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Review Article 
Chemotherapy targeting cancer stem cells
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Abstract: Conventional chemotherapy is the main treatment for cancer and benefits patients in the form of de-
creased relapse and metastasis and longer overall survival. However, as the target therapy drugs and delivery 
systems are not wholly precise, it also results in quite a few side effects, and is less efficient in many cancers due 
to the spared cancer stem cells, which are considered the reason for chemotherapy resistance, relapse, and me-
tastasis. Conventional chemotherapy limitations and the cancer stem cell hypothesis inspired our search for a novel 
chemotherapy targeting cancer stem cells. In this review, we summarize cancer stem cell enrichment methods, the 
search for new efficient drugs, and the delivery of drugs targeting cancer stem cells. We also discuss cancer stem 
cell hierarchy complexity and the corresponding combination therapy for both cancer stem and non-stem cells. 
Learning from cancer stem cells may reveal novel strategies for chemotherapy in the future.
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Introduction: limitations of chemotherapy and 
corresponding strategies

Other than surgery, radiotherapy, endocrine 
therapy, and immunotherapy, chemotherapy is 
the main treatment for cancer. Patients with 
different cancers derive more survival benefits 
through chemotherapy not only at the early 
stage of disease, but also at the late stage. 
However, quite a few cancers develop drug 
resistance easily and cause relapse and metas-
tasis. What are the reasons for conventional 
chemotherapy failure? First, conventional che-
motherapy drugs such as paclitaxel mainly tar-
get proliferating cancer cells. Such drugs kill 
the majority of proliferating cancer cells, but 
cannot do so with dormant cancer cells, which 
can divide into proliferating cancer cells and 
cause relapses following chemotherapy [1, 2]. 
Thus, targeting only proliferating cancer cells is 
less efficient. Conventional drugs such as 
cyclophosphamide kill both proliferating and 
dormant cancer cells [3, 4]. However, multi-
drug-resistant mechanisms ensure that a num-
ber of cancer cells can resist and escape che-
motherapy. These dormant or resistant cancer 
cells are the reason for conventional chemo-

therapy failure, and are considered cancer stem 
cells  [5-7]. Recently, accumulating studies 
demonstrated that cancer stem cells, a cancer 
cell subpopulation with unlimited capacity for 
self-renewal, differentiation, and tumorigene-
sis, are the reason for relapse and metastasis 
[8, 9]. Initially, conventional chemotherapy and 
radiotherapy kill most cancer cells and shrink 
tumors immediately, but the spared cancer 
stem cells eventually result in relapse and 
metastasis. A new therapy targeting a few can-
cer stem cells may not shrink the tumor in an 
obvious manner initially, but may eventually dis-
appear due to the loss of self-renewal and pro-
liferation [10] (Figure 1). Other than inhibiting 
cancer cells, normal tissues are harmed by con-
ventional chemotherapy, which also causes 
many side effects, such as bone marrow sup-
pression [11], nausea and vomiting [12], neuro-
toxicity [13, 14], and temporary alopecia [15, 
16] due to the targeted drug delivery systems 
being less precise and the targeting drugs being 
less efficient. Therefore, enhancing convention-
al chemotherapy efficacy and reducing its side 
effects necessitates the search for potential 
efficient drugs targeting cancer stem cells and 
designing a novel drug delivery system to trans-
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a number of specific markers were discovered 
that were related to cancer stem cells [20] 
(Table 1) and which were suitable for enriching 
cancer stem cells or as potential targets in can-
cer therapy. A recent study showed that intra-
cellular autofluorescence was an exclusive 
marker in many epithelial cancer stem cell 
types. Autofluorescent cancer cells expressed 
high levels of pluripotency-associated genes, 
were enriched in sphere culture and during che-
motherapy, and had strong capacity for inva-
sion, metastasis, and tumorigenesis [21]. The 
mechanism of autofluorescence is similar  
to that of side population cells, a stem-like  
cell subpopulation [22-24] isolated by Hoechst 
33342 efflux, a DNA-binding dye, which 
depends on the adenosine triphosphate (ATP)-
binding cassette sub-family G member 2 [25]. 
The advantage of this biomarker is that, com-
pared with biomarkers such as CD133, CD44, 
and aldehyde dehydrogenase (ALDH1), autoflu-
orescent cancer stem cells can be isolated sim-
ply by fluorescence-activated cell sorting with-
out requiring a monoclonal antibody or dye, 
which may affect cancer cells.

