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Abstract: Gastric cancer (GC) remains a serious threat to many people, representing the second leading cause of 
cancer-related death worldwide. The lack of early diagnostic biomarkers, effective prognostic indicators and thera-
peutic targets all account for the poor prognosis of GC. Therefore, the identification of novel molecular biomarkers 
for early diagnosis, therapeutic response, and prognosis are urgently needed. High-throughput sequencing has 
identified a large number of transcribed long non-coding RNAs (lncRNAs) throughout the human genome. Accumu-
lating evidence demonstrates that these lncRNAs play multiple roles in regulating gene expression at the transcrip-
tional, post-transcriptional, and epigenetic levels. Aberrant expression of lncRNAs occurs in various pathological pro-
cesses, including GC. Many dysregulated lncRNAs in GC have been significantly associated with a larger tumor size, 
higher degree of tumor invasion, lymph node and distant metastasis, and poorer survival outcome. In this review, 
we will provide an overview of the pathogenesis of GC, the characteristics and regulatory functions of lncRNAs, and 
the versatile mechanisms of lncRNAs in GC development, as well as evaluate the translational potential of lncRNAs 
as novel diagnostic and prognostic biomarkers and therapeutic targets in GC.
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Introduction 

Gastric cancer (GC) is one of the most common 
malignancies and represents the second lead-
ing cause of cancer-associated mortality world-
wide [1, 2]. Many factors are implicated in the 
carcinogenesis of GC, including genetic factors, 
Helicobacter pylori infection, unhealthy diet (for 
example, high intake of salt and nitrates), and 
smoking [3-6]. Most GC cases are diagnosed at 
an advanced stage due to a lack of typical early 
symptoms. Presently, surgical resection and 
chemoradiotherapy are the main treatment 
approaches for GC [7], but relapse, distant 
metastasis and chemo-resistance frequently 
occur, and the overall 5-year survival for GC is 
only approximately 25% [8]. Despite great 
efforts to understand the biological properties 
of cancer, there have been minimal improve-
ments in the clinical outcome of GC. The lack of 
diagnostic biomarkers, prognostic indicators 
and effective therapeutic targets account for 

the poor outcome of GC. Thus, the underlying 
mechanisms of GC must be interrogated so that 
novel promising diagnostic and prognostic 
molecular biomarkers can be identified and 
developed to improve the quality of life and sur-
vival of GC patients. 

Comprehensive investigations over the past 
few decades have mainly concentrated on the 
function of critical protein-coding genes and 
genome alterations in the pathogenesis of GC 
[9, 10]. Recent progress in sequencing technol-
ogy and genome-wide analysis has revealed 
that protein-coding genes only account for less 
than 2% of the total transcriptome, whereas 
most genes are transcribed to non-protein-cod-
ing RNAs (ncRNAs) [11]. Small ncRNAs have 
lengths shorter than 200 nucleotides (nt) and 
include microRNAs (miRNAs), small-interfering 
RNAs (siRNAs) and Piwi-interacting RNAs (piR-
NAs), and their functions and regulatory mecha-
nisms have been extensively studied, especially 

http://www.ajcr.us


Long non-coding RNAs in gastric cancer

908	 Am J Cancer Res 2015;5(3):907-927

the miRNAs [12]. Through complete or incom-
plete base-pairing complementary to the 
3’-untranslated regions (3’-UTRs) of mRNAs, 
miRNAs mediate targeted mRNA degradation 
or translational inhibition [13, 14]. As the regu-
lators of gene expression, miRNAs play impor-
tant roles in cancer, and various dysregulated 
miRNAs are associated with GC [15, 16]. In 
addition to these small ncRNAs, long ncRNAs 
(lncRNAs) with lengths of more than 200 nt are 
abundant in the human genome and have 
attracted increasing scientific interest. Despite 
being initially regarded as “transcriptional 
noise”, accumulating evidence has found that 
lncRNAs can manipulate local or global gene 
expression via transcriptional, post-transcrip-
tional and epigenetic regulation [17]. The 
lncRNAs that have been characterized are 
implicated in diverse physiological and patho-
logical processes, such as X-chromosome inac-
tivation, stem cell pluripotency, development, 
immune response, cell differentiation, apopto-
sis, and cancer metastasis and invasion. 
lncRNAs can interact with proteins, DNA and 
RNA transcripts to control alternative splicing, 
chromosome remodeling, nuclear import and 
mRNA decay, and lncRNAs participate in almost 
every aspect of gene expression programs [18]. 
Aberrant lncRNA expression has been discov-
ered in many types of cancers, including GC 
[19, 20]; these dysregulated lncRNAs can func-
tion as oncogenes or tumor suppressors to 
alter cellular pathways [21]. Some lncRNAs are 
expressed in disease- or tissue-specific pat-
terns, which make lncRNAs attractive as diag-
nostic, prognostic and therapeutic biomarkers 
in cancers.

In this review, we summarize the pathogenesis 
of GC and the functional activity of lncRNAs, 
especially the underlying mechanisms of 
lncRNAs in GC development. The aim is to eval-
uate the significant potential of lncRNAs as 
novel biomarkers for early diagnosis or progno-
sis or as therapeutic targets in GC.

Pathogenesis of GC

Environmental risk factors of GC development

GC remains an ongoing serious threat to the 
public health. There are an estimated 989,000 
new cases and approximately 738,000 patients 
dying from GC throughout the world annually [2, 
22]. Although GC is the fourth most common 
malignancy, it is the second most frequent can-
cer-related cause of death worldwide [2, 22]. 

GC carcinogenesis is a complex and multistep 
process with high molecular heterogeneity. 
Environmental factors and genetic alterations 
within the host play important roles in the etiol-
ogy of GC development.

Stomach infections by the gram-negative, 
microaerophilic bacterium H. pylori is a well-
established risk factor for GC [23]. The World 
Health Organization (WHO) defined H. pylori as 
a class I carcinogen in 1994, and approximate-
ly 50% of the population are infected [24]. H. 
pylori infection can induce chronic inflamma-
tion, reactive oxygen species (ROS) accumula-
tion and DNA damage in the gastric mucosa, 
which induces the normal gastric epithelium to 
develop atrophic gastritis, intestinal metapla-
sia, and dysplasia, with eventual progression to 
carcinoma [25]. Furthermore, H. pylori infection 
has been found to enhance aberrant promoter 
methylation modification in the gastric mucosa 
and gastric epithelial cells, leading to the silenc-
ing of certain tumor suppressor genes and the 
promotion of gastric carcinogenesis [26-28]. 
Clinical studies suggest that H. pylori eradica-
tion can effectively reduce precancerous 
lesions and GC [29]. In addition to H. pylori 
infection, Epstein-Barr virus (EBV) infection has 
also been found to cause GC development [30].

Unhealthy dietary habits and lifestyles are also 
important factors that increase the risk of GC 
development. Epidemiological data suggest 
that a diet rich in salt, N-nitroso compounds 
and fat is a risk factor for GC development [31]. 
Salt and N-nitroso ingestion can cause mechan-
ical damage to the gastric mucosa, induce gas-
tritis and promote persistent H. pylori infection 
[32]. Fresh fruits and vegetables are full of 
carotenoids, vitamin C, folate, phytochemicals, 
and fiber, which can modestly reduce GC sus-
ceptibility [33]. Cigarette smoking and alcohol 
intake are established risk factors for GC [34]. 
Alcohol can stimulate the gastric mucosa, and 
tobacco may induce precursor gastric lesions 
and increase H. pylori infection. Drinking green 
tea may prevent carcinogenesis, as green tea is 
the most abundant source of epigallocatechin 
gallate (EGCG), which protects gastric epithelial 
cells from H. pylori-induced cytotoxicity [35].

