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Abstract

Significance: Diabetes is an important risk factor for the development of heart failure (HF). Given the increasing
prevalence of diabetes in the population, strategies are needed to reduce the burden of HF in these patients. Recent
Advances: Diabetes is associated with several pathologic findings in the heart including dysregulated metabolism,
lipid accumulation, oxidative stress, and inflammation. Emerging evidence suggests that mitochondrial dys-
function may be a central mediator of these pathologic responses. The development of therapeutic approaches
targeting mitochondrial biology holds promise for the management of HF in diabetic patients. Critical Issues:
Despite significant data implicating mitochondrial pathology in diabetic cardiomyopathy, the optimal pharma-
cologic approach to improve mitochondrial function remains undefined. Future Directions: Detailed mechanistic
studies coupled with more robust clinical phenotyping will be necessary to develop novel approaches to improve
cardiac function in diabetes. Moreover, understanding the interplay between diabetes and other cardiac stressors
(hypertension, ischemia, and valvular disease) will be of the utmost importance for clinical translation of scientific
discoveries made in this field. Antioxid. Redox Signal. 22, 1515–1526.

Introduction

The prevalence of diabetes continues to increase in the
Western world. Cardiovascular disease remains the

leading cause of morbidity and mortality in patients with this
metabolic condition. In addition to its effects in promoting
atherosclerosis, there is evidence that diabetes can directly
affect the myocardium, a condition frequently referred to as
‘‘diabetic cardiomyopathy’’ (diabetic CM) (86). Despite the
clear association between heart failure (HF) and diabetes,
specific diagnostic criteria for diabetic CM do not exist.

The most common clinical features associated with dia-
betic CM are left ventricular hypertrophy (LVH) and dia-
stolic dysfunction; however, these findings are commonly
seen in many forms of HF (22, 24, 25, 40, 83). Although early
diastolic dysfunction is reversible with improvements in
systemic metabolism, continued metabolic stress on the heart
can lead to symptomatic HF, most commonly HF with pre-
served ejection fraction (HFpEF). This is particularly true in
patients with other associated conditions such as hyperten-
sion (HTN), ischemic heart disease, or aortic stenosis where

the presence of diabetes accentuates the cardiac hypertrophic
response and worsens LV function (3, 10, 41, 44, 60). Dia-
betes is also extremely common in patients who have HF with
reduced EF (HFrEF), with a prevalence approaching 40% in
many HF registries and clinical trials. It is unclear whether
the development of systolic dysfunction can occur solely as a
consequence of diabetes or whether additional cardiac insults
are necessary (Fig. 1). Irrespective of this, the presence of
diabetes portends a worse prognosis in those with HFrEF
(37). Currently, there are limited data regarding the optimal
treatment strategy to prevent diabetic cardiac disease or to
manage diabetes in patients with established systolic or dia-
stolic cardiac dysfunction. Of interest, intensive blood glu-
cose control does not reduce the incidence of HF in diabetic
patients (28, 77).

It remains controversial whether diabetes is sufficient to
produce HF or rather acts to sensitize the myocardium to
other insults (i.e., HTN, ischemia, valve disease). This issue
notwithstanding, there is clear evidence that diabetes impacts
cardiac metabolism and mitochondrial function. Moreover,
many of the pathologic hallmarks of diabetic CM, including
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lipid accumulation, oxidative stress, inflammation, cell
death, and impaired energetics, are associated with abnormal
mitochondria. In this article, the current evidence implicating
mitochondrial dysfunction in diabetic CM will be reviewed
with an emphasis on potential approaches to modulate mi-
tochondrial biology for therapeutic benefit.

Cardiac Mitochondria in Diabetes

When considering the impact of diabetes on cardiac mi-
tochondrial function, it is useful to distinguish early adaptive
alternations from the maladaptive responses that define the
later stages of the disease. Under normal circumstances, the
heart is a metabolic omnivore and is capable of using diverse
substrates to supply its energetic needs, including glucose,
fatty acids, ketone bodies, and lactate. In nondiabetic con-
ditions, the heart generates *70% of its ATP from the oxi-
dation of fatty acids (FA) with most of the remainder coming
from glucose metabolism. In contrast, diabetes is a state of
nutrient excess in which the levels of circulating glucose and
FAs are increased (19, 53). A consequence of excessive FA
delivery and the resultant insulin resistance is a shift in car-
diac metabolism further toward the use of FAs. In part, this
metabolic shift is orchestrated by increased expression of the
nuclear receptor transcription factor PPARa and its coacti-
vators PGC-1a/b (30, 36). PPARa-regulated genes include
those involved in FA uptake (CD36, FATP1), b-oxidation
(MCAD, LCAD, VLCAD), and triglyceride (TAG) synthesis
(DGAT) and, therefore, this metabolic program initially
helps buffer the excess lipids. In addition, animal models
have shown that in the diabetic heart, PGC-1a and b activate
a mitochondrial biogenic program that expands the cardiac
mitochondrial pool (30, 69). Similar data exist in human
subjects where it has been shown using PET metabolic
imaging that diabetics have increased rates of fatty acid ox-
idation (FAO) and myocardial oxygen consumption com-
pared with nondiabetic controls (45, 78).

