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Abstract

Improving phenotypic stability of crops is pivotal for coping with the detrimental impacts of climate change. The goal 
of this study was to gain first insights into the genetic architecture of phenotypic stability in cereals. To this end, we 
determined grain yield, thousand kernel weight, test weight, falling number, and both protein and soluble pentosan 
content for two large bi-parental rye populations connected through one common parent and grown in multi-envi-
ronmental field trials involving more than 15 000 yield plots. Based on these extensive phenotypic data, we calcu-
lated parameters for static and dynamic phenotypic stability of the different traits and applied linkage mapping using 
whole-genome molecular marker profiles. While we observed an absence of large-effect quantitative trait loci (QTLs) 
underlying yield stability, large and stable QTLs were found for phenotypic stability of test weight, soluble pentosan 
content, and falling number. Applying genome-wide selection, which in contrast to marker-assisted selection also 
takes into account loci with small-effect sizes, considerably increased the accuracy of prediction of phenotypic sta-
bility for all traits by exploiting both genetic relatedness and linkage between single-nucleotide polymorphisms and 
QTLs. We conclude that breeding for crop phenotypic stability can be improved in related populations using genomic 
selection approaches established upon extensive phenotypic data.
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Introduction

The primary goal in plant breeding is to identify high-yield-
ing genotypes combining excellent quality with pronounced 
resistance to abiotic and biotic stresses. With stress levels 
increasing due to climate change (Schmidhuber and Tubiello, 
2007), enhanced phenotypic stability is becoming more 
important. Stability can be defined either as static or dynamic 
phenotypic stability (Becker and Léon, 1988). Static pheno-
typic stability refers to the ability of a genotype to realize a 
constant performance independent of the variation of envi-
ronmental conditions. Static phenotypic stability, however, 
for traits such as grain yield, is often associated with relatively 

low performance (Lin et al., 1986; Becker and Léon, 1988). 
In this case, dynamic phenotypic stability concepts describing 
the ability of a genotype to respond to improved agronomic 
conditions of an environment with increased performance 
are considered to be more relevant. Dynamic stability can be 
estimated by Shukla’s (1972) stability variance, or by Wricke’s 
(1962) ecovalence, which provide a measure of genotype sta-
bility based on estimates of genotype and environment inter-
action variance corresponding to an individual genotype.

Large-scale phenotyping is required to precisely determine 
yield stability, with estimates for the number of required 
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environments ranging from 10 (Becker, 1987) to 200 (Piepho, 
1998). As phenotyping is highly demanding on resources, 
genomics-assisted breeding is a promising tool for the 
improvement of phenotypic stability. Substantial progress 
was made to elucidate the genetic architecture of agronomic 
and quality traits by marker-assisted selection focusing on 
major quantitative trait loci (QTLs; Lande and Thompson, 
1990; Dekkers and Hospital, 2002; Collard and Mackill, 
2008). In addition, genomic selection approaches have been 
implemented to improve breeding for complex agronomic 
traits by also exploiting minor-effect QTLs as well as genetic 
relatedness (Zhong et al., 2009; Albrecht et al., 2011; Heffner 
et al., 2011; Rutkoski et al., 2012; Windhausen et al., 2012; 
Zhao et  al., 2012). Knowledge of the genetic architecture 
underlying phenotypic stability, however, is very limited, and 
so far there has been only one association-mapping study 
performed in barley (Kraakman et al., 2004). Moreover, the 
potential of whole-genome prediction approaches for pheno-
typic stability have not been investigated.

In Central Europe, rye is commonly improved by hybrid 
breeding based on a cytoplasmic male sterility system (Fischer 
et al., 2010) and is used for bread making, feed, and as a valu-
able resource for renewable energy (Geiger and Miedaner, 
2009). Important quality traits are falling number as well as 
pentosan and protein content, which determine the baking 
quality and feed value (Geiger and Miedaner, 1999). In addi-
tion, test weight is often considered an indirect criterion for 
starch content, which also influences milling and baking qual-
ity and ethanol yield. Rye possesses extraordinary resistance 
against frost stress (Li et al., 2011) and exhibits high perfor-
mance even in marginal environments (Geiger and Miedaner, 
2009). Therefore, it is considered a model species for elucidat-
ing abiotic stress resistance (Martis et al., 2013), and in line 
with this, rye can be considered a model species suitable for 
studying the genetic architecture of phenotypic stability.