Molecular mechanisms of GC based on mRNA 
and protein alterations

Most GC patients suffer from malignant gastric 
epithelial lesions. However, GC has highly het-
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erogeneous properties that can be classified 
into various subgroups based on histological, 
anatomical, epidemiological and molecular 
characteristics. Currently, according to gene 
expression profiling with consensus hierarchi-
cal clustering selections, three major subtypes 
of GC have been identified: proliferative, meta-
bolic and mesenchymal, each of which exhibits 
characteristic variations in molecular and 
genetic properties and responses to chemo-
therapy [36]. Proliferative GC presents high lev-
els of genomic instability, including tumor sup-
pressor p53 (TP53) mutations and DNA 
methylation. Metabolic patients appear to 
respond better to 5-fluorouracil treatment. The 
mesenchymal subtype may have cancer stem-
like cells that are sensitive to inhibitors target-
ing the PI3K/AKT/mTOR signaling pathway [36]. 
These molecular classifications for GC provide 
the rationale for more effective personalized 
therapy.

With advances in high-resolution sequencing 
technology, a wide range of somatic alterations 
have been studied in GC [10]. There are fre-
quent gene mutations in TP53, PIK3CA and 
ARID1A. Mutations in cell adhesion genes, 
such as FAT4 and the chromatin remodeling 
genes ARID1A, MLL3 and MLL, are a common 
occurrence in GC [10]. Among the numerous 
gene mutations implicated, TP53 alterations 
have been extensively studied. TP53 plays 
important roles in cell fate determination and 
has been described as “the guardian of the 
genome”. Inactivation mutations and loss of 
heterozygosity (LOH) of TP53 occur at high fre-
quency and seem to be early events in GC [37]. 
A comprehensive genomic analysis of 233 GC 
samples revealed that receptor tyrosine kinase 
(RTK)/RAS alterations collectively occurred in 
up to 37% of GC patients, mainly comprising 
alterations in FGFR2, KRAS, EGFR, HER2 and 
MET [38]. HER2 is a well-characterized onco-
gene with tyrosine kinase activity that belongs 
to the EGFR family. The dimerization of HER2 
can induce the autophosphorylation of tyrosine 
residues within the cytoplasmic domain, which 
can activate many cellular signaling cascades 
to trigger proliferation and carcinogenesis. 
Amplification or overexpression of HER2 is 
found in approximately 10-30% of gastric/gas-
troesophageal cancers and could serve as a 
prognostic and predictive marker. Trastuzumab 
monoclonal antibody directed at HER-2, which 
has been shown to decrease shedding of the 

HER-2 extracellular domain and reduce its 
dimerization, has now become a standard first-
line treatment option for advanced HER-2-
positive GC [39]. 

Our previous studies found several examples of 
aberrant expression of mRNAs and proteins in 
GC, which play vital roles in GC development. 
For example, VEGF-C and CNTN1 levels were 
significantly correlated with tumor size [40]; 
overexpressed JMJD2A was positively associ-
ated with tumor stage, nodal status and poor 
prognosis; and PCBP2 upregulation was linked 
to shorter survival time in GC [41, 42]. JMJD2A 
can catalyze the demethylation of histone H3 
lysines 9 and 36, and PCBP2 is an RNA-binding 
protein. Our findings suggested that both 
JMJD2A and PCBP2 could reduce the expres-
sion of pro-apoptotic miR-34a to promote cell 
proliferation and suppress apoptosis in GC 
cells [41, 42]. Recently, the upregulated onco-
genic protein AEG-1 was shown to associate 
with proinflammatory signaling in GC. Bacterial 
lipopolysaccharide (LPS) could induce AEG-1 
expression, enhancing nuclear translocation of 
the NF-κB p65 subunit and, in turn, decreasing 
the TLR4 negative regulator SOCS. Eventually, 
AEG-1 promotes uncontrolled inflammation in 
the GC microenvironment and aggravates 
malignant progression [43]. AEG-1 depletion 
has been found to inhibit invasion and the epi-
thelial-mesenchymal transition (EMT) program 
in cervical cancer [44] and to suppress cell 
migration in hepatocellular carcinoma [45]. In 
GC, AEG-1 also exerts critical roles and is a 
potential prognostic biomarker and therapeutic 
target [43]. Additionally, several single-nucleo-
tide polymorphisms (SNP) have been associat-
ed with GC risk in genome-wide association 
studies (GWASs). For example, SNPs at 8q24.3 
located in PSCA and SNPs at 1q22 within MUC1 
are significantly associated with GC susceptibil-
ity according to three independent GWASs: two 
studies that examined a Chinese population 
[46, 47] and one that examined Japanese and 
Korean populations [48]. 

Many diagnostic, prognostic and therapeutic 
biomarkers have been developed. For example, 
serum-based carcinoembryonic antigens (CEA) 
and tissue-based HER2 have been suggested 
as potential GC markers and used in clinical 
practice. However, low sensitivity and specifici-
ty constrain their application. So far, there are 
no good markers for early GC detection and 
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prognosis. This situation indicates that our cur-
rent knowledge of the complexities of GC 
remains limited, and novel pathogenic mecha-
nisms should be explored to identify novel bio-
markers for better clinical applications in GC. 

The versatile long non-coding RNAs

Over the past decade, gene-tiling array and 
RNA deep sequencing (RNA-seq) studies have 
revealed that the human genome is pervasively 
transcribed and produces thousands of tran-
scripts that lack obvious coding capacities [11]. 
These non-coding transcripts were initially 
regarded as genomic noise, but emerging evi-
dence has demonstrated that the proverbial 
“dark matter” actually has important effects on 
the regulation of gene expression [12]. These 
findings have greatly challenged the conven-
tional dogma that only proteins can perform 
these cellular functions and that RNA serves 
only as a template between DNA sequences 
and proteins. In the past, intensive efforts have 
concentrated on the functions of proteins in 
the pathogenesis of cancer. Recently, non-cod-
ing RNAs have attracted more attention, not 
only shorter transcripts (< 200 nt, which include 
siRNAs, piRNAs, and miRNAs and have been 
well documented) but also long non-coding 
RNAs (lncRNAs) that possess more complex 
regulatory mechanisms and take part in multi-
ple biological processes, including cancer [21].