The second is enriching cancer stem cells 
through chemotherapy or radiotherapy. 
Conventional chemotherapy or radiotherapy 
are the main treatments for cancer. However, 
due to resistance, cancer stem cells can 

fer such drugs only to cancer sites, and not nor-
mal tissues. Herein, we summarize the meth-
ods for enriching cancer stem cells, the search 
for new efficient drugs, and the delivery of tar-
geted therapy drugs. We also discuss cancer 
stem cell hierarchy complexity and the corre-
sponding target therapy strategies.

Methods of enriching cancer stem cells

Prior to targeted therapy of cancer stem cells, 
culturing a stable cancer stem cell line for che-
motherapy testing is necessary. Ikegaki et al. 
reported the production of several stable neu-
roblastoma stem cell lines via transient treat-
ment using epigenetic modifiers. A stemness 
phenotype was maintained by the stable 
induced cancer stem cells for > 1.5 years in cul-
ture with sphere-forming medium [17], provid-
ing a new approach for obtaining a phenotypic 
stable cancer stem cell line. Searching for 
potential compounds that are preferentially 
efficacious against cancer stem cells instead of 
against normal stem cells and differentiated 
cells is useful. However, whether the suitability 
of the cancer stem cell line for screening tar-
geted chemotherapy drugs and the suitability 
of the approach for obtaining other stable can-
cer stem cell line types remains doubtful. To 
date, culturing a stable cancer stem cell line is 

very difficult, as cancer stem 
cells tend to differentiate  
rapidly into cancer non-stem 
cells in vitro. However, some 
agents may be appropriate for 
cancer stem cell enrichment. 
The first is phenotypic isolation 
of cancer cells using specific 
markers that are mainly 
expressed in cancer stem cells. 
Bonnet et al. discovered in 
1997 that CD34+CD38- leuke-
mia cells had much quicker 
capacity for self-renewal, differ-
entiation, and tumorigenesis 
than CD34-CD38+ leukemia 
cells. Thus, the authors consid-
ered CD34+CD38- subpopula-
tions the initiating cells of leu-
kemia [18]. Inspired by leu- 
kemia stem cell research, other 
researchers isolated CD44+ 

CD24- breast cancer stem cells 
from patients with breast can-
cer in 2003 [19]. Subsequently, 

Figure 1. Effects of conventional chemotherapy and targeted therapy. Con-
ventional chemotherapy initially kills most cancer cells and shrinks tumor 
size immediately, but the spared cancer stem cells eventually result in re-
lapse and metastasis. Targeted therapy of cancer stem cells may not shrink 
the tumor size in an obvious manner at first, but the tumor may eventually 
disappear due to the loss of self-renewal and proliferation capacity.
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escape cytotoxicity and survive chemotherapy 
and radiotherapy. Therefore, cancer stems cells 
can be enriched using chemotherapy or radio-
therapy. Hermann et al. reported that, following 
5-day cultivation wih gemcitabine in vivo, pan-
creatic cancer stem cells were enriched up to 
47.2% compared to 1.47% in a primary cancer 
cell line. In vivo tumor xenograft experiments 
showed that, compared to vehicle treatment, 
the pancreatic cancer stem cells were enriched 
by > 2 times following 3-week gemcitabine 
treatment [26]. Dylla et al. showed that colon 

cancer stem cells could survive cyclophospha-
mide or irinotecan treatment, and in xenogene-
ic tumors, were enriched. The chemoresistant 
cancer stem cells expressed more oncogenes, 
such as ALDH1A1, MYC, and MYB [27]. Bao et 
al. reported that CD133+ glioma stem cells 
were resistant to radiation by preferentially 
activating the DNA damage checkpoint 
response and increasing DNA repair capacity. 
After radiation, glioma stem cell frequency was 
increased in both in vitro culture and in vivo 
xenograft [28].

Table 1. Specific cancer stem cell markers
Marker
A2B5 Glioblastoma [89]

ABCG2 Melanoma [90]

ABCG5 Melanoma [91]

ALDH1 Breast [92, 93], bladder [94], lung [95], colon [96], HNSCC [97], esophageal carcinoma [98]

ANTXR1 Breast [99]

BMI1 Colorectal [10]

CD19 B-precursor ALL [100]

CD26 Colorectal [101]

CD34 AML[102], B-precursor ALL [100]

CD44 Breast [103], colorectal [104], pancreatic [105], ovarian [106], gastric [107, 108], HNSCC [109], AML [110], oral [111]

CD47 AML [112]

CD90 Liver [113]

CD105 Renal [114]

CD110 Colorectal [115]

CD117 Ovarian [106]

CD123 AML [116]