For our study, we evaluated two segregating F3:4 rye test-
cross populations connected through one common parent, 
each comprising 220 lines, for grain yield, thousand kernel 
weight, test weight, falling number, and both protein and pen-
tosan content in up to 16 environments, including drought-
stress environments (Hübner et  al. 2013). Interestingly, we 
observed that static phenotypic stability was only marginally 
associated with low performance. Thus, static phenotypic sta-
bility is an interesting trait for breeding in rye. The extensive 
phenotypic information was combined in a linkage-mapping 
study with genome-wide molecular marker data with the aim 
of searching for large-effect QTLs underlying phenotypic sta-
bility. We observed an absence of major-effect QTLs for yield 
stability and its component thousand kernel weight stabil-
ity. Nevertheless, performance of static yield stability could 
be predicted with moderate to high accuracies by applying 
genome-wide selection approaches, pointing to a rather com-
plex genetic architecture. By contrast, large and stable QTLs 
were found for static phenotypic stability of the quality traits 
test weight, soluble pentosan content, and falling number. In 
contrast to marker-assisted selection, applying genome-wide 
prediction approaches again considerably increased accura-
cies of prediction of phenotypic stability for all quality traits.

Materials and methods

Plant material and field experiments
The plant material and field experiments were described in detail by 
Miedaner et al. (2012), Hübner et al. (2013), and Wang et al. (2014). 
Briefly, we used three elite winter rye (Secale cereale L.) inbred lines 
(Lo90-N, Lo115-N, and Lo117-N) as parents for this study. Two seg-
regating F3:4 populations, POP-A (Lo90-N × Lo115-N) and POP-B 
(Lo115-N × Lo117-N), were generated. From each population, we 
randomly selected 220 F3:4 progenies, which were used to pollinate a 
common cytoplasmic male sterile (CMS) single-cross tester.

The test-cross families were evaluated in two years (2010 and 
2011)  at five locations [Wohlde (WOH), Germany, N52.8°, E10.0°, 
80 m above sea level, loamy sand soil texture; Beckedorf (BEK), 
Germany, N52.5°, E10.3°, 80 m above sea level, loamy sand soil 
texture; Petkus (PET), Germany, N51.6°, E13.2°, 130 m above sea 
level, sandy soil texture; Hohenheim (HOH), N48.4°, E9.1°, 400 m 
above sea level, loamy soil texture; Walewice (WAL), Poland, N52.6°, 
E19.4°, 184 m above sea level, heavy loam soil texture] with differ-
ent water regimes (WOH-2010-i, WOH-2010-n, WOH-2011-m, 
BEK-2010-m, BEK-2011-i, BEK-2011-n, PET-2010-i, PET-2010-n, 
PET-2011-i, PET-2011-n, HOH-2010-m, HOH-2011-m, WAL-2010-i, 
WAL-2010-n, WAL-2011-i, and WAL-2011-n, where ‘i’ refers to irri-
gation in drought stress environments, ‘n’ denotes non-irrigation in 
drought stress environments, and ‘m’ refers to no drought stress envi-
ronments). The respective location × year × irrigation level combina-
tions were denoted as environments throughout the study. The two 
test-cross populations were evaluated in each environment using an 
incomplete 24 × 10 alpha design with two replications. Data for grain 
yield (dt ha–1), thousand kernel weight (g), test weight (g), falling num-
ber (s), protein content (%), and soluble pentosan content (%) were 
obtained as outlined in detail by Miedaner et al. (2012) and Wang 
et  al. (2014). Briefly, protein content and soluble pentosan content 
were determined by near-infrared reflectance spectroscopy (NIRS) 
recorded with a Bruker MPA FT-NIRS instrument (Bruker Optics, 
Ettlingen, Germany) in reflectance mode over a range from 850 to 
2500 nm. The samples were scanned twice in duplicate repacking 
using two different Petri dishes of 8.7 cm diameter and 1 cm height as 
sampling cups on a rotating device with on average 32 scans in 10 and 
2 spectra per sample. The NIRS calibrations were developed based 
on up to 330 samples of the two populations using reference values 
for protein content and soluble pentosan content determined as out-
lined in detail elsewhere (Jürgens et al., 2012). Prediction models were 
established with OPUS Software version 6.5 (Bruker Optic GmbH, 
Ettlingen, Germany) using a modified partial least-squares procedure 
with a validation and scatter correction (SNV) of the spectra. Spectra 
were tested as original and first derivatives. The robustness of the cali-
brations has been tested in an independent validation set of around 
100 samples. The final calibration models were applied on near-infra-
red reflectance spectra collected from the field trials to predict pheno-
typic values per field plot.Test weight (g) and falling number (s) were 
phenotyped according to internationally standardized (AACC 55-10 
and AACC 56-81B) methods, respectively.