Biological characteristics of lncRNAs

LncRNAs are commonly defined as transcripts 
with lengths ranging from 200 nt to 100 kb that 
have little or no protein coding capacity. 
LncRNAs share many characteristics with 
mRNAs, are transcribed by one of three DNA-
dependent RNA polymerases (Pol I, II, or III), 
have 5’ capping and polyadenylation, and 
undergo alternative splicing. The tertiary struc-
tures play important roles in lncRNA functions 
[17]. LncRNAs can be classified into diverse 
subgroups based on various criteria, which may 
help to elucidate their regulatory mechanisms. 
According to their functional relevance, lncRNAs 
can be divided into “housekeeping” and “regu-
latory” lncRNAs. The “housekeeping” lncRNAs 
are constitutively expressed, such as the tRNA 
and rRNA involved in protein biosynthesis. 
Regulatory lncRNAs may display dysregulated 
expression under certain physiological and 
pathological conditions. Based on their orienta-

tion and locations relative to neighboring 
genes, lncRNAs can be further classified as 
sense, antisense, divergent, convergent, intron-
ic and intergenic [11]. The five broad categories 
of lncRNAs are described as follows: (1) “sense” 
and (2) “antisense” describe lncRNA transcripts 
that overlap with one or more exons of another 
transcript on the same or opposite strands, 
respectively; (3) “bidirectional” indicates that 
lncRNA expression and the neighboring coding 
transcript on the opposite strand is initiated in 
close genomic proximity; (4) “intronic” indicates 
a lncRNA derived from the intron of a second 
transcript; and (5) “intergenic” describes a 
lncRNA that lies within the genomic intervals 
between two genes as an independent unit. 
Additionally, some lncRNAs can modulate the 
expression of neighboring genes within the 
same chromosome in a cis manner or control 
distant gene expression located on the same or 
different chromosomes in a trans manner by 
affecting RNA polymerase complex recruitment 
or chromatin remodeling. Another classification 
system is based on the role of lncRNA in cancer 
development and comprises oncogenic lncR- 
NAs and tumor suppressor lncRNAs.

LncRNA subcellular localization has been stud-
ied using RNA fluorescence in situ hybridization 
(FISH). Identifying the subcellular localization of 
lncRNAs provides some insight into their func-
tions and potential interacting partners. Similar 
to mRNA, lncRNAs have been shown to localize 
across a wide range of subcellular organelles. A 
subset of lncRNAs are selectively localized in 
the nucleus [49-51], some have been visual-
ized specifically in the cytoplasm [52], and 
some seem to appear in both the nuclear and 
the cytoplasmic compartments [53]. 

The evolutionary conservation of lncRNAs has 
been compared across species. Some lncRNAs 
exhibit a high level of nucleotide sequence 
identity within vertebrates, as exemplified by 
MALAT1 and its murine ortholog hepcarcin [54]. 
Moreover, certain lncRNAs are derived from 
ultra-conserved genomic regions (UCR) and are 
fully conserved among orthologous regions in 
human, rat, and mouse genomes [55]. A subset 
of lncRNAs show tissue-specific expression 
patterns in equivalent genome loci across spe-
cies despite the absence of a conserved nucle-
otide sequence [56]. 
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Table 1. The databases for functional annotation of lncRNAs
Database name Description URL
LncRNA2Target A database for differentially expressed genes after lncRNA knockdown or overexpression http://www.lncrna2target.org
LNCipedia A database for annotated human lncRNA transcript sequences and structures http://www.lncipedia.org
lncRNAdb Expanding the reference database for functional long noncoding RNAs http://lncrnadb.org
LncRNAWiki Harnessing community knowledge in collaborative curation of human long non-coding 

RNAs
http://lncrna.big.ac.cn

LncRNADisease A database for long-non-coding RNA-associated diseases http://cmbi.bjmu.edu.cn/lncrnadisease
lncRNASNP A database of SNPs in lncRNAs and their potential functions in human and mouse http://bioinfo.life.hust.edu.cn/lncRNASNP/
DIANA-LncBase Experimentally verified and computationally predicted microRNA targets on long non-

coding RNAs
www.microrna.gr/LncBase

NONCODE Exploring the world of long non-coding RNA genes http://www.bioinfo.org/noncode/
ChIPBase A database for decoding the transcriptional regulation of long non-coding RNA and mi-

croRNA genes from ChIP-Seq data
http://deepbase.sysu.edu.cn/chipbase/

starBase v2.0 Decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from 
large-scale CLIP-Seq data

http://starbase.sysu.edu.cn/

Rfam The universally acclaimed database of RNA families, as well as several databases on 
long non-coding RNA, microRNA and their targets

http://rfam.sanger.ac.uk

Linc2GO Functional annotation of human lincRNA based on the ceRNA hypothesis http://www.bioinfo.tsinghua.edu.cn/~liuke/Linc-
2GO/index.html

circBase Database of circular RNAs http://www.circbase.org
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All of the abovementioned features imply the 
functional importance of lncRNAs. Several 
lncRNAs have been annotated; however, only a 
few of them have well-characterized functions. 
Multiple lncRNA databases have been con-
structed to understand lncRNAs more system-
atically. Here we summarized them in Table 1.

Mechanisms of lncRNA-mediated regulation of 
gene expression

LncRNAs play important roles in regulating 
gene expression via various mechanisms and 
at multiple levels. LncRNAs have the capacity 
to interact with proteins, DNAs or RNAs to act 
versatile functions. Moreover, certain lncRNAs 
can also function as the precursors for small 
RNAs to produce mature miRNAs.

LncRNA interacts with proteins: LncRNA can 
serve as a scaffold to recruit protein complexes 
and influence gene expression. Recent studies 
have revealed that a lncRNA known as HOTAIR 
can bind polycomb repressive complex 2 
(PRC2) with its 5’ domain and interact with the 
LSD1/CoREST/REST complex with its 3’ end. 
PRC2 is composed of methylase EZH2, SUZ12 
and EED, which are responsible for histone H3 
lysine 27 trimethylation (H3K27me3); whereas 
the LSD1 complex serves as the demethylase 
that mediates histone H3 lysine 4 demethyl-
ation (H3K4me2). HOTAIR mediates two dis-
tinct complex assemblies, enabling PRC2 and 
LSD1 to target specific gene sites to induce 
H3K27me3 and H3K4me2 modification and 
ultimately repress gene transcription across 40 
kb of the HOX D locus, despite the fact that 
HOTAIR itself is transcribed from the HOX C 
region [57, 58]. The aberrant gene expression 
induced by HOTAIR increases the invasiveness 
and metastasis of cancer [57, 59, 60]. 
Overexpression of HOTAIR has been observed 
in various cancer types, such as breast, hepa-
tocellular, gastric, colorectal and pancreatic 
cancers, and affects patient survival and prog-
nosis [59]. 

LncRNA can also regulate nuclear trafficking. 
Nuclear factor of activated T cells (NFAT), a sen-
sitive transcriptional factor response to the 
alteration of calcium signals, is essential for 
immune response mediated by the T cell recep-
tor [61]. When intracellular calcium levels 
increase, the calcium-mediated phosphatase 
calcineurin dephosphorylates NFAT complex 

subunits in the cytoplasm, which promotes 
NFAT translocation into the nucleus to become 
transcriptionally active. The lncRNA NRON was 
identified in a complex with nuclear import fac-
tors that specifically modulated the nuclear 
trafficking of NFAT. NRON inhibited the nuclear 
accumulation of NFAT, which prevented the 
active transcription of NFAT, although the pre-
cise mechanisms are unclear [62]. The lncRNA 
5’aHIF-1α is distributed at the perinuclear area 
of kidney cancer cells and co-localizes with the 
nuclear pore complex protein Nup62. Antitumor 
inhibitor camptothecin (CPT) treatment can 
elevate the level of 5’aHIF-1α and is associated 
with a decrease in HIF-1α mRNA levels. 
Localization within the perinuclear area and 
interaction with the nuclear pore complex sug-
gests that 5’aHIF-1α may be involved in the 
export of novel mRNAs into the cytoplasm [63].

