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ABSTRACT
BACKGROUND: A chronic course of major depressive disorder (MDD) is associated with profound alterations in
brain volumes and emotional and cognitive processing. However, no neurobiological markers have been identified
that prospectively predict MDD course trajectories. This study evaluated the prognostic value of different
neuroimaging modalities, clinical characteristics, and their combination to classify MDD course trajectories.
METHODS: One hundred eighteen MDD patients underwent structural and functional magnetic resonance imaging (MRI)
(emotional facial expressions and executive functioning) and were clinically followed-up at 2 years. Three MDD trajectories
(chronic n 5 23, gradual improving n 5 36, and fast remission n 5 59) were identified based on Life Chart Interview
measuring the presence of symptoms each month. Gaussian process classifiers were employed to evaluate prognostic
value of neuroimaging data and clinical characteristics (including baseline severity, duration, and comorbidity).
RESULTS: Chronic patients could be discriminated from patients with more favorable trajectories from neural
responses to various emotional faces (up to 73% accuracy) but not from structural MRI and functional MRI related
to executive functioning. Chronic patients could also be discriminated from remitted patients based on clinical
characteristics (accuracy 69%) but not when age differences between the groups were taken into account. Combining
different task contrasts or data sources increased prediction accuracies in some but not all cases.
CONCLUSIONS: Our findings provide evidence that the prediction of naturalistic course of depression over 2 years
is improved by considering neuroimaging data especially derived from neural responses to emotional facial
expressions. Neural responses to emotional salient faces more accurately predicted outcome than clinical data.
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Major depressive disorder (MDD) is worldwide among the
leading causes of disability (1) due to high prevalence,
negative impact on quality of life, and its frequently recurrent
or chronic character. Of all MDD patients, 20% to 25% are
at risk for chronic MDD (2). Identifying predictors of chron-
icity at an early stage is of critical importance, because it
can help to select treatment strategies specifically aimed at
reducing factors associated with worse long-term clinical
outcome.

In MDD, several clinical characteristics have been linked to
a chronic course, including greater symptom severity, longer
duration of an episode, number of episodes, comorbidity,
earlier onset, childhood adversity, higher neuroticism, lower
extraversion, and lower conscientiousness (2–7). However,
these factors do not directly relate to underlying pathophysio-
logical mechanisms and cannot fully capture interindividual
differences in the course of MDD. It is essential to identify
additional pathophysiological markers to guide treatment
8 & 2015 Society of Biological Psychiatry. Published by Elsevier Inc
(http://creativecommons.org/licenses/by/4.0/).
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selection and eventually develop alternative treatment strat-
egies. Neuroimaging might provide such biomarkers. On a
structural level, reduced hippocampus and anterior cingulate
cortex (ACC) volume may represent a vulnerability factor for
poor outcome (8,9). On a functional level, aberrant activation
related to emotional and cognitive processing (including
executive functions) has been implicated (10). For example,
alterations in activation in medial prefrontal regions including
the ACC during processing of emotional stimuli predict relapse
after 18 months in remitted MDD patients (11) and treatment
response (12). In addition, abnormal dorsolateral prefrontal
cortex (PFC) recruitment during visuospatial planning is related
to a nonfavorable naturalistic course of MDD (Woudstra S, et
al., unpublished data, 2014). These neuroimaging findings,
however, are based on group comparisons with unknown
translational value. To make these results clinically useful, it is
necessary to provide valid predictions at the level of the
individual patient.
. This is an open access article under the CC BY license
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Multivariate pattern recognition (MPR) methods have been
applied to neuroimaging data to classify individuals as MDD
patients or control subjects (13–19). MPR is a technique that
allows classification of individuals into distinct classes based on
high-dimensional data and is more sensitive for detecting spatially
distributed effects, compared with univariate approaches, which
aim to detect functionally localized differences.