Although the upregulation of lipid metabolic pathways in
the setting of nutrient excess may initially be adaptive, sus-
tained activation of this metabolic program can be detri-
mental. Consistent with this notion, mice engineered to
overexpress PPARa in cardiac myocytes develop contractile

dysfunction over time that is exacerbated by a high-fat diet
(36). There are several potential explanations as to why
sustained activation of lipid metabolic pathways in cardiac
myocytes can lead to a decline in cardiac function, and these
will be discussed in the ensuing sections.

To understand the mechanisms by which increased lipid
flux can negatively impact cardiomyocyte function, it is first
necessary to review the basics of FA metabolism. On entry
into a cardiomyocyte, FAs are esterified by acetyl-CoA
synthetase enzymes to generate FA-CoA molecules. The FA-
CoAs can be converted to TAG for storage in neutral lipid
droplets (LDs), used for de novo phospholipid or sphingolipid
biosynthesis, or transported to the mitochondria for oxida-
tion. The FA-CoAs that are delivered to the mitochondria are
converted to acylcarnitines by carnitine palmitolyl transfer-
ase 1 (CPT1), a process that facilitates entry of the FAs into
the mitochondrial matrix. The FA-carnitines are subse-
quently converted back to FA-CoAs by CPT2 present on the
inner mitochondrial membrane. These intramitochondrial
FA-CoAs undergo b-oxidation, generating acetyl-CoA for
entry into the tricarboxcylic acid (TCA) cycle.

Along with chronic increases in the delivery of FA sub-
strates to the mitochondria for b-oxidation, several patho-
logic events can occur. For one, excess flux through the
electron transport chain (ETC) can increase mitochondrial
membrane potential (MMP), especially when b-oxidation
outpaces the energetic needs of the cell and ADP levels are
reduced. Increased MMP along with accumulation of NADH
and TCA intermediates can have a negative impact on TCA
cycle flux (55). There is also evidence that over time TCA
cycles intermediates can also be depleted in diabetes (51). In
either situation, the process of b-oxidation can exceed the
capacity of the downstream oxidative pathways, thereby
uncoupling FAO from mitochondrial oxidative phosphory-
lation (OX-PHOS). A consequence of this imbalance is the
accumulation of FAO intermediates, including FA-CoAs and
FA-carnitines (51, 72). Acetyl-CoA levels also increase,
which inhibits the pyruvate dehydrogenase complex and
limits oxidative glucose metabolism (8). In addition, redox
metabolites such as NADH can accumulate, leading to re-
ductive stress (47). The backlog of these metabolites can be
toxic to the cell and may contribute to cardiomyocyte death
and dysfunction. Consistent with the concept of imbalance
between b-oxidation and mitochondrial respiration, FAO
intermediates, such as acylcarnitines, are elevated in animal
models and humans with diabetes (11, 73, 91).

As the duration of diabetes increases, mitochondrial oxi-
dative capacity begins to decline (15). The resultant imbal-
ance between lipid uptake and oxidation further worsens the
accumulation of FA-CoAs in the cell. The backlogged FA-
CoA molecules are diverted toward nonoxidative fates in the
cell such as diacylglycerol (DAG) and TAG synthesis and the
production of sphingolipids such as ceramides. In line with
this pathology, intracellular accumulation of LDs and cer-
amides are hallmarks of the diabetic heart (76, 96). Current
evidence indicates that the storage of FAs in the form of TAG
is cardioprotective in the setting of lipid overload (62–64).
This concept is also supported by studies of perilipin 5, a LD
protein that regulates the breakdown of TAGs into FFAs.
Loss of perilipin 5 in cardiomyocytes leads to uncontrolled
lipolysis, mitochondrial FA overload, and cardiomyocyte
dysfunction; whereas overexpression prevents LD lipolysis,

FIG. 1. Model of diabetic heart failure (HF) progression.
The diabetic metabolic environment promotes adverse cardiac
remodeling, including the development of left ventricular hy-
pertrophy (LVH) and diastolic dysfunction. This stage is often
asymptomatic. Over time and often in the face of other co-
morbidities, heart failure with either preserved ejection frac-
tion (HFpEF) or reduced ejection fraction (HFrEF) can occur.
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increases intracellular TAG, and protects myocytes from
contractile dysfunction (52, 98). In concert, these results argue
that LDs may be beneficial by reducing the generation of toxic
lipid species and preventing excessive mitochondrial FA flux
(71, 76). Another potential benefit of LD storage is that reg-
ulated, low-level lipolysis could provide a source of FFA for
occasions when other energetic substrates are limiting.