Phenotypic data analysis
Best linear unbiased estimates (BLUEs) for test-cross progenies 
across environments were determined by the restricted maximum 
likelihood method using ASReml version 3.0 (Gilmour et al., 2009) 
based on a two-step approach. In step one, the following model was 
applied:

	 y R B eEnv n= + + + + G Rl µ Gα α αΒ � (1)

where yEnv represents BLUEs of single environments, 1n denotes 
a vector with length n (n is the number of genotypes multiplied by 
the number of replications), µ represents the overall mean, G refers 
to a design matrix of genotypes, αG is an N-vector of the genotype 
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effects with length N equal to the number of genotypes, R corre-
sponds to a design matrix for replications, αR makes reference to a 
vector of the replication effects, B stands for a design matrix of the 
blocks, αB refers to a vector of the block effects, and e is a residual 
term. Genotype effects were treated as fixed while the other fac-
tors included in model (1) were treated as random. BLUEs of test-
cross progenies within each environment were estimated in step one. 
BLUEs of test-cross progenies across different environments were 
estimated in step two as follows:

	 y G E F eEnvs k Envl= + + + + G Fµ α α α 	 (2)

where yEnvs refers to the BLUEs across all the environments, 1k is 
a vector with the length k equal to the number of genotypes multi-
plied by the number of environments, E denotes a design matrix of 
environments, αEnv represents a vector of environment effects, F is a 
design matrix of genotype × environment interactions, αF represents a 
vector of interaction effects, and e a residual term. We kept genotype 
effects fixed, and treated both environment and interaction effects as 
random. Cluster analysis of environments was performed based on 1 
minus the correlation coefficient of BLUEs of genotypes among all 
pairs of environments. Heritability was estimated on an entry-mean 
basis (h2) as outlined in detail elsewhere (Wang et al., 2014).

Estimation of phenotypic stability parameters
According to Roemer (1917), environmental variance (Var) of an 
individual genotype i is estimated as:

	
Vari =
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where yij refers to the BLUEs of genotype i in environment j of  
a set of NE environments and yi.  denotes the marginal means of 
BLUEs of genotype i in the NE environments. A smaller environ-
mental variance indicates a higher phenotypic stability according 
to the static phenotypic stability concept (Becker and Léon, 1988). 
According to the Eberhart-Russell model (Eberhart and Russell, 
1966), the regression coefficient (β), measuring the sensitivity of an 
individual genotype to the varying environments, was estimated as:
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with y.j  referring to the marginal mean of BLUEs of all geno-
types in the j-th environment and y.. . denoting the overall mean. 
Smaller regression coefficients indicate higher phenotypic stability 
according to the static phenotypic stability concept (Eberhart and 
Russell, 1966). Additionally, deviation variance (Dev) was estimated 
as a measure of dynamic stability as:
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A smaller deviation variance indicates a higher stability according 
to the dynamic phenotypic stability concept (Eberhart and Russell, 
1966). Spearman’s rank correlation coefficient was calculated 
between six traits of interest and dynamic and static phenotypic sta-
bility parameters for each population. We used the approach based 
on the Spearman’s rank correlation, because it is less sensitive to 
outliers as compared to the method based on Pearson’s moment cor-
relations. Moreover, we applied the resampling strategy proposed 
by Mühleisen et al. (2014) and estimated the heritability of pheno-
typic stability parameters by additionally projecting the expected 
heritability for a situation of phenotypic evaluation in up to 30 
environments.

Marker-assisted selection for phenotypic stability
In total 440 F3:4 lines from Pop-A and Pop-B were genotyped with up 
to 81 simple sequence repeats (SSRs), 732 single-nucleotide polymor-
phisms (SNPs), and 900 diversity array technology (DArT) markers. 
Details of the marker data used in our study have been outlined else-
where (Miedaner et  al., 2012; Wang et  al., 2014) (Supplementary 
Table S1) and were used in combination with the environmental 
variance (Var), regression coefficient (β), and logarithmic transfor-
mations (base-e logs) of deviation variance (Devln) in classical bi-
parental linkage mapping. The conditional probabilities of QTL 
genotypes have been estimated with the software package PlabQTL 
(Utz and Melchinger, 1996). Marker-assisted selection was carried 
out using PLABQTL (Utz and Melchinger, 1996) adopting compos-
ite interval mapping (CIM) based on the regression approach (Haley 
and Knott, 1992) in combination with the use of cofactors (Jansen 
and Stam, 1994; Zeng, 1994). Cross-validation was performed using 
PLABQTL (Utz and Melchinger, 1996) and accuracies of prediction 
were calculated as:

	
r

R
h

g
CV=
2

2 	 (6)

where R2
CV is the percentage of phenotypic variance of the validation 

set explained by the identified QTL and h2 denotes the heritability 
of each phenotypic stability parameter. Moreover, we recorded the 
percentage of cross-validation runs in which QTLs were detected.