LncRNAs are involved in alternative splicing via 
interactions with splicing factors. The lncRNA 
MALAT1, also known as NEAT2, is upregulated 
in many solid cancers and is correlated with 
cancer metastasis and recurrence [64]. 
MALAT1 is highly conserved in mammals and is 
localized to nuclear speckles. MALAT1 inter-
acts with splicing factors, including the serine/
arginine (SR) splicing proteins, and decreases 
the cellular levels of active SR splicing proteins, 
which repress the association of SR splicing 
factors with pre-mRNA [65]. A recent study 
found that MALAT1 could promote cell cycle 
progression by enhancing expression of the 
oncogenic transcription factor B-MYB. MALAT-1 
mainly induced proliferation by attenuating the 
affinity of splicing factors to B-MYB pre-mRNA, 
leading to an aberrant alternative splicing pro-
cess [66].

LncRNA interacts with DNA, RNA or miRNA: 
Natural antisense lncRNA can form an RNA 
duplex with its sense mRNA, which may alter 
mRNA stability and translation efficiency. The 
overlapping region of the RNA duplex may pro-
tect the mRNA from endo- or exonucleolytic 
degradation [67]. Moreover, antisense lncRNAs 
may mask the miRNA-targeting site on sense 
mRNA and prevent the mRNA degradation by 
miRNA. The BACE1 natural antisense transcript 
BACE1-AS increases the stability of BACE1 
mRNA through the mechanisms described 
above [68]. This RNA duplex formation has the 
capacity to affect epigenetic silencing. The 
INK4b-ARF-INK4a locus in the human genome 
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encodes p15INK4b, p14ARF and p16INK4a, 
which are three tumor suppressors known to 
inhibit malignant cell proliferation and promote 
senescence and apoptosis. The natural anti-
sense lncRNA ANRIL can form heterochromatin 
with INK4b-ARF-INK4a transcripts to recruit the 
polycomb repressor complexes PRC1 and PRC2 
and establish repressive epigenetic marks on 
the chromatin, thereby silencing these tumor 
suppressors in prostate cancer [69, 70].

LncRNA can mediate ribosomal DNA (rDNA) 
silencing by binding and methylating the rDNA 
promoter region. Mammalian genomes have 
several clusters of tandem rDNA, most of which 
are silenced by heterochromatic histone modifi-
cations and CpG methylation within the rDNA 
promoter. RNA polymerase I produces lncRNA 
transcripts from rDNA promoters (termed 
pRNA, promoter-associated RNA). As a subset 
of lncRNA, pRNA is complementary to the rDNA 
promoter and interacts with transcription factor 
TTF-I to form a DNA:RNA triplex that is preferen-
tially recognized by DNMT3b to induce CpG 
methylation of the rDNA promoter and silence 
rDNA [71].

Many studies have revealed that some lncRNAs 
can act as miRNA sponges by competitively 
interacting with miRNAs to reduce miRNA avail-
ability to their target mRNAs. The tumor sup-
pressor gene PTEN has a pseudogene lncRNA 
PTENP1. PTENP1 can act as a “decoy” to 
sequester the miRNAs that target PTEN, thus 
protecting PTEN from silencing by miRNAs and 
exerting a growth-suppression function; how-
ever, the PTENP1 locus is selectively lost in 
human cancer [72]. 

LncRNA serves as a miRNA precursor: Several 
unannotated lncRNAs have the potential to pro-
duce natural precursors for miRNA-like small 
RNAs. For example, the imprinted lncRNA H19 
has been discovered as a precursor for miR-
675 [73]. MiR-675 is derived from the first exon 
of H19 and is involved in controlling the expres-
sion of developmental genes. Additionally, H19-
derived miR-675 has an impact on tumorigen-
esis and tumor progression by targeting tumor 
suppressor RB in colorectal cancer [74] and by 
silencing tumor suppressor RUNX1 in GC [75]. 
The lncRNA PVT1 locus located on 8q24 is 
amplified in multiple cancers. The PVT1 locus 
has been found to encode several miRNAs, 
such as miR-1204, and these miRNAs are 
important for T lymphomagenesis [76].

LncRNAs are associated with cancers

Cancer is a multistep process in which normal 
cells progressively evolve to a neoplastic state 
by acquiring particular capacities to disturb cel-
lular homeostasis. Weinberg et al. proposed 
the following hallmarks of the malignant trans-
formation process of cancer: (1) sustaining pro-
liferative signaling; (2) evading growth suppres-
sors; (3) resisting cell death; (4) enabling 
replicative immortality; (5) inducing angiogene-
sis; and (6) activating invasion and metastasis 
[77]. Many lncRNAs have been found to be dys-
regulated in cancers, and lncRNAs play impor-
tant roles in each of the hallmarks of cancer 
[21]. Yang et al. reported that two lncRNAs, 
PRNCR1 and PCGEM1, which are highly overex-
pressed in aggressive prostate cancers could 
strongly enhance androgen receptor (AR)-
induced transcriptional activation programs to 
promote cell proliferation. Their study involved 
an intricate series of events leading to the for-
mation of a complex among PRNCR1, PCGEM1 
and AR. PRNCR1 first bound to the C-terminally 
acetylated AR on the enhancers and recruited 
the DOT1L enzyme to methylate the N-terminus 
of AR, which was required for the association of 
PCGEM1 with AR. Subsequently, PCGEM1 inter-
acted with the Pygo2 protein, which recognized 
and bound the methylated histone H3 marker 
H3K4me3 at the gene promoter. These succes-
sive complex associations eventually facilitated 
the formation of a “loop” between the enhanc-
er and promoter sequences, which resulted in 
transcriptionally activated AR-targeted genes 
[78, 79]. The regulatory patterns of lncRNA 
make cancer pathogenesis more intricate and 
complicated, but the multi-functional and tis-
sue-specific properties of lncRNAs provide new 
avenues for the development of novel diagnos-
tic, prognostic and therapeutic biomarkers for 
cancers.

LncRNAs play important roles in GC

There has been increasing interest in the role 
of lncRNAs in GC pathogenesis. Recently, sev-
eral research teams have performed lncRNA 
microarray profiling or RNA-seq analysis and 
identified many dysregulated lncRNAs in GC 
[20, 80-82]. These aberrantly expressed lnc- 
RNAs play critical roles in gastric carcinogene-
sis and aggressive progression. The upregulat-
ed lncRNAs may function as oncogenes to 
expedite the acquisition of the malignant can-
cer hallmarks, whereas the downregulated 
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lncRNAs may possess tumor suppressor fea-
tures in GC. 