These diagnostic MPR studies are an important first step,
but the real potential of MPR is for predicting future outcome,
such as treatment response or course trajectory. To date, only a
few preliminary MPR studies have examined whether outcome
can be predicted, showing accuracies of 65% to 89% (17,20–
22). These studies all focused on small clinical samples of MDD
patients recruited in specialized mental health care. Therefore,
they capture patients with the most severe and recurrent MDD,
who are more likely to be referred to specialized mental health
care (23) and who represent only a small proportion of the
spectrum of MDD patients. Because most MDD patients reside
in the community and primary care, the generalizability of these
MPR findings to a general population remains unclear. It is of
great clinical relevance to predict the course of MDD in a
sample derived from a more naturalistic setting where patients
have a broad range of illness severity. Moreover, MPR studies
to date have mostly focused on a single imaging modality. It is
unknown which imaging modality or functional task provides
the most accurate predictions of outcome. Finally, little is
known about the added value of neuroimaging to predict
MDD disease course relative to cheaper and more easily
acquired measures such as clinical assessments.

The current aim was to employ MPR to identify predictors for
chronicity of MDD. For this purpose, we employed Gaussian
process classifiers (GPCs) to examine the potential of various
imaging modalities including structural magnetic resonance
imaging (MRI) and brain activity during emotional and cognitive
processing. In addition to these imaging modalities known
important clinical variables, such as baseline severity, duration,
and comorbidity indicators and information on personality traits
and childhood trauma, were used to discriminate between
different MDD course trajectories in 118 individual patients with
a current MDD diagnosis from a naturalistic cohort encompass-
ing the broad heterogeneity of MDD.
METHODS AND MATERIALS

Subjects

After approval of the NEtherlands Study of Depression and
Anxiety (NESDA)-MRI study by the ethical review boards of the
three participating centers and written informed consent of
participants, a subgroup (total n 5 301; subjects with MDD
diagnosis n 5 156) of participants from the total NESDA study
was included for MRI. Of these, for the current study, we
included all 118 patients (82 female patients; aged 18–56) who
had 1) baseline current (6-month) DSM-IV diagnosis of MDD,
established using the structured Composite International
Diagnostic Interview (24) and reporting symptoms in the month
before baseline confirmed with either the Composite Interna-
tional Diagnostic Interview or the Life Chart Interview (LCI) (25);
and 2) availability of 2-year follow-up of depressive symptoms
measured with the LCI.
Biological Psy
Definition of Two-Year Course Trajectory Groups

Based on a latent class growth analysis (LCGA) of follow-up data
derived from the LCI [which was the source containing most
detailed information on 2-year MDD course, previously con-
ducted in a larger, overlapping sample (7)], MDD patients were
divided in different course trajectories. Briefly, LCGA analysis,
based on the burden of depressive LCI symptoms indicated for
each of the 24 months between baseline and follow-up (with the
first score representing the burden of symptoms in the month
after baseline) was conducted in 804 MDD patients. The LCGA
analysis identified five different classes of course trajectories: 1) a
rapid remission trajectory; 2) a trajectory showing a gradual
improvement of symptoms; 3) a second trajectory showing a
gradual improvement of symptoms but with higher initial depres-
sive symptom scores; 4) a chronic trajectory with moderate initial
severity; and 5) a chronic trajectory with severe initial severity.
Because the two improving trajectories, as well as the two
chronic trajectories, were very similar and for the purpose of
increasing power, we combined these pairs, yielding three course
trajectories: 1) MDD-remitted (REM), showing a rapid remission
of symptoms (n 5 59); 2) MDD-improved (IMP), showing a
gradual improvement in symptoms from baseline to follow-up
(n 5 36); and 3) MDD-chronic (CHR), showing no relief from
symptoms from baseline to follow-up (n 5 23). See Figure S1 in
Supplement 1 for a graphic representation of these symptom
trajectories. We emphasize that although these class labels were
determined on an overlapping sample, the measures employed
to predict them were distinct, thereby avoiding circularity.

Baseline Clinical Predictors

The prognostic value of several baseline clinical characteristics
was assessed, including severity of depression using the
Inventory of Depressive Symptomatology (IDS) (26), severity
of anxiety using the Beck Anxiety Inventory (27), information on
duration of depressive and anxiety symptoms before baseline
derived from the baseline LCI (assessing the number of months
the patient spent with depressive and/or anxiety symptoms 4
years before baseline), age of onset, and years since first
episode, plus neuroticism, extraversion, and conscientiousness
personality traits from the corresponding scales of the NEO-
Five Factor Inventory questionnaire (28). Additionally, childhood
trauma (before age 16) was measured by structured interview
and indexed from 0 to 8, as used previously (29). These
measures to predict MDD course were all independent from
the measure that was used to define the course trajectory
groups (i.e., burden of depressive symptom scores derived from
the LCI, which was assessed at 2-year follow-up).