CD133 Brain tumors [34, 117, 118], prostate [119], colon [36, 120], lung [121], melanoma [90], pancreatic [26], ovarian [122], endometrial 
[123], liver [124]

CD166 Colorectal [104], prostate [125], HNSCC [126]

CD271 Melanoma [127]

CDCP1 Colorectal [115]

CLL1 AML [128]

DDX4 Ovarian [129]

DNAJB8 Renal cell carcinoma [130], colorectal [131]

EGFRvIII Glioblastoma [132]

EpCAM Liver [133], colorectal [104]

GD2 Breast [134]

LGR5 Colon [135]

MDR1 Melanoma [136]

OCT4 Osteosarcoma [137]

OV6 Liver [138]

P27 Breast [139]

SOX2 Ovarian [140], cutaneous carcinoma [141]

SSEA1 Glioblastoma [142]

SSEA4 Oral [111]

TIM3 AML [143]
ALL: acute lymphocytic leukemia; AML: acute myeloid leukemia; ALDH: aldehyde dehydrogenase; ABCG: ATP-binding cassette superfamily G member; ANTXR1: anthrax 
toxin receptor 1; BMI1: B-lymphoma Moloney murine leukemia virus insertion region 1; CDCP1: CUB domain–containing protein 1; CLL1: C-type lectin-like molecule-1; 
DDX4: DEAD box polypeptide 4; DNAJB8: DnaJ homolog subfamily B member 8; EGFRvIII: epidermal growth factor receptor variant III; EpCAM: epithelial cell adhesion 
molecule; GD2: glycoprotein D2; LGR5: leucine-rich repeat G protein–coupled receptor 5; HNSCC: head and neck squamous cell carcinoma; MDR1: multi-drug resistance 
protein 1; OCT4: octamer-binding transcription factor 4; SOX2: sex-determining region Y-box 2; SSEA: stage-specific embryonic antigen; TIM3: T cell immunoglobulin- and 
mucin domain–containing molecule 3.
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Methods of searching for new efficient drugs

How do we search for new efficient drugs tar-
geting cancer stem cells? A high-throughput 
screening platform may be one option (Figure 
3). Gupta and colleagues screened 16000 
compounds, eventually selecting salinomycin, 

The third is inducing epithelial to mesenchymal 
transition (EMT). Mani et al. induced immortal-
ized human mammary epithelial cells (HMLEs) 
into the mesenchymal state through ectopic 
expression of the Twist or Snail transcription 
factors, which both induce EMT in epithelial 
cells. The induced HMLEs formed mammo-

spheres in suspension culture 
and soft agar colonies in vitro 
effectively, with high and low 
expression of the surface 
markers CD44 and CD24, 
respectively; the authors con-
sidered them mammary stem 
cells or mammary cancer stem 
cells [29]. The advantage of 
inducing EMT in cancer stem 
cells is that there are a large 
number of induced cancer 
stem cells and the state is 
much stabler, which is more 
suitable for cancer stem cell 
testing.

The fourth is serum-free culti-
vation using epidermal or fibro-
blast growth factor, and other 
factors. It was first used for 
enriching neural stem cells 
[30, 31], and then was used 
with other normal stem cells 
such as mammary stem cells 
[32, 33]. Due to the lack of 
specific cancer stem cell mark-
ers, it was used in the last 
decade to enrich cancer stem 
cells, such as that from brain 
[34], breast [35], colon [36], 
pancreatic [37], and prostate 
cancer [38]. The benefit of 
serum-free cultivation is that it 
preserves the state of stem-
ness. This method preserves 
the stem-like characteristics of 
cancer stem cells enriched by 
other methods.

These four methods can be 
used to enrich cancer stem 
cells (Figure 2). Their common 
drawback is that the enriched 
cancer cells are not pure can-
cer stem cells. Therefore, 
using two or more methods to 
enrich cancer stem cells is 
more suitable.

Figure 2. Cancer stem cell enrichment methods. Figure depicts four meth-
ods for enriching cancer stem cells (CSC): phenotypic isolation of cancer 
cells with specific cancer stem cell markers, conventional cytotoxic che-
motherapy or radiotherapy, serum-free cultivation, and EMT. The stem-like 
characteristics of cancer stem cells enriched using other methods require 
preservation by serum-free cultivation.

Figure 3. Methods for discovering new efficient drugs. There are two meth-
ods for discovering new efficient drugs: High-throughput screening, which is 
very useful for discovering new drugs among many compounds, and valida-
tion of old drugs targeting cancer stem cells.
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more drugs targeting cancer stem cells need to 
be discovered and validated in clinical trials 
before clinical usage.