The oncogenic functions of lncRNAs in GC

A recent study found that the lncRNA GAPLINC 
(gastric adenocarcinoma predictive long inter-
genic noncoding RNA) was highly expressed in 
GC specimens according to in situ hybridization 
(ISH) analysis [83]. The aberrant expression of 
GAPLINC strongly correlated with alterations in 
CD44, and CD44 is a well-known cancer stem 
cell marker that drives cancer proliferation, 
migration and angiogenesis. The cell migration 
and proliferation functions of GAPLINC could be 
attenuated by CD44 repression. The in vitro 
and in vivo data demonstrated that GAPLINC 
acted as a molecular decoy for miR211-3p to 
protect CD44 from degradation by miR211-3p 
[83]. In fact, there is intricate crosstalk among 
lncRNAs, miRNAs and mRNAs to control gene 
expression in GC. LncRNA can serve as a com-
peting endogenous RNA (ceRNA) to antagonize 
the repressive role of miRNAs on their target 
mRNAs. According to lncRNA microarray data, 
the bioinformatics algorithm miRcode, and the 
miRNA targets database TarBase, the first 
lncRNA-miRNA-mRNA networks have been con-
structed for GC [84].

HOTAIR is one of the most extensively studied 
oncogenic lncRNAs and is upregulated in vari-
ous cancers, including GC. HOTAIR overexpres-
sion has been correlated with tumor stage, 
venous invasion, lymph node metastasis, peri-
toneal dissemination, and poor overall survival 
rate in GC [60, 85-87]. Ectopic expression of 
HOTAIR promoted proliferation, the EMT pro-
gram, and migration and invasion of GC cells, 
while HOTAIR knockdown effectively inhibited 
these malignant phenotypes, reduced the 
expression of MMP1, MMP3 and Snail proteins, 
and suppressed tumor growth and peritoneal 
metastasis in the xenograft mouse model [85, 
87]. The well-studied mechanism for HOTAIR is 
mediated through interaction with the PRC2 
and LSD1/CoREST/REST complexes, thus lead-
ing to gene silencing in trans via H3K27 meth-
ylation and H3K4 demethylation. Recent inves-
tigation has found that HOTAIR can impose a 
further level of post-transcriptional regulation 
by acting as a competing endogenous RNA 
[60]. MiR-331-3p can directly bind HOTAIR, and 
HOTAIR functions as the endogenous decoy to 
disrupt the repression of HER2 by miR-331-3p. 
The increased HER2 expression may account 
for the more aggressive properties and poor 

survival associated with GC [60]. A case-con-
trol study in a northern Chinese population indi-
cated that the T allele of rs12826786 might 
increase gastric cardia adenocarcinoma (GCA) 
risk, and this SNP has a genotype-specific influ-
ence on HOTAIR expression [88]. 

The oncogenic lncRNA ANRIL has also been 
found to be overexpressed in GC tissues, and 
higher ANRIL expression has been significantly 
correlated with an aggressive TNM stage and 
larger tumor size and has served as an inde-
pendent predictor of poor overall survival. 
ANRIL exerts critical roles in cell proliferation 
both in vitro and in vivo [89]. The transcriptional 
activator E2F1 can induce ANRIL expression 
and promote ANRIL-mediated rapid cell growth. 
ANRIL can recruit and bind to the PRC2 com-
plex to epigenetically repress miR-99a/miR-
449a in trans, which activates the miR-99a/
miR-449a target (the mTOR and CDK6/E2F1 
pathway), thereby partially accounting for aber-
rant cell proliferation. Moreover, the formation 
of a positive feedback loop between ANRIL and 
E2F1 enables cell proliferation to be main-
tained continuously [89]. 

Overexpression of the imprinted lncRNA H19 
gene is associated with GC development and 
poor prognosis. MiR-675 derived from H19 is a 
pivotal mediator in H19-induced GC develop-
ment by silencing certain tumor suppressors. 
RUNX1 is a direct target of miR-675, and H19/
miR-675-mediated RUNX1 depletion triggers 
cell proliferation and inhibits apoptosis in GC 
[75]. Independent of the miR-675 product, H19 
has been found to interact with the tumor sup-
pressor p53, abolishing p53 activity and there-
by suppressing the expression of p53 targets, 
such as Bax, and leading to GC cell proliferation 
[90]. In addition, a coexpression network has 
revealed that ISM1 is the binding protein of 
H19, and its expression positively correlates 
with that of H19. CALN1 has been identified as 
another target of H19-derived miR-675. By 
directly upregulating ISM1 and indirectly 
repressing CALN1 expression by miR-675, H19 
can promote cell proliferation, anti-apoptosis, 
migration, invasion and metastasis in GC. GC 
patients in the high H19 expression subgroup 
had shorter survival times [91]. H19 expression 
can be activated by the oncogene c-Myc in GC 
[90]. 

Multidrug resistance (MDR) is responsible for 
chemotherapy failure during GC treatment. The 
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lncRNA MRUL (MDR-related and upregulated 
lncRNA) has a significant effect on MDR. MRUL 
is located 400 kb downstream of ABCB1, which 
is an ATP-dependent efflux pump that elimi-
nates toxic intracellular metabolic products. 
MRUL has been found to be significantly upreg-
ulated in adriamycin- or vincristine-resistant 
SGC7901 cells [92]. MRUL could positively 
impact ABCB1 expression in an orientation- 
and position-independent manner. MRUL 
depletion in multidrug-resistant cells enhanced 
the accumulation of adriamycin or vincristine, 
decreased adriamycin release, and promoted 
apoptosis in MDR GC cell lines. The high levels 
of MRUL in GC tissues were negatively corre-
lated with the growth inhibition rates of GC 
specimens treated with chemotherapy drugs in 
vitro and predicted a poor prognosis [92].

The lncRNA GHET1 (gastric carcinoma high 
expressed transcript-1) is enhanced in GC tis-
sues and is correlated with larger tumor size, 
increased tumor invasion and a poor survival 
rate. Gain-of-function and loss-of-function anal-
yses have revealed that GHET1 can drive gas-
tric carcinoma cell proliferation. A mechanistic 
investigation demonstrated that GHET1 physi-
cally interacted with the IGF2BP1 protein and 
facilitated the association of c-Myc mRNA with 
IGF2BP1, thus increasing the mRNA stability 
and expression of the oncogene c-Myc to pro-
mote proliferation [93].

The lncRNA CCAT1 has a higher expression in 
GC tissues than in normal counterparts, and 
ectopic expression of CCAT1 promotes cell pro-
liferation and migration [94]. Computational 
screen and chromatin immunoprecipitation 
(ChIP) assays have confirmed that c-Myc binds 
directly to the E-box element within the promot-
er region of CCAT1, thereby increasing tran-
scriptional activity of the CCAT1 promoter and 
CCAT1 levels. CCAT1 and c-Myc expression 
showed a strong correlation in GC [94].

MALAT1 was highly expressed in GC cell lines 
and induced SF2/ASF proteins to localize to the 
nucleolus. SF2/ASF is an important member of 
the serine/arginine-rich protein (SR) family and 
is involved in alternative splicing. MALAT1 
depletion can arrest the cell cycle in the G0/G1 
phase, inhibit proliferation, and impair the 
nuclear distribution and expression of SF2/ASF 
[95]. SF2/ASF-silencing can repress the cell 
cycle and proliferation, but SF2/ASF overex-

pression fails to rescue the effects induced by 
MALAT1 knockdown. These findings indicate 
that MALAT1 may modulate GC cell prolifera-
tion partly by regulating SF2/ASF expression 
and distribution [95]. 