A sustained increase in mitochondrial FA flux also pro-
duces pathology through the generation of excessive reactive
oxygen species (ROS), although the mechanisms of this re-
sponse remain controversial. When FAs are present in excess
of energetic demand (i.e., a low ADP environment), the re-
ducing equivalents generated by lipid oxidation are more
likely to produce free radical oxygen due to reduced forward
flux of electrons through the ETC. In addition, the first step of
b-oxidation involves the transfer of electrons directly to the
ETC flavoprotein via acyl-CoA dehydrogenases, which can
also exacerbate downstream superoxide production (79).
Conversely, FAO can be protective against oxidant stress
because the oxidation of lipids, in comparison to carbohy-
drates, generates more reducing equivalents. These reducing
equivalents act to replenish mitochondrial ROS-scavenging
molecules, including reduced glutathione and mitochondrial
thioredoxin (Trx2) (95). How does this balance become
disrupted to produce a net increase in oxidative stress during
diabetes? One possible mechanism is related to the ability of
LCFA and their partially oxidized derivatives to directly
impair the function of the ETC (1). As such, the reducing
equivalents generated by the oxidation of glucose and FA
are even more likely to generate superoxide, which could
overwhelm the antioxidant defenses. Moreover, diabetes
impairs the function of superoxide dismutase enzymes
along with glutathione and Trx2, further amplifying the ROS
burden (93, 107).

Irrespective of the mechanism, there is strong evidence
demonstrating that increased oxidative stress is a common
feature observed in cardiac tissue from humans or animals
with diabetic CM (38, 104). Recent data obtained with mi-
tochondria isolated from atrial cardiomyocytes of diabetic
patients also demonstrated respiratory defects and amplified
ROS generation during OX-PHOS compared with nondia-
betic control mitochondria (5, 70). Interestingly, while mi-
tochondria isolated from obese patients also have defects in
respiration, only diabetic mitochondria produce higher levels
of ROS (70). These findings suggest that as metabolic disease
progresses, mitochondrial-derived oxidative stress increases
(4, 95, 99). Adding insult to injury, the ability of cardio-
myocytes to clear dysfunctional, ROS-producing mitochon-
dria through mitophagy may also be impaired (49).
Mitophagy is a specialized form of autophagy that acts to
remove damaged mitochondria that are particularly prone to
ROS generation. There is conflicting evidence about the
impact of metabolic stress on cardiomyocyte mitophagy, but
it is enticing to speculate that dysregulation of this clearance
mechanism may further exacerbate oxidative stress. This
topic is discussed in greater detail in the article by Kubli and
Gustafsson in this Forum. Regardless of the source, excess
ROS can damage proteins, nucleic acids, and lipids, leading
to cardiomyocyte dysfunction and death.

In response to oxidative stress or PPARa activation, mi-
tochondria upregulate protein expression of uncoupling
proteins (UCPs), in particular UCP2 and UCP3 (74). UCPs

are also induced in the diabetic heart, presumably as an
adaptive mechanism to reduce mitochondrial ROS produc-
tion, although this is controversial (14). Mechanistically,
UCPs uncouple proton leak across the mitochondrial mem-
brane from ATP synthesis, thereby dissipating the MMP. In
this way, the generation of mitochondrial superoxide through
complex I of the ETC is decreased. However, there is an
energetic cost to mitochondrial uncoupling. Dissipation of
the proton motive force across the mitochondrial membrane
leads to diminished capacity for ATP production, which re-
duces mitochondrial efficiency. Therefore, sustained activa-
tion of mitochondrial uncoupling may adversely affect
cardiac energetics and myocyte contractile function. It also
remains possible that increasing uncoupled respiration could
enhance ROS generation from complex III of the ETC, which
would be maladaptive. Definitive experiments to tease out the
role of UCPs in diabetic HF remain to be performed. In
support of UCPs contributing to the metabolic derangements
in diabetes, mitochondria isolated from diabetic mouse hearts
have elevated rates of oxygen consumption, increased un-
coupled respiration, and reduced efficiency (13). Similar
phenotypes have been observed in the hearts of diabetic pa-
tients through the use of positron emission tomography (PET)
metabolic imaging (59).

Another important aspect of the metabolic remodeling that
occurs in the diabetic heart is the loss of substrate flexibility. It
is well known that FAO yields the most ATP per mole of
substrate utilized; however, this occurs at an increased oxygen
cost compared with glucose oxidation. The metabolic milieu
present in diabetes not only increases FAO but also impairs the
ability of cardiac myocytes to utilize other energetic substrates
(glucose, lactate, and ketone bodies). This metabolic inflexi-
bility can be problematic in situations where oxygen is limit-
ing, such as ischemia, where glucose is a preferred energetic
substrate. This may be part of the reason that diabetics are
more prone to HF after myocardial infarction compared with
their nondiabetic counterparts (32, 50, 92).