Functional MRI Task Paradigms

Faces Task. An emotional faces paradigm was used to assess
brain activation during emotion processing. Color pictures of
angry, fearful, sad, happy, and neutral facial expressions, plus a
control condition consisting of scrambled faces, from the
Karolinska Directed Emotional Faces System (30) were pre-
sented. Contrasts used to train the classifier were angry .

scrambled faces, fearful . scrambled faces, happy . scrambled
faces, and sad. scrambled faces. See Supplement 1 for details.

Tower of London Task. A Tower of London (ToL) task was
used to assess brain activity during visuospatial planning.
chiatry August 15, 2015; 78:278–286 www.sobp.org/journal 279
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Contrast images for task load were used to train the classifier.
See Supplement 1 and van Tol et al. (31) for details.

Image Acquisition

Magnetic resonance imaging data were obtained using 3T Phillips
MRI scanners (Phillips Healthcare, Best, The Netherlands) located
at the three participating centers, equipped with a SENSE 8-
channel (Leiden University Medical Center and University Medical
Center Groningen) and a SENSE 6-channel (Academic Medical
Center) receiver head coil (Phillips Healthcare). See Supplement 1
for details.

Data Analysis

Clinical Characteristics. Each subject’s scores on the IDS,
Beck Anxiety Inventory, NEO-Five Factor Inventory, number of
months with depressive symptoms before baseline, number of
months with anxiety symptoms before baseline, age of MDD
onset, years since first episode, and a childhood trauma index
were concatenated and this matrix was used as input to GPCs.

Image Processing of MRI Data. T1 images were normal-
ized and segmented into gray matter, white matter, and
cerebrospinal fluid using the voxel-based morphometry tool-
box (VBM8; http://dbm.neuro.uni-jena.de/vbm.html) and func-
tional images were preprocessed and analyzed with statistical
parametric mapping (SPM) (SPM8; http://www.fil.ion.ucl.ac.
uk/spm/software/). For each functional MRI (fMRI) task, sam-
ples for the classifier were constructed by estimating a general
linear model (32). See Supplement 1 for full details.

Pattern Recognition Analysis

We applied binary GPCs, as implemented in the Pattern
Recognition for Neuroimaging Toolbox (33) (http://www.mlnl.
cs.ucl.ac.uk/pronto), to investigate the potential of whole-brain
structural and functional images and clinical characteristics for
predicting the naturalistic course of MDD. GPCs are a super-
vised MPR approach similar to support vector machines that
provide the added benefit of predictive probabilities of class
membership. For details, see Marquand et al. (34). For each
modality, independent binary GPCs were used to discriminate
different trajectories. To assess generalizability, each GPC was
repeatedly retrained with leave-one-out cross-validation, where
all data from a single subject were excluded at each iteration.
For each subject, the GPC provided probabilistic predictions for
each trajectory, which were converted to categorical predic-
tions by applying a threshold according to the frequency of
classes in the training set (i.e., .5 if the classes are balanced).
Since some of the classifiers were unbalanced (i.e., with one
class being larger than the other), balanced accuracy measures
(the mean of sensitivity and specificity) were computed to
assess the overall categorical performance of each classifier
in a way that accommodated this imbalance. Statistical sig-
nificance was determined by permutation testing; the whole
cross-validation cycle was repeated for each permutation and
the labels of the training data were permuted across subjects
(34); see Supplement 1 for full details. In addition, a label fusion
technique was applied to combine all data modalities
(Supplement 1). For each modality and contrast, p values were
corrected for multiple comparisons using the Benjamini and
Hochberg step-up method (35).
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For clinical applications, an important advantage of prob-
abilistic classifiers is the ability to identify cases where the
classifier does not provide a confident prediction of trajectory.
In such cases, a reject option (36) may be specified, where the
final decision is deferred to a clinician. We explore the use of
such a reject option for all classifiers exceeding chance by
smoothly varying the rejection threshold and computing the
accuracy, leading to an accuracy-reject curve (37,38).