The lncRNA HULC (highly upregulated in liver 
cancer) was originally identified in hepatocellu-
lar carcinoma (HCC) and acts as an oncogene 
to promote HCC development and progression 
[96]. Recently, HULC was shown to be signifi-
cantly elevated in GC tissues and positively 
associated with lymph node metastasis, dis-
tant metastasis and advanced TNM stages. 
HULC overexpression enhances proliferation, 
invasion, and EMT and suppresses apoptosis in 
GC cells. Additionally, ectopic HULC expression 
could induce autophagy, whereas HULC silenc-
ing or treatment with an autophagic inhibitor 
increased apoptosis in SGC7901 GC cells. 
These results suggest that HULC might func-
tion as a molecular switch between autophagy 
and apoptosis during GC pathogenesis [97].

The tumor suppressor roles of lncRNAs in GC

The lncRNA FENDRR (FOXF1 adjacent non-cod-
ing developmental regulatory RNA) is an essen-
tial regulator of heart and body development in 
the mouse [98]. Similar to HOTAIR, FENDRR 
can bind to PRC2 to control chromatin struc-
ture and gene activity [99]. In GC tissues and 
cell lines, FENDRR expression has been shown 
to be lower, which is associated with tumor 
invasion, advanced tumor stage, lymphatic 
metastasis, and poor prognosis. Histone 
deacetylation is involved in the downregulation 
of FENDRR in GC cells [100]. The lncRNA 
FENDRR has no obvious effect on cell prolifera-
tion but plays important roles in cell invasion 
and migration. Forced FENDRR overexpression 
is able to effectively reduce the number of met-
astatic nodules in xenograft mouse models. 
Further investigation revealed that the reduc-
tion of fibronectin1 and MMP2/MMP9 expres-
sion accounted for the FENDRR-induced inhibi-
tion of GC cell metastasis [100]. 

The lncRNA GAS5 (growth arrest-specific tran-
script 5) has been identified as a tumor-sup-
pressor lncRNA in bladder, pancreatic and 
breast cancer, as GAS5 is downregulated and 
exhibits the capacity for growth arrest in these 
cancers [101-103]. Sun et al. found that GAS5 
exhibited decreased expression in GC tissues, 
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and the reduced expression of GAS5 was sig-
nificantly associated with larger tumor size, 
advanced pathological stage, and poorer sur-
vival and overall survival. Increasing GAS5 
expression was able to inhibit GC cell prolifera-
tion and induce apoptosis partly via the regula-
tion of E2F1, P21, and cleaved caspase3 
expression, although the mechanism is unclear 
[104]. Our ongoing investigations also demon-
strated that GAS5 is downregulated in GC spec-
imens, and GAS5 depletion triggers GC cell 
cycle arrest at the G1 phase. The results from 
the RNA-pull down and RNA immunoprecipita-
tion (RIP) assays revealed that GAS5 interacted 
with the transcriptional activator YBX1 and reg-
ulated YBX1 protein abundance without affect-
ing its mRNA level. The depletion of GAS5 and 
subsequent reduction in YBX1 protein decre- 
ased the expression of P21 transactivated by 
YBX1, eventually abolishing P21-induced cell 
cycle arrest in GC cells. Our findings suggest 
that the lncRNA GAS5/YBX1/p21 pathway 
plays critical roles in GC cell proliferation (Liu 
YC and Zhao J. et al. accepted). 

The imprinted gene MEG3 (maternally expre- 
ssed gene3) acts as a tumor suppressor 
lncRNA. MEG3 levels are markedly decreased 
in GC tissues and are correlated with an 
advanced TNM stage, increased invasion 
depth, larger tumor size and poor prognosis. 
DNA methylation is involved in MEG3 expres-
sion [105]. MEG3 overexpression can inhibit 
cell proliferation, drive apoptosis, and increase 
p53 expression in GC cells [105].

The lncRNA LincBM742401 is markedly down-
regulated in GC according to RNA-seq and pub-
lic microarray data analyses. Reduced levels of 

BM742401 have been closely associated with 
poor survival in GC patients [106]. Forced 
expression of BM742401 in GC cells can block 
cell metastasis and decrease extracellular 
MMP9 secretion. Moreover, mice injected with 
BM742401-overexpressing cells had a signifi-
cant reduction in tumor size and fewer lung 
metastatic foci [106].

The lncRNA ncRuPAR can increase protease-
activated receptor-1 (PAR-1) levels during 
embryonic growth [107]. A recent study of GC 
tissues demonstrated that ncRuPAR was sig-
nificantly downregulated, and the level of ncRu-
PAR was positively correlated with the tumor 
invasion depth, lymph node metastasis, distant 
metastasis, tumor size, and TNM stage. 
Moreover, decreased ncRuPAR expression was 
inversely associated with the mRNA level and 
immunohistochemical signal intensity of PAR-1 
and VEGF in GC tissues [107], but the underly-
ing mechanisms remain to be elucidated.

There is accumulating evidence that lncRNAs 
participate in GC development. A small fraction 
of lncRNAs have well-characterized mecha-
nisms (Figure 1), but many dysregulated 
lncRNAs are not well understood and are cor-
related with clinical significance in GC. The 
GC-related lncRNAs have been summarized in 
Table 2. 

The diagnosis and prognosis potential of 
lncRNAs in GCs

Early detection and diagnosis and effective 
prognostic indicators are necessary for improv-
ing the survival of GC patients. However, con-
ventional tumor markers, such as CEA and CA 

Figure 1. The functions and regulatory mechanisms of dysregulated lncRNAs in GC. The red ellipse diagrams in-
dicate the dysregulated lncRNAs in GC, the green ellipse diagrams are their downstream proteins, and the yellow 
schematics show the aberrant biological processes regulated by lncRNAs in GC. 
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Table 2. The potential clinical applications of dysregulated lncRNAs in GC
Oncogenic LncRNAs Sample type and size Methods Clinical significance Potential Application Ref
H19↑ 74 paired GC tissues qRT-PCR poor prognosis diagnostic, prognostic biomarker 

and therapeutic target
[91]

80 paired GC tissues advanced TNM, poor prognosis [117]
24 paired GC tissues - [75]
22 paired GC tissues - [90]

43 pre-operative, 20 post-operative plasma, 
and 33 healthy plasma

Plasma H19 levels  higher in GC patients and reduced in postop-
erative sample

[108]

77 paired GC tissues - [20]
HOTAIR↑ 78 paired GC tissues qRT-PCR tumor size, advanced TNM, metastasis, and  shorter survival diagnostic, prognostic biomarker 

and therapeutic target
[60]

68 paired GC tissues venous invasion, lymph node metastases and lower survival [87]
31 paired GC tissues TNM stage and lymph node metastasis [115]
50 paired GC tissues Lymphovascular invasion and lymph node metastasis [86]

150 paired GC tissues as independent prognostic and risk factor for peritoneal dissemi-
nation

[85]

GAPLINC↑ 90 GC tissues ISH poor survival prognosis biomarker [83]
MRUL↑ 40 paired GC tissues, and SGC7901 cell line 

resistant VCR or ADR
qRT-PCR in vitro growth inhibition rates of GC specimens treated with che-

motherapy drugs and a poor prognosis
chemotherapy prediction and 
prognosis biomarker