Genomic selection
We used ridge regression best linear unbiased prediction (RR-BLUP) 
(Whittaker et  al., 2000) implemented as outlined in detail in our 
companion study (Wang et al., 2014) to perform genomic selection. 
The RR-BLUP model has the form:

	 y Xg e= + +1nµ 	 (7)

where y is the vector of the estimated phenotypic stability param-
eters, 1n denotes the vector of 1s, μ refers to the overall mean, g 
denotes the vector of marker effects, X stands for the correspond-
ing design matrix (Supplementary Tables S2 and S3) and e corre-
sponds to the residual term of the model. The relevant parameters 
for RR-BLUP were estimated based on the mixed model equations 
outlined by Wang et al. (2014).

Cross-validation
We applied 5-fold cross-validation, where data sets were split into an 
estimation set for estimating marker effects, and a test set, where the 
Pearson’s correlation coefficients (rMP) between an observed pheno-
typic stability parameter and its predicted values based on the deter-
mined marker effects were calculated. Accuracy of prediction was 
estimated by standardizing with the square root of the heritability, 
rg = rMP / h (Lande and Thompson, 1990; Dekkers, 2007; Albrecht 
et al., 2011). Sampling of estimation and test sets was repeated 5000 
times in each cross-validation scheme.

Results

Heritabilities and phenotypic stability parameters vary 
for six agronomic traits

The quality traits protein content and soluble pentosan con-
tent were determined using NIRS. For both traits, stable and 
accurate prediction models have been developed, with coeffi-
cients of determination in the validation set of 0.98 for protein 

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv145/-/DC1
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content and 0.74 for soluble pentosan content (Table  1). 
Consequently, indirect measurement of the traits should not 
hamper further QTL and genomic selection analyses.

We evaluated 440 F3:4 test-cross progenies of two segregat-
ing rye populations in up to 16 diverse environments in Central 
Europe. The diversity of growing conditions is reflected in val-
ues of the variance component of environments σE

2 that are 
consistently significantly (P < 0.01) larger than zero (Table 2). 
The diversity of testing conditions is also portrayed in the com-
plex grouping of testing environments based on the best linear 
unbiased estimates of the progenies for grain yield (Fig. 1) as 
well as for the examined quality traits (Supplementary Figure 
S1). The clustering of locations was not stable across years 
and also differed between both populations, clearly indicating 
that subgrouping of locations in homogeneous sets is impossi-
ble. Consequently, the large-scale phenotyping in diverse envi-
ronments conducted in our study provides a unique data base 
in order to study the genetics of phenotypic stability across 
location, year, and water availability.

For the six traits and both populations, we also consistently 
observed genotypic variance components σG

2 significantly 
(P < 0.01) larger than zero (Table 2). The variance components 
of genotype × environment interactions σG×E

2 for POP-A and 
POP-B were also significantly (P < 0.01) larger than zero for 

all traits and exceeded twice the genotypic variances in the 
case of grain yield. The broad variation observed for best 
linear unbiased estimates of the 440 F3:4 test-cross progenies 
(Supplementary Table S4) resulted in high heritabilities on an 
entry-mean basis (h2) for the six traits under consideration.

In contrast, heritabilities estimated for the three phenotypic 
stability parameters, Var and β for static and Dev for dynamic 
stability, were substantially smaller (Fig.  2). Moreover, we 
observed a clear tendency for heritabilities estimated for the two 
static phenotypic stability parameters, Var and β, to be larger 
than heritabilities found for the dynamic phenotypic stability 
parameter Dev. The observed discrepancy between dynamic 
and static phenotypic stability measures suggests that the latter 
class of parameters is particularly interesting for studies eluci-
dating their underlying genetic architecture in detail.

Increased phenotypic stability is correlated with 
impaired grain yield and quality only in a minority 
of cases

A rye ideotype would combine excellent trait performance 
with high phenotypic stability. As these two features have 
previously been discussed as mutually exclusive, we inspected 
the associations between trait performance and the three 

Table 1.  Accuracy of prediction for developed NIRS calibrations of protein content and soluble pentosan content

Model Calibration Validation

NC RC RC
2 SE NV Bias RV RV

2 SE SD

PC (%) 330 0.99 0.98 0.23 108 0.01 0.99 0.98 0.31 2.07
SPC (%) 321 0.91 0.82 0.18 107 –0.02 0.86 0.74 0.22 0.43

NC and NV denote sample sizes for calibration and validation, respectively; RC and RV refer to the correlation coefficients of calibration and 
validation, respectively; RC

2  and RV
2 . represent coefficient of determination of calibration and validation, respectively; SE is standard error of 

calibration and validation, respectively; SD denotes the standard deviation within the validation set; PC, protein content; SPC, soluble pentosan 
content.