Predictive Maps

To characterize the discriminative pattern across brain
regions, we employed a simple method that provides coef-
ficients that can be interpreted in terms of the pattern of
effects across brain regions (39) and compared this approach
with mass-univariate SPM. See Supplement 1 for details.
RESULTS

Sample Characteristics

Course trajectories did not differ with regard to gender, years
of education, scan location, baseline antidepressant use, or
follow-up (Table 1). However, trajectories differed in age (F2,115
5 4.92, p 5 .01), with CHR subjects being older than both
REM (t80 5 2.89, p , .005) and IMP subjects (t57 5 2.84, p 5

.01). Therefore, to control for the potential confounding effect
of age, analyses were repeated with every subject in the CHR
group (n 5 23) matched with an equivalent with respect to
age, gender, and education in the REM (n 5 23) and IMP (n 5

23) groups (reported in Supplement 1). As an additional
validation of our definition of the different course trajectory
groups, which were defined on the basis of the LCI burden of
symptom scores, IDS scores assessed at baseline interview,
baseline scanning, and 2-year follow-up were compared
between the three groups. Course trajectory groups did not
differ with regard to IDS scores both at baseline interview
(Table 1) and at time of baseline scanning (Supplement 1). As
would be expected on the basis of the different depression
courses, the groups differed on IDS scores at 2-year follow-up
(F2,115 5 13.22, p , .001), with depression severity scores
being higher in the CHR than REM subjects (t80 5 12.66, p ,

.001) and IMP subjects (t57 5 7.53, p 5 .005) (Table 1).
Of all 118 subjects, for the faces task, fMRI data from 20

REM, 5 IMP, and 8 CHR patients were discarded because of
having performed a different (noncomparable) version of the
task, inferior data quality, or incomplete coverage of the
temporal lobe (final sample faces task: REM n 5 39, IMP
n 5 31, and CHR n 5 15), and for the ToL task, fMRI data from
5 REM and 4 CHR patients were discarded because of inferior
data quality, incomplete coverage of the temporal lobe, or
poor performance (overall proportion correct responses
,75%) (final sample ToL task: REM n 5 54, IMP n 5 36,
and CHR n 5 19).

Gaussian Process Classification Using Clinical
Characteristics

Using baseline clinical information, the GPC discriminated
between the CHR and REM subjects (Table 2) but not between
CHR and IMP subjects or between IMP and REM subjects.
/journal
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Table 1. Demographic and Clinical Characteristics of Subjects Included in the MVPA Analyses

Characteristic MDD-REM (n 5 59) MDD-IMP (n 5 36) MDD-CHR (n 5 23) Statistic p Value

Age, Years 35.58 (10.53) 35.59 (9.56) 43.00 (10.24) F 5 4.92 .01a

Gender, n (%)

Female 44 (75) 25 (68) 13 (56) χ2 5 2.56 .28

Male 15 (25) 12 (32) 10 (44)

Education, Years 12.31 (3.50) 11.97 (3.03) 12.48 (2.54) F 5 .21 .81

Scan Location, n (%)

AMC Amsterdam 18 (30) 9 (25) 9 (39) χ2 5 2.94 .57

LUMC Leiden 18 (30) 16 (43) 8 (35)

UMCG Groningen 23 (40) 12 (32) 6 (26)

IDS Total T1 31.58 (10.51) 32.61 (9.88) 35.78 (8.28) F 5 1.49 .23

IDS Total T2 17.03 (10.35) 21.76 (9.95) 29.70 (10.13) F 5 13.22 ,.001b

IDS Change (T2 2 T1) 214.55 (13.11) 210.44 (11.23) 26.08 (9.82) F 5 4.38 .02c

Antidepressant Use T1, n (%)

No 38 (64) 26 (70) 14 (61) χ2 5 .62 .73

Yes 21 (36) 11 (30) 9 (39)

Antidepressant Use T2, n (%)

No 37 (63) 26 (70) 15 (65) χ2 5 .58 .75

Yes 22 (37) 11 (30) 8 (35)