[92]

ANRIL↑ 120 paired GC tissues qRT-PCR TNM stage, tumor size and poor survival prognostic biomarker and thera-
peutic target

[89]

GHET↑ 42 paired GC tissues qRT-PCR tumor size, tumor invasion and poor survival prognostic biomarker and thera-
peutic target

[93]

CCAT↑ 20 paired GC tissues qRT-PCR - therapeutic target [94]
HULC↑ 58 paired GC tissues qRT-PCR lymph node metastasis, distant metastasis and advanced TNM 

stages
diagnosis biomarker and thera-
peutic target

[97]

MALAT1↑ 150 paired GC tissues qRT-PCR correlated with peritoneal metastasis in GC patients diagnosis and prognosis bio-
marker, and therapeutic target

[85]

Linc00152↑ 79 GC plasma, and paired pre- and postop-
erative plasma 

qRT-PCR Linc00152 levels higher in GC patients plasmas diagnosis as blood-based 
biomarker 

[110]

71 paired GC tissues, 17 gastric juice of GC 
and 16 normal mucosa or minimal gastritis

correlated with invasion, diagnostic potential [109]

ABHD11-AS1↑ 75 paired GC tissues qRT-PCR differentiation, Lauren histological classification diagnosis biomarker [121]
AC130710 (GACAT3)↑ 78 paired GC tissues qRT-PCR tumor size, TNM and distal metastasis prognosis biomarker [122]
SUMO1P3↑ 96 paired GC tissues qRT-PCR tumor size, differentiation, lymphatic metastasis, and invasion diagnosis biomarker [123]

PVT-1↑ 31 paired GC tissues qRT-PCR lymph node invasion and paclitaxel-resistant in SGC7901 prognosis biomarker [81]

Tumor suppressor LncRNAs Sample type and size Methods Clinical significance Potential Application Ref
FENDRR↓ 158 paired GC tissues qRT-PCR tumor invasion, TNM, lymphatic metastasis and poor prognosis prognosis biomarker [100]

GAS5↓ 89 paired GC tissues qRT-PCR tumor size, advanced TNM and prognosis prognosis biomarker and thera-
peutic target 

[104]

55 paired GC tissues
ncRuPAR↓ 138 paired GC tissues qRT-PCR tumor invasion depth, lymph node metastasis, distant metastasis, 

tumor size, and TNM stage
diagnosis biomarker [107]

uc001lsz↓ 77 paired GC tissues qRT-PCR TNM stage early diagnosis marker [20]
MEG3↓ 72 paired GC tissues qRT-PCR TNM stages, depth of invasion, tumor size and  poor prognosis prognostic biomarker [105]
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BM742401↓ 113 paired GC tissues qRT-PCR poor survival prognostic biomarker and thera-
peutic target

[106]

AC096655.1-002 (GACAT1)↓ 78 paired GC tissues qRT-PCR lymph node metastasis, distant metastasis, TNM, and differentia-
tion

diagnosis biomarker [124]

AA174084↓ 134 paired GC tissues, 127 gastric mucosal 
tissues, 335 plasma, and 130 gastric juice 

qRT-PCR Borrmann type, perineural invasion and lymphatic metastasis, 
dropped in post-operation

early diagnosis biomarker [111]

FER1L4↓ 61 paired GC tissues, 80 healthy control 
plasma and 83  paired pre- and postopera-

tive plasma

qRT-PCR tumor size, histologic grade, general classification, depth of 
invasion, lymphatic metastasis, distant metastasis , TNM stage , 
vessel or nerve invasion

prognosis biomarker [125]

HMlincRNA717 (GACAT2)↓ 107 paired GC tissues, 37 healthy gastric 
mucosa, 34 gastritis mucosa, and 28 gastric 

precancerous lesions

qRT-PCR cancer distal metastasis, venous invasion and nervous invasion 
-

early diagnosis biomarker [126]

AC138128.1↓ 94 paired GC tissues qRT-PCR - diagnosis biomarker [127]

LncRNAs SNP Sample type and size Methods Clinical significance Potential Application Ref
HOTAIR 515 GCA  and 654 healthy control blood PCR-RFLP, 

qRT-PCR
T allele of rs12826786 was risk for GCA and associated with 
advanced TNM 

Screening and prognosis bio-
marker

[88]

CASC8 940 GC tissues SNaP shot GG genotype of rs10505477 survived for a longer time prognosis biomarker [113]
↑: upregulated; ↓: downregulated; GC: gastric cancer; GCA: gastric cardia adenocarcinoma; PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism; qRT-PCR: quantitative real-time reverse transcription PCR; ISH: in 
situ hybridization.
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19-9, have limited sensitivity and specificity in 
routine screening for GC. Therefore, novel bio-
markers are urgently needed for GC. As lncRNAs 
play versatile roles in the regulation of gene 
expression via transcription, post-transcription 
and especially epigenetic modulations, aber-
rant lncRNA expression may therefore occur 
during carcinogenesis and disease progres-
sion, and dysregulated lncRNA levels may be 
better indicators of the intrinsic properties of 
cancer. Furthermore, lncRNAs have tissue-spe-
cific expression patterns and can be detected 
in body fluids. These advantages make lncRNAs 
promising biomarkers for diagnosis, prognosis 
and therapy in various cancers, including GC.

The diagnostic potential of lncRNAs in GC

The ideal biomarker should be easily and non-
invasively accessible. Test samples from body 
fluids, such as blood and gastric juice, are good 
choices. A previous study evaluated levels of 
the lncRNAs H19, HOTAIR and MALAT1 in the 
plasma of GC patients, and H19 was markedly 
stable and could be successfully amplified with 
qRT-PCR, suggesting the potential of evaluating 
circulating lncRNAs as biomarkers. The authors 
found that the H19 plasma levels were signifi-
cantly higher in 43 GC patients than in 34 
healthy controls [108]. Moreover, H19 levels 
were markedly lower in 16 one-month post-
operative patients than in the pre-operative 
plasma from those same 16 patients, indicat-
ing that the circulating lncRNAs might be 
released from primary GCs [108]. These find-
ings suggest that circulating lncRNAs, such as 
H19, could become new complementary tumor 
biomarkers for GC. 

The lncRNA linc00152 is another GC-related 
lncRNA that is significantly upregulated in GC 
tissues compared with adjacent normal tissues 
[109]. The linc00152 plasma levels in 79 GC 
patients were significantly higher than those in 
81 healthy controls. The receiver operating 
characteristic (ROC) curve assessing the diag-
nostic value of plasma linc00152 showed that 
the area under the ROC curve reached 0.657 (p 
< 0.001), with a sensitivity of 48.1% and a 
specificity of 85.2%. It is interesting to note that 
the sensitivity of linc00152 was better than 
that of the traditional markers CEA and CA19-9 
[110]. This study also indicated that the stable 
existence of lncRNAs in the blood might result 
from exosome protection, as there were also no 

differences in the linc00152 levels between 
the plasma and exosomes isolated from the 
same plasma [110]. These results suggest that 
plasma linc00152 has great potential for GC 
diagnosis. Recently, levels of the lncRNA 
AA174084 were assessed in 134 paired GC tis-
sues, 127 gastric mucosal tissues, 335 plas-
ma samples, and 130 gastric juice samples at 
various stages of GC [111]. It was found that 
AA174084 was significantly reduced in 95 of 
134 GC tissues (71%) compared with paired 
normal samples, and the reduced expression 
of AA174084 was negatively associated with 
Bormann type GC and perineural invasion 
[111]. The plasma AA174084 levels decreased 
significantly on day 15 after surgery compared 
with preoperative samples and were correlated 
with invasion and lymphatic metastasis [111]. 
Furthermore, AA174084 could be detected in 
gastric juice by qRT-PCR, and gastric juice from 
GC patients had significantly higher AA174084 
levels than those from the patients with normal 
mucosa or with minimal gastritis, gastric ulcers, 
and atrophic gastritis. The area under the ROC 
curve was up to 0.848 (p < .001), with a sensi-
tivity of 46% and a specificity of 93%, which 
were higher than those obtained using the tis-
sue level of AA174084 as the biomarker. These 
data demonstrated that the AA174084 gastric 
juice level may be a potential screening bio-
marker for the early diagnosis of GC [111].