Table 2.  Estimates of variance components and heritability on an entry-mean basis (h2) for grain yield, thousand kernel weight, test 
weight, falling number, protein content, and soluble pentosan content of POP-A and POP-B

Trait Mean Range σσ E
2 σσ G

2 σσ G E
2

× σσ Eff.Error
2 h2

POP-A
GY 72.8 54.5–81.3 278.72** 3.34** 8.91** 5.07 0.81
TKW 33.7 30.4–36.3 38.26** 1.11** 1.02** 0.33 0.93
TW 69.4 67.1–71.5 8.69** 0.52** 0.37** 0.86 0.95
FN 169.1 146.3–190.5 5948.46** 51.8** 172.04** 193.85 0.74
PC 9.9 9.2–10.6 0.68** 0.04** 0.14** 0.07 0.68
SPC 2.3 2.2–2.6 0.12** 0.002** 0.01** 0.01 0.65
POP-B
GY 68.5 53.8–88.1 263.37** 4.13** 9.10** 4.81 0.84
TKW 32.6 29.4–36.5 37.72** 1.00** 0.79** 0.23 0.94
TW 70.3 66.6–72.6 11.05** 0.80** 0.49** 1.19 0.96
FN 179.8 155.7–202.8 4097.86** 48.41** 82.11** 192.45 0.83
PC 10.2 9.4–11.1 0.79** 0.07** 0.13** 0.05 0.83
SPC 2.3 2.1–2.5 0.14** 0.004** 0.01** 0.01 0.76

GY, grain yield (dt ha–1); TKW, thousand kernel weight (g); TW, test weight (g); FN, falling number (s); PC, protein content (%); SPC, soluble 
pentosan content (%); σG

2 refers to the genotypic variance; σG×E
2 represents the interaction variance between genotype and environment; σEff

2, 
error denotes the variance of effective error; **, significantly different from zero with P < 0.01.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv145/-/DC1
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phenotypic stability parameters (Table  3). For 25% of the 
associations between trait performance and phenotypic sta-
bility, we detected significant (P < 0.05) but low correlation 
coefficients in the undesired direction. In contrast, for 19% of 
the observations we found significant (P < 0.05) correlations 
in the desired direction, while for 56% of the cases correlation 
coefficients were not significantly (P > 0.05) different from 
zero. Consequently, breeding rye hybrids combining excellent 
trait performance with high phenotypic stability is impaired 
by contrasting pleiotropic effects or linkage among favour-
able alleles in repulsion phase only in the minority of cases.

Linkage mapping revealed a low number of stable 
QTLs for phenotypic stability

We performed linkage mapping in combination with 5-fold 
cross validations and observed very low accuracies of 

prediction of dynamic phenotypic stability Dev with a maxi-
mum value amounting to 0.13 for thousand kernel weight 
(Table 4). In contrast, accuracies of prediction for static phe-
notypic stability parameters Var and β with marker-assisted 
selection were for most traits higher compared to accuracies 
of prediction for Dev. A  closer look at the cross-validated 
results revealed stable marker–trait associations, defined as 
QTLs detected in >50% of the reference populations for the 
quality traits test weight, falling number, and soluble pen-
tosan content alone. Interestingly, the QTL identified for 
static phenotypic stability for falling number on chromosome 
6 was detected in both populations. The other stable QTLs 
were identified exclusively in POP-B even under a reduced 
significant threshold of a LOD value of 2.5, except for the 
soluble pentosan content QTL on chromosome 7 for the 
parameter β, which was also detected under a reduced LOD 
threshold in POP-A.
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Fig. 1.  Dendrogram of cluster analysis including 15 environments (location × year × water availability) evaluated for grain yield for POP-A and POP-B. The cluster 
analysis is based on one minus the correlation coefficients among best linear unbiased estimates of single environments (for nomenclature of the environments 
see Material and methods). The asterisk denotes environments with severe drought stress leading to a reduction in average grain yield of more than 15%.
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Fig. 2.  Estimates of predicted heritability of the stability parameters β, Var, and Dev for grain yield (GY, dt ha–1), thousand kernel weight (TKW, g), test 
weight (TW, g), falling number (FN, s), protein content (PC, %), and soluble pentosan content (SPC, %) for POP-A and POP-B.
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Accuracy of prediction of phenotypic stability with 
genomic selection is higher than with marker-assisted 
selection

Applying genomic selection instead of  marker-assisted selec-
tion led to considerably increased accuracies of  prediction 
of  phenotypic stability for all traits under consideration 
(Tablse 4 and 5). We found higher accuracies of  prediction 
for POP-B as compared to POP-A for all phenotypic stabil-
ity parameters and traits, except for the deviation variance 
Dev of  falling number and protein content (Table 5). This 
discrepancy in accuracies of  prediction between both popu-
lations can be explained by a narrower genetic base of  the 
cross between the lines Lo90-N × Lo115-N (POP-A) with an 
average degree of  polymorphisms of  45% than of  the cross 
Lo115-N × Lo117-N (POP-B) with an average degree of  pol-
ymorphisms of  67%. In addition, we obtained consistently 
higher accuracies of  prediction for static than for dynamic 
stability parameters for all traits except for protein content.