Mitochondrial Dysfunction as a Unifying Theme
of Diabetic CM

As discussed in the previous section, multiple pathologic
mechanisms have been proposed to explain cardiac dys-
function in patients with diabetes. This complexity has made
it challenging to identify the optimal approach to prevent or
delay the progression of HF in patients with diabetes. One of
the challenges that must be overcome to translate scientific
discovery into therapeutics will be to identify key nodal
points that underlie the pathology of diabetic myocardial
disease. An attractive hypothesis is that diabetes-induced
mitochondrial dysfunction is a central event in the pathobi-
ology of diabetic HF. This hypothesis will be explored in the
next section.

Several reproducible pathologic features have been ob-
served in the hearts of diabetic patients and in animal models
of diabetic CM. These include increased rates of FAO, myo-
cardial lipid accumulation, myocyte cell death, oxidative
stress, inflammation, and fibrosis (17, 86). Mitochondria are
positioned to be an important regulator of all of these re-
sponses. This concept will be reviewed in the next section by
subdividing the pathogenesis of diabetic CM into three stages:
compensated, transitional, and decompensated (Figs. 2–4).
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The compensated stage of diabetic CM can be viewed as a
phase of metabolic remodeling shaped by changes in energetic
substrate delivery and utilization (Fig. 2). Diabetic patients
have increased levels of circulating FAs and lipoproteins. In
response to this lipid load, cardiomyocytes adapt by upregu-
lating the expression of genes involved in FA utilization, while
simultaneously reducing the expression of glucose metabolic
genes. In large part, this transcriptional response is orches-
trated by the transcription factor PPARa (34). The expression
of the metabolic transcriptional co-activators PGC-1a and b is
also upregulated in the insulin-resistant heart, triggering mi-
tochondrial biogenesis and further enhancing mitochondrial
oxidative capacity (69). In concert, this gene expression pro-
gram enhances the hearts’ ability to oxidize and store FAs.

However, an important consequence of this compensatory
response is that it reduces metabolic flexibility, which can be
detrimental in the face of ischemia or other changes in sub-
strate availability. Moreover, it is important to consider that
this lipid-metabolic program is designed to turn on and off
rapidly in response to environmental cues such as fasting.
Therefore, when high rates of mitochondrial FA delivery and
oxidation are sustained, these organelles become over-
whelmed and additional pathology develops.

The transition phase of diabetic CM is driven primarily by
sustained increases in FA flux through cardiac mitochondria
(Fig. 3). A high rate of mitochondrial respiration in excess of
energetic demand leads to an increase in MMP, a reduction in
TCA flux, and promotes ROS generation. Moreover, reduced
TCA flux in the setting of continued b-oxidation of FAs results
in the accumulation of incomplete FAO metabolites such as
acylcarnitines and acetyl-CoA. These molecules modulate cell
signaling events and directly interfere with mitochondrial re-
spiratory activity (1, 81). In addition, decreased flux of acetyl-
CoA molecules through the TCA cycle can deplete the free
CoA pool, impairing several other CoA-dependent biochem-
ical reactions in the cell (23). Myocardial FA-CoAs will also
accumulate as a consequence of the imbalance between lipid
uptake and oxidation. To reduce lipotoxicity, cardiomyocytes
divert many of the excess FAs into TAG synthesis pathways,
where they can be stored in neutral LDs. Simultaneously, in-
creased rates of mitochondrial FA flux promote ROS genera-
tion, particularly when energetic ADP stores are low (i.e., in
the energy replete state). In the short term, this is counter-
balanced by the induction of UCPs and ROS scavengers,
which mitigate oxidant stress but reduce cardiac efficiency.

The decompensated phase of diabetic CM occurs when the
adaptive measures described earlier are overwhelmed (Fig. 4).
In essence, it is the metabolic equivalent of a ‘‘perfect storm.’’
Mitochondria are at the center of this transition. The combina-
tion of UCP upregulation, acylcarnitine accumulation, and ox-
idative stress leads to a progressive decrease in mitochondrial

FIG. 2. The compensated phase of diabetic cardiomyo-
pathy. During the compensated stage of diabetic CM, excess
fatty acids (FA) trigger activation of PPARa and PGC-1a/b,
which serve to increase fatty acid oxidation (FAO), triglyc-
eride (TAG) synthesis, and mitochondrial biogenesis. The
shuttling of excess FA into TAG prevents increased genera-
tion of toxic lipid species such as diacylglyerol (DAG) and
ceramides, minimizing lipotoxicity. During this phase, car-
diac function remains normal; however, cardiomyocyte reli-
ance on FA oxidation for energy generation is increased. To
see this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars

FIG. 3. The transition phase of diabetic cardiomyopathy.
The transition stage of diabetic CM results from sustained
increases in lipid uptake and FAO. Elevated mitochondrial FA
flux leads to reactive oxygen species (ROS) generation (�O2)
and upregulation of uncoupling proteins (UCPs), both of which
decrease mitochondrial efficiency and the accumulation of
FAO metabolites such as acylcarnitines and acetyl-CoA. Mi-
tochondrial ROS scavengers such as glutathione (GSH) and
thioredoxin2 (Trx2) minimize oxidative stress. To see this il-
lustration in color, the reader is referred to the web version of
this article at www.liebertpub.com/ars

FIG. 4. The decompensated phase of diabetic cardio-
myopathy. With continued metabolic stress, cardiac cells enter
a decompensated stage during which further mitochondrial
dysfunction and ROS generation worsen the imbalance be-
tween lipid uptake and oxidation, which overwhelms TAG
synthesis pathways and promotes the generation of toxic lipid
species such as ceramides and DAG. Excessive ROS produc-
tion overwhelms the scavenger machinery, leading to oxidative
stress. Together, ROS and lipid accumulation trigger inflam-
mation/inflammasome activation and cell death, both of which
can contribute to contractile dysfunction and cardiac fibrosis.
In addition, mitophagy is impaired, which can lead to further
accumulation of ROS-generating mitochondria. To see this
illustration in color, the reader is referred to the web version of
this article at www.liebertpub.com/ars
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respiratory capacity. Declining FAO capacity further exacer-
bates the imbalance between lipid uptake and b-oxidation,
which overwhelms the buffering capacity of TAG synthesis
pathways. As a consequence, esterified FAs are channeled to
alternate fates in the cell, including the formation of ceramides,
phospholipids, and DAG. Ceramides and phospholipids that are
rich in saturated FAs remodel ER and mitochondrial mem-
branes, resulting in dysregulated calcium handling, worsened
mitochondrial respiration, and further ROS generation.

To add insult to injury, the ability of cardiomyocytes to
remove damaged, ROS-producing mitochondria through
mitophagy also appears to be impaired in the diabetic heart.
The net effect of this mitochondrial stress is the release of
inflammatory cytokines/chemokines and/or the induction of
myocyte cell death. In particular, mitochondrial damage and
oxidative stress activates the NLRP3 inflammasome, in-
creasing IL-1b release (90, 109). This inflammatory complex
can also be activated in recruited macrophages through an
FFA-dependent mechanism (100, 101). Once initiated, this
inflammatory response can further propagate cardiac injury.
Inflammation also suppresses the expression of PGC-1a and
b in cardiac myocytes, resulting in a feed-forward downward
spiral of mitochondrial dysfunction, increased ROS genera-
tion, and cell death (84). Ultimately, these events create a
pro-fibrotic environment, a pathologic hallmark of more ad-
vanced diabetic CM.

Although it useful to sub-divide diabetic CM into discrete
pathologic stages, it is important to acknowledge that the
natural history of diabetic HF in humans has been difficult to
delineate. It is likely that the compensated stage of diabetic
myocardial disease is likely to have a long latency period
during which there is no clinical evidence of cardiac dys-
function. The cardiac pathology that characterizes this stage
appears to be reversible with correction of the systemic met-
abolic abnormities (59). However, if the metabolic stress is
sustained and/or additional cardiac damage occurs from is-
chemia, HTN, or valve disease, overt cardiomyopathy ensues.

Mitochondria as a Therapeutic Target in Diabetic CM

Research over the past 40 years has shown us that the
pathophysiologic mechanisms linking diabetes and HF are
complex. This fact combined with the nonspecific clinical
definition of diabetic CM has hindered the development of
novel therapies for this condition. However, the central role
of mitochondria in the pathogenesis of diabetic heart disease
suggests that therapies aimed at modulating mitochondrial
stress may have potential for treating this condition. Al-
though there is only limited clinical evidence investigating
such approaches, this section will explore the possibilities of
targeting mitochondria in diabetic heart disease.

Metabolic modulation

As discussed earlier, substrate metabolism in the diabetic
heart is shifted toward the uptake and utilization of FAs. Over
time, excess mitochondrial FAO can have adverse conse-
quences on cardiomyocyte function. Therefore, interfering with
this process has the potential for therapeutic benefit. Myo-
cardial FAO is upregulated in response to excess lipid delivery;
therefore, one approach that is used to interrupt this cycle would
be by reducing lipid delivery to and/or uptake by cardiomyo-
cytes. This can be accomplished via lifestyle changes involving

dietary modifications, exercise, and weight loss (Fig. 5). Al-
ternatively, in morbidly obese patients, bariatric surgery is also
an effective means of reducing adiposity and circulating lipo-
protein levels. Weight loss through either of these means has
been shown to reverse the cardiometabolic alternations and
diastolic dysfunction associated with metabolic disease (59). It
is also worth noting that weight loss and exercise are associated
with improved insulin sensitivity, which may also improve
mitochondrial function directly (9, 46).