Duration of Use of Antidepressants between Baseline and
Follow-up (Including Currently Used at Follow-up), Months

20.37 (38.11) 16.31 (32.30) 13.00 (23.73) F 5 .43 .65

Data are given as mean (SD).
AMC, Academic Medical Center; IDS, Inventory of Depressive Symptoms; LUMC, Leiden University Medical Center; MDD-CHR, major

depressive disorder chronic group; MDD-IMP, major depressive disorder gradual improvement in symptoms group; MDD-REM, major depressive
disorder remitted group; MPR, multivariate pattern recognition; T1, baseline; T2, 2-year follow-up; UMCG, University Medical Center Groningen.

aPost hoc analysis showed that the MDD-chronic group was significantly older than the MDD-remitted group (p , .005) and the MDD-
improvement group (p 5 .01).

bPost hoc analysis showed that IDS scores at 2-year follow-up were significantly higher in the MDD-chronic group compared with the MDD-
remitted (p , .001) and the MDD-improvement (p , .005) groups. IDS scores were also higher in the MDD-improvement group compared with the
MDD-remitted group (p 5 .03).

cPost hoc analysis showed that the change in IDS scores from baseline to follow-up was significantly lower in the MDD-chronic group compared
with the MDD-remitted group (p 5 .01).
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Gaussian Process Classification Using Faces Task
Contrast Images

Chronic Versus Remitted Patients. The GPCs for angry .

scrambled faces and happy . scrambled faces accurately
discriminated between CHR and REM subjects (Table 2). The
GPC for fearful . scrambled faces also discriminated classes
but did not survive multiple comparison correction. When
combining the five different emotional conditions, the GPC
discriminated between the CHR and the REM subjects with
the highest accuracy obtained by any contrast (73%).

Representative slices from the patterns discriminating CHR
from REM subjects are shown in Figure 1A–D and whole-brain
images in Supplement 1. These patterns are by nature dense
in that they have nonzero coefficients in every brain region.
However, the highest coefficients showed a strong corre-
spondence to the regions showing focal group differences in
the SPM. In all regions, these indicate reduced activity in CHR
subjects. Highest coefficients favored REM relative to CHR
subjects and were found in dorsolateral prefrontal cortex for
the angry . scrambled contrast and in medial and dorsolateral
PFC for happy . scrambled (Figures 1A–C).

Chronic Versus Gradual Improvement in Symptoms
Patients. Chronic subjects could be distinguished from the
IMP subjects on the basis of patterns of neural activity for
Biological Psy
happy . scrambled faces and neutral . scrambled faces
(Table 2). The correspondence of the patterns discriminating
CHR from IMP subjects with the SPM was again high and
activity was again reduced in CHR subjects. High coefficients
favoring IMP relative to CHR were found in the dorsolateral
PFC and bilateral caudate for happy faces and in medial and
dorsolateral PFC plus the basal ganglia for neutral faces
(Figure 2).

Gradual Improvement in Symptoms Versus Remitted
Patients. The IMP and REM groups could not be discrimi-
nated on basis of patterns of neural activity for any of the
emotional facial expressions (Table 2).

Gaussian Process Classification Using Other Neuro-
imaging Modalities. None of the course trajectories could
be discriminated using either patterns of neural activity in
response to increasing task load of the ToL or gray matter
images (Table 2).

Combining Classifiers from Different Modalities

Using a combination of all information, including clinical,
structural MRI, and fMRI data, the GPC discriminated between
CHR and REM subjects (Table 2). The combined classifier was
not able to distinguish between CHR and IMP subjects and
between REM and IMP subjects. As both patterns of neural
chiatry August 15, 2015; 78:278–286 www.sobp.org/journal 281

www.sobp.org/journal


Table 2. Balanced Prediction Accuracy (Sensitivity/Specificity) for All Classifiers Trained Separately for Whole-Brain
Activation Patterns During the Faces Task, the Tower of London Task, Gray Matter Images, and Clinical Characteristics
and Modalities Combined to Discriminate between MDD Subjects with Different Course Trajectories

Modality
MDD-CHR (n 5 23) Versus MDD-CHR (n 5 23) Versus MDD-IMP (n 5 36) Versus

MDD-REM (n 5 59) MDD-IMP (n 5 36) MDD-REM (n 5 59)