Discussion

Only a very limited number of studies have so far exam-
ined the genetic architecture of phenotypic stability in 
plants (Kraakman et  al., 2004), although it is considered 
a central component for resilient, environmentally sound, 
and resource-efficient crop production systems (Finlay and 
Wilkinson, 1963; Francis and Kannenberg, 1978; Becker and 
Léon, 1988; Malosetti et al., 2004). Rye is a very robust crop 
(Geiger and Miedaner, 1999) and, hence, an interesting model 
species for studying the genetics of phenotypic stability. We 
used genomic and extensive phenotypic data collected in up 
to 15 000 yield plots coming from 16 diverse environments 
(Fig.  1 and Supplementary Figure S1) with the main goal 
being to gain initial insights into the genotype–phenotype 
map of phenotypic stability of several important agronomic 
and quality traits in rye.

Following previous suggestions (Daetwyler et  al., 2008; 
Lian et  al., 2014), we focused on the ability to predict the 

Table 4.  Cross-validated standardized accuracy of prediction for marker-assisted selection of three phenotypic stability parameters of 
six traits

Traits rgβ QTLβ Chr. / Pos. (R2) rgVar QTLVar Chr. / cM (R2) rgDevln QTLln_Dev Chr. / cM (R2)

POP-A
GY 0.19 0 – 0.25 0 – 0.03 0 –
TKW 0.22 0 – 0.19 0 – 0.00 0 –
TW 0.13 0 – 0.26 0 – 0.00 0 –
FN 0.51 1 Chr. 6 / 24 cM (0.21) 0.58 1 Chr. 6 / 28 cM (0.16) 0.00 0 –
PC 0.05 0 – 0.04 0 – 0.00 0 –
SPC 0.03 0 – 0.00 0 – 0.00 0 –
POP-B
GY 0.37 0 – 0.59 0 – 0.00 0 –
TKW 0.49 0 – 0.48 0 – 0.13 0 –
TW 0.57 1 Chr. 1 / 34 cM (0.12) 0.08 0 – 0.07 0 –
FN 0.41 1 Chr. 6 / 40 cM (0.16) 0.50 1 Chr. 6 / 40 cM (0.17) 0.00 0 –
PC 0.02 0 – 0.00 0 – 0.04 0 –
SPC 0.26 1 Chr. 7 / 90 cM (0.09) 0.36 1 Chr. 7 / 90 cM (0.09) 0.04 0 –

rg, cross-validated standardized accuracies of prediction. Cross-validation was based on data from POP-A and POP-B tested across 15 
environments for grain yield (GY) and thousand kernel weight (TKW), 16 environments for test weight (TW), 11 environments for falling number 
(FN), and 10 environments for protein content (PC) and soluble pentosan content (SPC). Devln, natural logarithmic transformation of deviation 
variance; QTL, number of stable QTLs detected; Chr., chromosome; Pos., chromosomal position of the QTL detected; R2, percentage of 
phenotypic variance explained by the detected QTL.

Table 3.  Estimates of correlation coefficients between different phenotypic stability parameters and best linear unbiased estimates for 
grain yield, thousand kernel weight, test weight, falling number, protein content, and soluble pentosan content POP-A and POP-B

Stability parameter POP-A POP-B

Number of environments Number of environments

15 16 11 10 15 16 11 10

GY TKW TW FN PC SPC GY TKW TW FN PC SPC

β 0.00 0.25** –0.19* 0.08 0.26** 0.01 –0.05 0.13* –0.14* 0.35** 0.02 0.25**

Var 0.02 0.25** –0.24** 0.12 0.18** 0.03 –0.08 0.14* –0.15* 0.35** 0.02 0.26**
Dev 0.11 0.00 –0.08 0.12 –0.09 0.06 –0.13* 0.17** –0.02 –0.02 –0.02 0.11

GY, grain yield (dt ha–1); TKW, thousand kernel weight (g); TW, test weight (g); FN, falling number (s); PC, protein content (%); SPC, soluble 
pentosan content (%); * and **, significant at the 0.05 and 0.01 probability levels, respectively.
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performance of individuals within single bi-parental popula-
tions. This approach allows a reduction in confounding effects 
associated with the genetic variance among bi-parental popu-
lations (Würschum et al., 2012). It is important to note that 
both marker-assisted and genomic selection exploit knowl-
edge of the genetic architecture as well as being influenced by 
the relatedness between the individuals of the estimation and 
test sets (Habier et al., 2007; Gowda et al., 2014; Jiang et al., 
2014; Wang et al., 2014). This has to be kept in mind while 
interpreting the results of the prediction accuracies, because 
individuals within bi-parental populations are full sibs.