In addition to decreasing circulating lipids, there are
pharmacologic approaches to inhibit the uptake of FAs that
may hold promise. CD36 is a plasma membrane protein that
plays an important role in cardiomyocte FA and lipoprotein
uptake (Fig. 5). The relevance of this molecule to cardiac
lipid overload has been shown using a transgenic model of
diabetic CM in which cardiomyocytes are engineered to
overexpress PPARa (MHC-PPARa) (36). In this system, the
deletion of CD36 mice prevented the development of cardiac
steatosis and cardiomyopathy (106). The same model of HF
could also be rescued by lipoprotein lipase deficiency, further
substantiating the importance of excess lipid delivery to this
cardiomyopathy phenotype (29). Similar results have also
been obtained in other models of diabetic CM using phar-
macologic approaches to inhibit CD36 (6, 12). Thus, pre-
venting excess lipid delivery as a means to reduce
mitochondrial stress may be a viable approach to reverse or
prevent early stages of diabetic CM. However, the ubiquitous
expression and pleotropic functions of CD36 mandate ex-
tensive testing to ensure safety of CD36 inhibitors in humans,
especially for long-term treatment.

Another strategy to reduce the damaging effects of FA flux
would be to prevent the import of esterified FAs into the
mitochondria. Inhibition of the mitochondrial outer mem-
brane transporter CPT1 is one way to accomplish this

FIG. 5. Targeting mitochondrial FA flux in diabetic
heart failure. FA and lipoprotein uptake is facilitated by FA
transporters such as CD36. Reducing the level of FAs in
circulation with diet and exercise or inhibiting FA uptake
into cardiomyocytes can reduce FA stress on the mito-
chondria. Other potential strategies to reduce mitochondrial
oxidative overload include CPT1 inhibitors (etomoxir),
electron transport chain (ETC) inhibitors/AMPK activators
(metformin), or antioxidants (scavengers, resveratrol).
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objective. In support of this approach, short-term CPT1 in-
hibition with etomoxir prevents the development of con-
tractile dysfunction in a rat model of diabetic CM (87).
However, a potential downside of inhibiting mitochondrial
FAO in the setting of excess lipid uptake would be to exac-
erbate cardiomyocyte lipid accumulation (26, 27). Indeed,
even short-term etomoxir treatment dramatically increases
cardiac lipid content in diabetic animals (87). An alternate
approach to reduce mitochondrial flux is through the use of
the anti-diabetic drug metformin. Metformin inhibits com-
plex 1 of the ETC, thereby reducing oxidative flux through
the mitochondria. As a result, ATP production decreases,
leading to the activation of AMPK, a kinase with antioxidant
and anti-inflammatory properties (105). Metformin has been
shown to have cardioprotective affects in animal models of
ischemia, and AMPK is believed to be an important mediator
of this effect (31). In contrast to etomoxir, metformin does
not lead to excess cardiac lipid accumulation despite reduc-
ing mitochondrial oxidative flux. One potential explanation
may be related to the ability of metformin to inhibit de novo
lipogenesis in the liver, thereby reducing FA delivery to the
heart (39). There is a growing body of evidence that met-
formin may be beneficial for the treatment of HF in the setting
of diabetes (33, 43, 75, 80, 82); however, the majority of
human study data comes from nonrandomized retrospective
analyses. Future investigation will be necessary to determine
whether reducing mitochondrial FA flux, and in particular
metformin, improves cardiac function and/or outcomes in
diabetics. The MET-DIME trial is an ongoing, randomized
clinical study designed to address this question (54). To-
gether, these approaches could help slow the evolution from
the compensated to transitional phases of diabetic CM.

Antioxidant therapies

Oxidative stress has been implicated in the pathogenesis of
many diabetic complications. In the diabetic heart, both in-
creased ROS production and downregulation of antioxidant
defenses appear to be responsible for the oxidative stress
burden. Based on this evidence, oxidative stress pathways
have become an attractive target for diabetes complications.
However, several challenges have been encountered with this
approach. For one, ROS are not always pathologic and also
participate in physiologic cell signaling. Therefore, antioxi-
dants have the potential to impact normal cell function and
produce unwanted side effects. In addition, there are nu-
merous compounds with anti-oxidant properties; however, it
remains unclear which agents are the most effective at alle-
viating oxidative stress in diabetics.