Faces Task

Angry . Baseline 64% (67/62)a 54% (53/55) 48% (42/54)

Fear . Baseline 62% (67/56) 59% (60/58) 40% (35/45)

Happy . Baseline 64% (73/54)a 69% (67/71)a 53% (55/51)

Sad . Baseline 58% (60/56) 49% (47/52) 45% (39/51)

Neutral . Baseline 53% (47/59) 67% (67/68)a 37% (32/41)

Overall Emotion . Baselineb 73% (80/67)c 59% (53/65) 50% (48/51)

Tower of Londond 51% (53/50) 38% (37/46) 48% (46/50)

Gray Matter Images 43% (35/52) 53% (48/58) 43% (33/53)

Clinical Characteristics 69% (70/68)a 61% (61/61) 61% (69/53)

Faces Contrast Images and Clinical Characteristics Combinede 65% (52/78)a 52% (35/69) 54% (14/93)

All Modalities Combined f 62% (74/49)a 61% (65/57) 44% (43/44)

MDD-CHR, major depressive disorder chronic group; MDD-IMP, major depressive disorder gradual improvement in symptoms group; MDD-
REM, major depressive disorder remitted group.

ap , .05 (corrected).
bFusion of separate conditions based on the majority vote rule by counting the votes from the individual classifiers for the different emotional

conditions. The class that receives the largest number of votes across emotional conditions is then selected as the class to which an individual
belongs for the overall emotion condition and tested against the real class label.

cp , .01 (corrected).
dBased on brain activation patterns reflecting increasing task load (step 1 to step 5).
eFusion of separate conditions based on the majority vote rule by counting the votes from the individual classifiers for the different emotional

conditions and clinical characteristics. The class that receives the largest number of votes across emotional conditions and clinical characteristics
is then selected as the class to which an individual belongs and tested against the real class label.

fFusion of all modalities based on the majority vote rule by counting the votes from the individual classifiers for all different modalities. The class
that receives the largest number of votes across modalities is then selected as the class to which an individual belongs based on all available data
and tested against the real class label.
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activity elicited by emotional faces as well as clinical data were
individually able to predict depression course for CHR versus
REM subjects, we examined whether combining only these
modalities would improve prediction accuracy (Table 2). For all
contrasts, this resulted in lower accuracy relative to either
modality separately.

Results Using Groups Matched on Age

The accuracies obtained when subjects were matched on age
are provided in Supplement 1. These were highly similar to the
nonmatched sample results, albeit with generally higher
accuracy.

Assessment of Predictive Confidence

We show accuracy-reject curves for all classifiers that
exceeded chance. These clearly show that if one is prepared
to accept a reject option, then accuracy can be improved
significantly. For example, at a rejection threshold of 60% of
subjects, perfect classification can be achieved with all
classifiers considered (Figure 3).
DISCUSSION

We employed probabilistic MPR to predict the future course of
MDD—at the level of individual subjects—in a naturalistic
cohort encompassing the broad heterogeneity of MDD. A
chronic trajectory could be accurately discriminated with
282 Biological Psychiatry August 15, 2015; 78:278–286 www.sobp.org
maximum accuracies of 1) 73% for discriminating subjects
with a chronic course from those that showed a rapid
remission (CHR versus REM); and 2) 69% for discriminating
subjects with a chronic course from those showing a gradual
improvement in symptoms (CHR versus IMP). The neuro-
biological markers that discriminated each contrast were
distinct. For CHR versus REM, subjects could be discrimi-
nated based on neural responses to angry and happy facial
expressions but not on structural MRI or neural correlates of
executive functioning. In contrast, for CHR versus IMP,
subjects could be discriminated based on neural responses
to happy and neutral expressions. CHR subjects could be
differentiated from REM subjects based on a combination of
clinical variables; however, this was probably driven by differ-
ences in age, as the accuracy became nonsignificant when
groups were matched on age. Accuracies based on neural
responses to emotional facial expressions showed a similar
pattern in the smaller matched sample as in the full sample but
were higher overall, indicating 1) a robust prediction of
naturalistic course of MDD using neuroimaging data related
to emotional processing; and 2) that the confounding effect of
age was to impair classification, not to assist it.