The genetic architecture of yield stability is complex 
with an absence of large-effect QTLs

The substantially lower estimates of  heritabilities for grain 
yield stability as compared to the heritabilities for yield itself  
(Table  2, Fig.  2) clearly underline that it is more resource 
demanding to precisely measure yield stability in rye. Our 
results are in accordance with recent experimental findings 
on yield stability in barley (Mühleisen et  al., 2014). As a 
potential way to reduce the complexity and thus the required 
scale of  field trials, grain yield can be deconstructed in its 
components such as tiller number per area, kernels per spike, 
and thousand kernel weight, which can also be determined 
precisely using high-throughput phenotyping platforms 
(Busemeyer et  al., 2013a, b). The slightly higher heritabil-
ity for thousand kernel weight stability as compared to grain 
yield stability (Fig. 2) indicates that focusing on yield stabil-
ity components is a potential alternative for indirect selec-
tion, which warrants further research. The magnitude of 
heritability estimates, however, was still only moderate point-
ing to the challenge of  efficient phenotypic selection, which 
makes these traits an interesting target for marker-assisted or 
genomic selection (Lande and Thompson, 1990).

Static yield stability is negatively associated with grain yield 
in many crops and, consequently, varieties with pronounced 
yield stability often show only low yield performance (Francis 
and Kannenberg, 1978; Pham and Kang, 1988; Duarte and 
Zimmerman, 1995; Sneller et al., 1997; Tollenaar and Lee, 
2002; Mekbib, 2003; Mühleisen et  al., 2014). The static 
yield stability concept is therefore considered as being not 

economically relevant and the dynamic yield stability con-
cept is promoted (Becker and Léon, 1988; Mühleisen et al., 
2014). Interestingly, grain yield was not at all associated with 
static yield stability in our study (Table  3). The observed 
discrepancy of  our results with findings in other crops may 
be explained by an outstanding sturdiness of  rye (Martis 
et  al., 2013) which is further boosted by the use of  three-
way hybrids exhibiting high intrinsic levels of  yield stability 
(Becker et al., 1982; Mühleisen et al., 2014). Consequently, 
our findings indicate that static yield stability, along with 
dynamic yield stability, is an economically relevant param-
eter in rye breeding.

The absence of stable QTLs for yield stability and its com-
ponent thousand kernel weight stability in our study (Table 4), 
and the low proportion of phenotypic variation explained by 
the QTLs in the cross-validation study, which also tends to be 
overestimated (Schüürmann et al., 2008), suggests a complex 
genetic architecture. This observation is in line with previous 
results observed for the genetic architecture underlying grain 
yield in rye, pointing to the relevance of the infinitesimal 
model (Miedaner et al., 2012). Genomic selection is expected 
to be a powerful tool for predicting the performance for such 
complex traits in rye (Wang et al., 2014). In accordance with 
this anticipation, we observed moderate to high cross-val-
idated standardized accuracies of prediction of static yield 
stability (Table  5). This shows that if  highly precise static 
yield stability estimates are available, robust genomic predic-
tion models can be developed within bi-parental populations. 
It is important to note, however, that even with a doubling 
of the phenotyping resources, predicted heritabilities for yield 
stability parameters would not exceed 0.6 (Supplementary 
Figure S2). Thus, establishment of a diverse training popu-
lation for genomic selection, which is well characterized for 
yield stability, is very challenging and requires huge invest-
ments in multi-environmental field trials.

Genetic architecture of phenotypic stability for quality 
traits in rye

For rye, the ideotype with respect to quality traits depends 
mainly on the intended end use (Miedaner et  al., 2012). 
For baking quality, high pentosan and low protein content 

Table 5.  Cross-validated standardized accuracies of prediction for genomic selection of three phenotypic stability parameters of six 
traits

Trait POP-A POP-B

rgβ rgVar rgDevln rgβ rgVar rgDevln

GY 0.50 0.62 0.01 0.91 1.13 0.07
TKW 0.59 0.69 0.31 0.81 0.88 0.32
TW 0.68 0.17 0.08 0.88 0.43 0.17
FN 0.75 0.82 0.04 0.52 0.62 –0.27
PC –0.19 0.02 0.26 0.09 0.19 –0.02
SPC 0.54 0.63 0.00 0.66 0.76 0.08