Methods of delivering cancer-targeting drugs

Delivering anti-cancer drugs specific to cancer 
tissues and sustaining a stable high drug con-
centration improve anti-cancer efficacy and 
reduce the side effects in normal tissues. Some 
characteristics of cancer may be used to real-
ize this. First, due to form and architecture 
abnormality of the newly formed blood vessels, 
the vascular endothelial cell interstitial space 
in cancer tissues is much looser than that in 
normal tissues. This allows anti-cancer drugs to 
infiltrate into the cancer tissues easily if the 
drug molecule is the same size as that of the 
gap between normal tissues and cancer tis-
sues. In addition, the lack of effective lymphat-
ic drainage ensures that the drug is much more 
easily retained in cancer tissues than in normal 
tissues. This is termed the enhanced permea-
bility and retention effect, which is widely used 
in anti-cancer drugs modified with liposomes, 
nanomaterials, or high–molecular weight poly-
mers [69]. Moreover, the pH values of normal 
tissues and cancer tissues differ. Due to the 

which inhibits breast cancer stem cells 100-
fold more effectively than paclitaxel, the main 
drug for breast cancer chemotherapy [39], 
which proved to be a breakthrough for screen-
ing drugs that target cancer stem cells. Many 
studies followed these findings [40-43]. 
However, some researchers were critical of the 
fact that salinomycin is very toxic in normal 
cells and causes lethal side effects, and may 
be not suitable for chemotherapy in vivo [44].

Another option is validating old drugs that inhib-
it cancer stem cells efficiently (Figure 4), such 
as metformin, which is used for diabetes. 
Cancer risk is reduced in patients with diabetes 
who receive metformin [45-49]. Metformin 
inhibits cancer stem cell sphere-forming in vitro 
and xenografts in vivo, and sensitizes many 
cancers, such as breast [50-53], pancreatic 
[54, 55], and colon cancer [56], and esopha-
geal carcinoma [57] and glioma [58] to radio-
therapy and chemotherapy. Phenformin, a 
related biguanide,  inhibits lung cancer stem-
like cell growth and invasive capacity in vitro 
[59], and affects the metabolic state of breast 
cancer stem cells [51]. In addition to metformin 
and phenformin, the anti-alcoholism drug disul-
firam is markedly cytotoxic in cancer stem-like 

cells of breast cancer [60, 61], 
hepatocellular carcinoma [62], 
and glioblastoma [63, 64]. It 
inhibits self-renewal, induces 
apoptosis, and reverses drug 
resistance through mecha-
nisms such as inducing re- 
active oxygen species, inhibit-
ing the ALDH and nuclear 
factor-κB (NF-κB) pathways, 
downregulating glypican-3, in- 
hibiting chymotrypsin-like pro-
teasomal activity, and inacti-
vating the ubiquitin-protea-
some pathway. The anti- 
psychotic drug thioridazine 
selectively targets leukemia 
stem cells via the dopamine 
receptors, but without being 
cytotoxic to normal blood stem 
cells [65]. Its anti-cancer 
potential was also reported in 
breast and gastric carcinoma 
[66, 67]. Some dopamine ana-
logues also inhibit glioblasto-
ma stem cells efficaciously 
[68]. In addition to these drugs, 

Figure 4. An ideal drug and drug delivery system. The ideal drug and drug 
delivery system should combine passive targeting aspects, e.g., enhanced 
permeability and retention (EPR) effect of the tumor; pH-, light-, and thermo-
sensitive; and magnetic properties, with active targeting using monoclonal 
antibodies specific to cancer. Multifunctional nanocarriers are ideal carriers 
for chemotherapy drugs, where they adopt the tumor EPR effect, conjugate 
with one or more pH-, light-, and thermosensitive and magnetic particles, 
and load cytotoxic drugs and monoclonal antibodies targeting cancer.
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stronger glycolysis, cancer tissues generate 
more lactic acid, therefore the cancer microen-
vironment pH is about 5.8–7.2 (median, 7.0); 
under normal conditions, the pH is generally 
around 7.4 [70, 71]. A pH-sensitive drug is 
designed to release slowly under normal condi-
tions, but the stability of a complex drug 
decreases under the pH conditions of cancer 
tissue, such that it is released quickly mainly in 
cancer tissue and kills cancer cells specifically 
[72]. In addition to the specific cancer tissue 
physical and chemical properties, a complex 
drug can have light-sensitive [73], thermosensi-
tive [74], and magnetic properties [75], and 
then illumination, heat, and magnetization 
external to the tumor location draw the drug 
specifically into the cancer tissues. However, 
special equipment is needed for each treat-
ment session, rendering it less convenient.