Recently, Guo et al. performed a case-control 
study in northern China to evaluate the associ-
ation between haplotype-tagging SNPs (htS- 
NPs) of HOTAIR and the susceptibility to gastric 
cardia adenocarcinoma (GCA). PCR-RFLP was 
used to detect the htSNP genotype for HOTAIR 
(rs12826786 C > T, rs4759314 A > G, and 
rs10783618 C > T) in 515 GCA patients (blood 
from before surgery) and 654 healthy controls. 
They found that the T allele of rs12826786 
increased the susceptibility to GCA and was 
associated with smoking and the TNM stage. 
qRT-PCR results revealed that the rs12826786 
SNP had a genotype-specific effect on HOTAIR 
expression. This study indicated that the 
rs12826786 SNP of HOTAIR could be a useful 
candidate biomarker for high-risk GCA popula-
tions [88]. 

There are other dysregulated lncRNAs in GC tis-
sues that have the potential to be candidate 
diagnostic biomarkers, including GACAT1, 
ncRuPAR, HULC, and FER1L4, among others 



Long non-coding RNAs in gastric cancer

920	 Am J Cancer Res 2015;5(3):907-927

(see Table 2). Whether the altered expression 
of these lncRNAs can be validated in body flu-
ids remains to be elucidated.

The prognostic potential of lncRNAs in GC

Great advances have been made in lncRNA-
based prognosis biomarker research. For 
instance, the prostate-specific lncRNA PCA3 
has become the first FDA-approved lncRNA-
based cancer biomarker to predict the progno-
sis of prostate cancer [112]. In GC, there are 
many dysregulated lncRNAs that are closely 
associated with a poor prognosis, and these 
lncRNAs could become desirable candidates 
for monitoring high-risk populations and pre-
dicting GC outcomes. An effective prognosis 
prediction may help GC patients gain access to 
more appropriate treatments. 

The high cancer risk gene desert region 8q24 
has a genetic variant SNP rs10505477 located 
within the intron of the lncRNA CASC8 that may 
affect the folding structures of CASC8. Ma et al. 
found that GC patients with rs10505477 GG 
survived for a longer time compared with those 
carrying the GA and AA genotypes in 940 surgi-
cal GC specimens [113]. This risk effect was 
more significant among patients with a tumor 
size ≤ 5 cm, diffuse-type GC, lymph node 
metastasis, no distant metastasis and TNM 
stage III and IV. These findings suggest that 
SNP rs10505477 may be a potential prognos-
tic biomarker for GC [113].

MALAT1 and HOTAIR were expressed in 150 GC 
patients at higher levels than in corresponding 
adjacent normal mucosa and were markedly 
correlated with peritoneal metastasis in GC 
patients [85]. Additionally, HOTAIR overexpres-
sion was not only an independent prognostic 
indicator but also a risk factor for peritoneal 
dissemination [85]. Lee et al. reported that 
higher levels of HOTAIR were associated with 
lymphovascular invasion, lymph node metasta-
sis, advanced TNM stage, and inferior disease-
free survival in 50 GC samples [86]. Increased 
HOTAIR expression has been further confirmed 
to be positively correlated with an aggressive 
clinical significance in GC patients in many 
independent studies [60, 87, 114-116]. H19 is 
another extensively studied lncRNA with the 
potential to be a prognostic biomarker. 
Increased levels of H19 have been significantly 
correlated with lymph nodes metastasis, 
advanced TNM stage and poorer survival, and 
have been regarded as an independent predic-
tor of overall survival in GC patients [91, 117].

High levels of MRUL in GC tissues were nega-
tively associated with rates of growth inhibition 
in GC specimens treated with the chemothera-
py drugs adriamycin or vincristine in vitro [92]. 
Furthermore, upregulated MRUL indicated a 
poor prognosis for GC patients. Thus, MRUL is a 
potential target for reversing multidrug-resis-
tance in GC [92]. 

Variations in the lncRNAs GAPLINC, ANRIL, 
GHET1, HULC GAS5, MEG3, BM742401, and 
ncRuPAR have also been found to be signifi-
cantly correlated with an aggressive TNM 
stage, increased invasion depth, lymph node 
metastasis, distant metastasis, and poorer 
survival rate (Table 2).

In addition, certain lncRNAs that are specifical-
ly overexpressed in cancer tissues, such as 
H19, are promising therapeutic targets for 
decreasing the “off-target” effects of gene ther-
apy for cancers. Plasmids containing diphtheria 
toxin subunit A under the H19 promoter have 
been studied for curing colon, pancreatic, blad-
der and ovarian cancers via intratumoral injec-
tion [118], as the high H19 levels in cancer 
cells could induce subunit A expression to kill 
cancer cells while simultaneously protecting 
normal cells from this destruction. H19 is 
upregulated in GC, and the effect of the H19 
vector on GC therapy should be explored. 

Despite some progress, the clinical translation 
of lncRNAs in GC remains in its infancy. There 
are still many puzzles that must be solved via 
elaborate investigations. For example, cancer 
stem cells played important roles in cancer pro-
gression in our previous studies [119, 120], 
and it remains to be determined whether 
lncRNAs are involved in the maintenance of 
cancer stem cells in GC. In addition, it is unclear 
whether the circulating lncRNA alterations in 
the body fluids of GC patients account for GC 
development and if they are secreted from the 
GC cells or from other cell types. The stability of 
lncRNAs as biomarkers remains largely 
unknown but should be addressed to deter-
mine the general utility of lncRNAs in clinical 
practice. 

Conclusions

LncRNAs can regulate gene expression at the 
transcriptional, post-transcriptional, and epi-
genetic architectures and play important roles 
in carcinogenesis and aggressive progression. 
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Many dysregulated lncRNAs in GC have been 
significantly associated with increased tumor 
size, invasion and metastasis, and poor surviv-
al outcomes. Certain dysregulated lncRNAs are 
promising candidate molecular biomarkers in 
GC. Future studies are needed to identify addi-
tional cancer-specific lncRNAs, validate the util-
ity of lncRNA-based biomarkers for diagnosis 
and prognosis, and address the roles of 
lncRNAs in cancer biology, as well determine 
whether lncRNAs have the potential to serve as 
improved therapeutic targets.
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