rg, cross-validated standardized accuracies of prediction. Cross-validation was based on data from POP-A and POP-B tested across 15 
environments for grain yield (GY) and thousand kernel weight (TKW), 16 environments for test weight (TW), 11 environments for falling number 
(FN), and 10 environments for protein content (PC) and soluble pentosan content (SPC). Devln, natural logarithmic transformation of deviation 
variance.
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should be combined with falling numbers passing 120 s and 
ideally ranging between 120 to 180 s (Weipert et al., 1995; 
Geiger and Miedaner, 1999; Münzing, 2007; Kučerová, 
2009). Test weight should be maximized as an indirect cri-
terion for high starch content (Souza et  al., 2002; Geiger 
and Miedaner, 2009). In contrast, for feeding purposes 
pentosan content should be minimized and protein content 
maximized (Miedaner et al., 2012). Consequently, static as 
well as dynamic phenotypic stabilities of  quality traits are 
of  high economic interest. We could not find any QTLs for 
phenotypic stability of  protein content in both rye popula-
tions. No QTL was found for phenotypic stability of  soluble 
pentosan content in population A (Table 4), which is in the 
agreement with QTL results for soluble pentosan content 
obtained by Miedaner et al. (2012). The lack of  QTLs can-
not be explained by limitations by using an indirect method 
to determine quality traits, because the developed calibra-
tion models were highly accurate (Table 1). Furthermore, we 
observed low and sometimes even negative accuracies of  pre-
diction when applying genomic selection strategies (Table 5). 
Thus, breeding for phenotypic stability of  protein content 
remains challenging even if  the use of  advanced genomic 
tools is considered.

Dynamic phenotypic stability for test weight, falling number 
and soluble pentosan content is characterized by low heritabil-
ity estimates, with an average value of 0.1 (Fig. 2). Taking this 
heritability and additionally the population size of 220 individ-
uals into account, the power to detect a QTL explaining 10% 
of the genotypic variation even under a relaxed significance 
threshold will not exceed 0.2 (Charcosset and Gallais, 1996). 
Thus, the experimental setup empowers QTL detection under-
lying dynamic phenotypic stability only for QTLs exhibiting 
very large effects. In contrast, heritability estimates for the static 
phenotypic stability of test weight, falling number, and soluble 
pentosan content averaged up to 0.42 for the regression coeffi-
cient and 0.34 for environmental variance (Fig. 2). Considering 
these heritabilities and the population size, the expected power 
to detect a QTL explaining 10% of the genotypic variation is 
above 0.6 for β and above 0.5 for Var (Charcosset and Gallais, 
1996). In accordance with the expected high power for detect-
ing major QTLs with our experimental settings, we observed 
robust QTLs for static phenotypic stability of test weight, fall-
ing number, and soluble pentosan content, which were detected 
in more than 50% of the cross-validation runs (Table 4). The 
reliability of the QTL for static phenotypic stability of falling 
number was also reinforced by the fact that it has been detected 
in both populations. Thus, this QTL is an interesting candidate 
for further fine mapping.

The static stability for falling number in POP-B was signifi-
cantly correlated with falling number values in an undesired 
direction (Table 3). In line with these findings, a QTL for fall-
ing number had been previously detected on chromosome 6 
(Miedaner et al., 2012) close to the region where we observed 
the QTL underlying static stability for falling number. A more 
detailed inspection of the genomic region revealed, however, 
that the marker proximal to the QTL for static stability of 
falling number was not significantly associated with falling 
number as such (P values of 0.88 and 0.64 for β in POP-A 

and POP-B, respectively; P values of 0.45 and 0.64 for Var 
in POP-A and POP-B, separately). Consequently, marker-
assisted selection for static stability of falling number based 
on the QTL located on chromosome 6 does not impair the 
selection of varieties with high falling number.

Beyond the prospect of marker-assisted selection within 
these two connected bi-parental populations, genomic selec-
tion holds even greater potential for improving the static phe-
notypic stability of test weight, falling number, and soluble 
pentosan content (Table 5). Integrating information on stable 
QTLs in the genomic selection approaches opens up options 
for further improving the accuracy of prediction. This has 
been shown recently for genomics-assisted improvement of 
plant height and heading time in wheat (Zhao et al., 2014) 
and also represents an interesting method for improving the 
phenotypic stability of quality traits in rye.

Conclusion

Phenotypic stability of varieties is pivotal for combating 
climate change-related challenges. Our findings reveal that 
large-scale multi-environmental phenotyping is needed to 
efficiently select for enhanced phenotypic stability. Genome-
assisted breeding approaches offer the potential for build-
ing prediction models upon such extensive phenotypic data, 
facilitating an economic improvement of phenotypic stability 
in crops.
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Supplementary Table S3. Marker data of 220 F3:4 test-cross 
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used for genomic selection.

Supplementary Table S4. BLUEs for test-cross progenies 
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(TKW), 16 environments for test weight (TW), 11 environ-
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tein content (PC) and soluble pentosan content (SPC) for 
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Supplementary Figure S2. Predicted heritability of the 
three stability parameters Dev, β, and Var for the quantitative 
traits grain yield (GY) and thousand kernel weight (TKW), 
and for the quality traits test weight (TW), falling number 
(FN), protein content (PC), and soluble pentosan content 
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POP-A and POP-B.
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