In the present study, it is especially noteworthy that 1) the
clinical measures were poorer predictors of outcome than the
neurobiological measurements; and 2) that the visuospatial
planning task and structural neuroimaging measures were not
discriminative, which corresponds with previous reports of
fMRI providing more accurate predictions than structural MRI
/journal
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Figure 1. Gaussian process classifier (GPC) predictive maps for discrimi-
nating major depressive disorder (MDD)-chronic (CHR) and MDD-remitted (REM)
subjects. Representative slices from GPC predictive maps discriminating MDD-
CHR from MDD-REM subjects plus statistical parametric maps (SPMs)
thresholded at p , .001, presented separately for the contrasts (A) angry
versus scrambled faces and (B) happy versus scrambled faces. The red
colors indicate higher prognostic value for the first class (i.e., MDD-CHR)
and blue colors indicate voxels with a higher prognostic value for the
second class (MDD-REM).
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(40). In contrast to these findings, previous studies, including
our own work in an overlapping NESDA sample, have indi-
cated an association between worse long-term outcome and
these baseline clinical characteristics (2–7). In addition, our
previous work using mass-univariate regression showed a
relation between focal abnormal dorsolateral prefrontal cortex
recruitment during visuospatial planning and a nonfavorable
naturalistic course of MDD (Woudstra S, et al., unpublished
data, 2014). Moreover, reduced hippocampus and ACC vol-
ume have been associated with poor outcome (41). However,
these findings were all based on group-wise associations, and
although these baseline clinical and neuroimaging parameters
can be associated with outcome based on group-level (mass-
univariate) approaches, they might not possess sufficient
prognostic ability for long-term outcome in individual patients,
as observed in the current study using MPR methods.

Neural measures of affective processing showed higher
prognostic ability than gray matter volumes and patterns of
neural activity during executive functioning, which is in line
with earlier MPR work indicating that implicit processing of
Biological Psy
sad facial affect provided more accurate diagnostic predic-
tions than a working memory task in the same subjects
(17,42). This observation together with evidence of aberrant
emotion-regulation processing in MDD (43) suggest that
1) affective processing deficits are at the basis of MDD; and
2) CHR subjects comprise a more distinguishable subgroup of
MDD patients than other trajectories. The problem of predict-
ing MDD disease course is highly challenging but has direct
clinical relevance because identifying patients likely to have a
chronic course early in the disease process can help clinicians
to target interventions more effectively (41). Several studies
have demonstrated the potential of MPR for predicting the
presence of an MDD diagnosis, but only a few studies have
demonstrated its utility for MDD prognosis (44). An important
contribution of the present work is to demonstrate the utility of
MPR for predicting outcome in a naturalistic setting where the
depressive phenotype is simultaneously less severe, more
heterogeneous, and more reflective of the variability in the
MDD phenotype than the cohorts studied to date.

This study aimed to discriminate subjects based on dis-
tributed patterns of neural activity, which is a complementary
objective to identifying focal brain characteristics associated
with disease trajectory. The pattern in our study that discrimi-
nated between chronic subjects and those with more favor-
able trajectories on the basis of brain activation in response to
sad, fearful, angry, and neutral facial expressions showed high
coefficients in regions that also showed focal differences and
included regions that did not survive mass univariate thresh-
olding, where the effects may have been more subtle but
nevertheless still predictive of outcome in the context of the
multivariate pattern. The most important regions for predicting
favorable, relative to chronic disease, courses included dorso-
lateral and medial prefrontal regions, striatum, and parietal
regions, all of which have been strongly implicated in the
neurobiology of processing emotional stimuli, depression, and
treatment response (42,45,46).