Most human and animal model data come from studies using
ROS scavenger-based therapies, including superoxide dis-
mutase mimetics, to reduce oxidative damage. Although there
is some evidence of efficacy, most of this data was obtained
from streptozotocin (STZ)-induced models of diabetes where
nonmitochondrial ROS may be more prominent. Moreover, the
issue of whether to use general or mitochondrial-targeted an-
tioxidants is still an open question. In addition to ROS-scav-
enging approaches, targeting events upstream of ROS
production or augmenting endogenous antioxidant responses
may also have promise and warrant further investigation.

Current data regarding the benefit of antioxidant therapy in
diabetic cardiovascular disease are mixed. Studies with nat-

ural antioxidants such as vitamin E, vitamin C, and a-lipoic
acid have yielded promising results in animal models of di-
abetes, particularly when STZ is used to induce hypergly-
cemia (7, 57). However, when investigated in humans, these
antioxidants either alone or in combination have not shown
consistent beneficial effects on serum metabolic parameters or
the incidence of cardiovascular disease (65, 108). The dis-
crepancies between mouse and man may reflect the fact that
STZ-induced diabetes is a poor model of the human disease
and/or that more potent or selective antioxidant approaches
will be necessary to achieve clinical benefits in patients.

In addition to general antioxidants, there are several mi-
tochondrial-targeted ROS scavengers that have potential for
use in the treatment of diabetic CM. Initial enthusiasm for
this approach came from data demonstrating that transgenic
overexpression of mitochondrial superoxide dismutase could
prevent diabetes-induced contractile dysfunction in isolated
cardiomyocytes (89). Although the investigators used a ge-
netic model of type 1 diabetes in lieu of STZ, these animals
still had profound hyperglycemia. More recently, pharma-
cologic approaches designed to reduce mitochondrial ROS
have been employed, including the compounds mitotempol
and MitoQ. Mitotempol is a superoxide dismutase mimetic
that has potent antioxidant properties in cell culture (58).
Surprisingly, there have been relatively little data about the
effectiveness of this compound in in vivo models of diabetes.
MitoQ is a version of the antioxidant coenzymeQ that is
targeted to mitochondria. As with mitotempol, MitoQ can
reduce mitochondrial oxidative stress in cell culture. In ad-
dition, in a mouse model of type 1 diabetes, MitoQ was
shown to attenuate renal tubular injury, which is another
important complication of diabetes (20). The only cardiac
data with this agent come from a rat model of ischemia-
reperfusion injury where MitoQ was shown to reduce myo-
cyte injury and improve contractile function (2). Interestingly,
in this study, the use of an untargeted antioxidant did not
protect the heart from ischemic damage. There is little pub-
lished evidence about the use of MitoQ preclinical models of
diabetic HF. The paucity of recent publications on the use of
mitochondrial antioxidants in diabetic cardiac disease and the
lack of efficacy data in type 2 diabetic models suggest that
strategies targeting events upstream or downstream mito-
chondrial ROS may hold more promise to improve cardiac
function in diabetes.

The flavonoids are naturally occurring compounds that act
upstream of mitochondria and have shown promise in models
of diabetes, potentially as a consequence of their antioxidant
properties. The poster child of this molecular class is re-
sveratrol, a flavonoid with pleotropic affects on mitochon-
dria, metabolism, and ROS scavenging. Mechanistically,
resveratrol activates the deacetylase situin 1 (SIRT1), which
has many targets, including the metabolic coactivator protein
PGC-1a (18). Deacetylation increases PGC-1a’s transcrip-
tional activity, upregulating genes involved in FA metabo-
lism and ROS scavenging (35). In animal models of diabetes
complications, resveratrol has been shown to protect against
pathology, including cardiomyopathy (94). However, it
should be noted that most of this data also comes from STZ-
induced diabetes models. Therefore, the translatability of
these findings to diabetic humans remains to be determined.
This issue notwithstanding, the multifaceted effects of re-
sveratrol place it among the more promising of the
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antioxidant-based therapies for the prevention and/or treat-
ment of diabetic myocardial disease.

As mentioned earlier, the study of antioxidants for the
treatment of diabetes complications in vivo has predomi-
nantly occurred in mouse models of type 1 diabetes. Of these,
STZ is the most frequently used diabetic model, largely due
to its ease of inducing hyperglycemia and lack of need for
breeding. However, STZ treatment, without insulin supple-
mentation, produces profound hyperglycemia and weight
loss due to a near complete loss of insulin. Thus, the STZ
phenotype more closely resembles the very ill type 1 diabetic
who is not receiving treatment with insulin, rather than the
overweight type 2 diabetic patient on oral medications. This
is relevant to the study of antioxidants, because very high
glucose levels could significantly alter the molecular origin
and severity of oxidative stress. For example, it would be
expected that STZ-treated, hyperglycemic mice would have
increased total oxidative stress with a greater contribution
from nonmitochondrial ROS pathways (i.e., RAGE/NADPH
oxidase) (21). Thus, the data obtained with antioxidant
therapies using type 1 diabetic models may not be general-
izable to pathology of type 2 diabetes in animals or humans.
Future studies of antioxidant compounds will need to incor-
porate more models of type 2 diabetes, with an emphasis on
diet-induced obesity. If successful, antioxidant approaches
could be useful during both the transitional and decom-
pensated phases of diabetic CM.

