SRSF3, UQCR10, VDAC1, VDAC2

Human HEK293T cells 29a 70

Table shows the involvement of miR-29 family miRNAs in cardiovascular diseases, diabetes and cancer and its wide spread expression in different 
tissues of human, mouse and rat based on the literature. Both direct and indirect targets of miR-29 are listed.
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