Although we expected improved accuracy by using differ-
ent modalities, the accuracies obtained by the multi-modal
classifiers combining different neuroimaging modalities and
baseline clinical information did not produce improvements in
accuracy for predicting different course trajectories. In con-
trast, the classifier combining all emotional faces task con-
ditions yielded a 9% improvement over the most discrimi-
native task condition for the CHR versus REM contrast and
produced the highest accuracy of any modality. These results
indicate that fusing different data sources is probably most
beneficial if a substantial proportion of them are individually
and independently predictive. In other words, combining
sources that are not predictive individually with sources that
are predictive only increases noise and reduces the ability of
the classifier to discriminate groups. An important line of future
work is to determine whether combining neuroimaging and
clinical information with additional sources like neuropsycho-
logical or biochemical tests would improve accuracy. Another
line of future work is to generalize beyond binary classification.
Here, we aimed to demonstrate that disease trajectories could
be discriminated from one another, for which a binary classifier
is suitable. However, this procedure might limit the inferences
we can draw for new cases in clinical practice. Using the
current approach, we can infer whether a new case is, for
chiatry August 15, 2015; 78:278–286 www.sobp.org/journal 283
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Figure 2. Gaussian process classi-
fier (GPC) predictive maps for discri-
minating major depressive disorder
(MDD)-chronic (CHR) and MDD-
improvement (IMP) subjects and
MDD-IMP and MDD-remitted (REM)
subjects. Representative slices from
GPC predictive maps discriminating
MDD-CHR from MDD-IMP subjects
and statistical parametric maps
(SPMs) (thresholded at p , .001)
presented separately for the contrasts
(A) happy versus scrambled faces and
(B) neutral versus scrambled faces.
The red colors indicate higher prog-
nostic value for the first class (i.e.,
MDD-CHR) and blue colors indicate
voxels with a higher prognostic value
for the second class (MDD-IMP).
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example, more likely to remit than show a chronic course or
more likely to be chronically depressed than improve over
time but not derive a single class prediction. Therefore, a
multi-class classifier more closely matches the clinical
decision process and will be investigated in follow-up studies.

Previous MPR studies in depression have reported accu-
racies in the range of 67% to 86% for diagnosis and 68% to
Figure 3. Accuracy-reject curves for the classifiers exceeding chance. Accurac
depressive disorder (MDD)-chronic (CHR) from MDD-remitted (REM) subjects and
curve illustrates the accuracy of the classifier when only predictions greater than
not meet this threshold can then be deferred to a clinician or other decision supp
reject option. The curve is constructed by smoothly varying the decision thresh

284 Biological Psychiatry August 15, 2015; 78:278–286 www.sobp.org
89% for predicting treatment response (cognitive behavioral
therapy or medication) (44). The accuracies we report are within
this range, even though the problem of predicting naturalistic
outcome is considerably more difficult than predicting diagnosis
or the outcome of a controlled intervention because 1) this
cohort is highly heterogeneous, encompassing a range of
depressive phenotypes from very mild to severe; and 2) the
y-reject curves for classifiers exceeding chance that discriminated (A) major
(B) MDD-CHR from MDD-improvement (IMP) subjects. The accuracy-reject

a certain confidence threshold are considered (e.g., above .6). Cases that do
ort system. This is known in the pattern recognition literature as adopting a
old computing the accuracy at each stage.
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treatments the patients received were not standardized. We
argue that it is precisely for this reason that this work furnishes
an important transition toward real-world clinical populations,
including MDD patients recruited from community and primary
care settings where the majority of MDD patients reside and
where patients have a broad range of illness severity.

Limitations

A limitation is that we combined two groups showing gradual
improvement and the two chronic groups from the five
trajectories that were identified by the previous LCGA analysis
(7). Although the trajectories were not different between either
the original two improvement or chronic groups, they were
dissociable in their baseline burden score. However, by
assuring that the groups in the current study did not differ in
their initial burden score, we can be more confident that our
findings truly reflect the prognostic value and not merely
different baseline severities. Another limitation of our study
relates to the cross-validation approach we employed to
assess generalizability. While cross-validation is known to be
an approximately unbiased estimator (47) of population gen-
eralizability, it may not completely account for the different
characteristics of data from different samples [e.g., scanner
effects, see (48)]. An important next step is to validate the
classification models in completely independent data.

Conclusion

The current study clearly showed that prediction of naturalistic
course of MDD is possible using neuroimaging data. Moreover,
this approach provided more accurate indicators of outcomes
than predictions based on clinical data only. Our results indicate
patterns of abnormalities that can distinguish different course
trajectories and pave the way for the development of decision
support tools that can be used in clinical practice.
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