The above methods for anti-cancer drug de- 
livery are considered passive targeting. 
Conversely, active targeting delivers anti-can-
cer drugs by conjugating the complex drugs 
with monoclonal antibodies specific to the tar-
get cancer tissues. In comparison to normal 
cells, cancer cells have abnormal molecular 
expression, cell signaling pathways, and micro-
environments, which are potential targets for 
guiding anti-cancer drugs with specific mono-
clonal antibodies [9, 76, 77]. For example, her-
ceptin, or trastuzumab, a monoclonal antibody 
of human epidermal growth factor receptor 2 
(HER2), which is overexpressed in some breast 
cancers, is widely used to treat HER2-positive 
breast cancer. Choi et al. reported that a her-
ceptin-conjugated, doxorubicin-loaded multi-
functional nanocarrier led to much higher cel-
lular uptake and stronger cytotoxicity in HER2 
overexpression breast cancer in vitro and 
shrank tumors significantly in vivo, compared to 
that not conjugated to herceptin [78]. Several 
studies have also shown that different her-
ceptin-conjugated cytotoxic drugs loaded to 
multifunctional carriers improved therapy effi-
cacy in HER2-positive breast cancer [79, 80] 
and pancreatic cancer [81]. This active target-
ing method tends to inhibit cancer with high 
efficacy, and a greater number of specific can-
cer cell or cancer environment targets need to 
be discovered for potential active targeting 
drug design.

Recently, nanomedicine has come to the fore in 
cancer drug design and delivery [82, 83]. 

Multifunctional nanocarriers combine passive 
and active targeting methods, which the ideal 
anti-cancer drugs should have, to enhance 
their efficacy and to reduce side effects (Figure 
4). Chiang et al. designed a multifunctional 
nanocarrier with passive targeting pH-sensitive 
and magnetic particles, the active targeting 
herceptin, and the cytotoxic drugs doxorubicin 
(hydrophilic) and paclitaxel (hydrophobic). The 
complex compound, containing three agents, 
enhanced anti-cancer efficacy more efficiently 
than a nanocarrier with only one or two agents 
[79]. Its advantage is that it is more convenient, 
and patients with cancer would prefer one com-
plex drug rather than the combination therapy 
in the present clinical treatment, which involves 
several drugs.

Learning from cancer stem cell hierarchy 
complexity

In addition to cancer stem cells, tumors contain 
the bulk of differentiated cancer cells. Currently, 
the relationship between cancer stem cells and 
differentiated cancer cells is not well known. 
According to the cancer stem cell hypothesis, 
cancer stem cells head the hierarchy, and can 
differentiate into transient amplifying and dif-
ferentiated cancer cells [20, 84]. Conversely, 
transient amplifying and differentiated cancer 
cells cannot dedifferentiate into cancer stem 
cells. The hierarchy is similar to that of normal 
stem cells; however, recent studies have dis-
puted this. Takahashi and Yamanaka reported 
that pluripotent stem cells were generated 
directly from fibroblast cultures following the 
addition of four genes, namely OCT3/4, SOX2, 
c-MYC, and KLF4 [85]. On some occasions, dif-
ferentiated cancer cells can also convert to 
cancer stem cells. Chaffer et al. reported that a 
subset of oncogene-transformed basal-like 
mammary epithelial cells spontaneously dedif-
ferentiated into cancer stem-like cells with 
tumorigenesis capacity [86]. Schwitalla et al. 
reported a similar observation, where NF-κB– 
and β-catenin–transformed differentiated vel-
lus cells dedifferentiated into stem-like cells 
and could form spheroids in vitro and cancer in 
vivo [87]. The cancer stem cell and differenti-
ated cancer cell interconversion indicates a 
more complex cancer stem cell hierarchy. 
Therefore, therapy that only targets cancer 
stem cells may be less effective than initially 
presumed, and combination therapy targeting 
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efficient drugs that target cancer stem cells. 
The four cancer stem cell enrichment methods 
described earlier are phenotypic isolation of 
cancer cells with specific cancer stem cell 
markers, conventional cytotoxic chemotherapy 
or radiotherapy, suspension cultivation, and 
EMT. A high-throughput screening platform may 
be a better choice for screening efficient target 
drugs. Learning from cancer stem cells, com-
bining new drug delivery systems, and new tar-
get drugs may reveal novel strategies for che-
motherapy in the future.
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