Inflammation

In the decompensated phase of diabetic CM, mitochondrial
dysfunction and oxidative stress lead to the damage of pro-
teins, lipids, and nucleic acids, resulting in myocyte death
and/or the elaboration of inflammatory cytokines. Cardiac
inflammation and leukocyte recruitment is increased in both
animal models and humans with diabetes and HF (48, 85, 88,
102, 103). Of particular relevance to mitochondrial-derived
inflammation is an inflammatory complex known as the in-
flammasome (Fig. 6). It is now established that mitochondrial
damage, particularly in the context of toll-like receptor ac-
tivation with release of mitochondrial DNA and/or ROS, can
activate the NLRP3 inflammasome, leading to the cleavage
and release of IL-1b and IL-18 through a caspase 1-depen-
dent mechanism (42, 90, 109). Emerging evidence suggests
that the NLRP3 inflammasome is hyperactivated in diabetes
and contributes to inflammatory damage in the heart and
other tissues (56, 66, 68, 100, 101). Interestingly, excess FFA,
hyperglycemia, and ischemic stress have been shown to
promote inflammasome assembly by producing mitochon-
drial and/or lysosome damage (97, 100, 101).

In the context of myocardial injury, the inflammasome can be
activated in both myocytes and infiltrating monocytes/macro-
phages (67). The elaboration of IL-1 can further increase ROS
generation and mitochondrial dysfunction, accelerating the
cardiomyopathic process. For these reasons, the NLRP3 in-
flammasome is an attractive target to mitigate the inflammatory
response associated with mitochondrial damage and metabolic
stress that occurs in diabetes. In support of this concept, there are
preclinical data demonstrating a protective effect of inflamma-
some inhibition in several models of cardiac injury (16, 66, 67,
103). Although these data are provocative, further translational
investigation is needed. Additional research focusing on the role

of diabetes in altering interplay between cardiac macrophages
and myocytes should be explored.

The future of therapeutics for diabetic CM

The lack of diagnostic criteria for diabetic CM has made it
challenging to investigate the human disease and to translate
basic science into practice. Whether such criteria can be
developed remains to be determined. However, without clear
inclusion criteria for the study of diabetic CM, it will be
impossible to enroll appropriate patient populations for
therapeutic trails. As such, the intersection between diabetes
and other cardiac stressors (ischemic, HTN, and renal dis-
ease) is perhaps a more tenable and relevant area for inves-
tigation. Along these lines, the influence of diabetes on
HFpEF was recently reported in a subset of patients from the
RELAX trial (61). In this analysis, diabetic patients had

FIG. 6. Activation of the inflammasome in the heart in
response to mitochondrial stress. In response to the met-
abolic stress of diabetes, including excess FFA and hyper-
glycemia, damaged mitochondria release excess ROS and
oxidized DNA. This response can be exacerbated by is-
chemia. These danger signals can promote the assembly of
the NLRP3 inflammasome, including caspase 1 (casp1),
which cleaves pro-IL-1b, to release the mature cytokine. On
release, IL-1b can promote additional inflammation, cardiac
injury, and fibrosis. Moreover, in the diabetic environment,
activation of toll-like receptors by tissue damage or infec-
tion can trigger mitochondrial and lysosomal (Ly) stress,
leading to inflammasome activation in recruited macro-
phages and further amplifying the IL-1 response. The ex-
cessive release of cytokines exacerbates mitochondrial
dysfunction and ROS generation, leading to cardiomyocyte
damage and contractile dysfunction.
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increased LV mass, more co-morbidities, higher rates of HF
hospitalizations, and worse exercise capacity compared with
nondiabetics with HFpEF. Serum markers of inflammation,
fibrosis, and oxidative stress were also elevated in the dia-
betic cohort. Studies such as this argue that understanding
how metabolic stress alters HF progression irrespective of the
etiology will be relevant to patients with diabetes. To achieve
this goal, improved animals models that incorporate common
co-morbidities and more rigorous clinical investigation
coupled with tissues analyses will be necessary.

Conclusion

The number of patients with diabetes and cardiomyopathy
will continue to increase for the foreseeable future. Therefore,
novel strategies to prevent diabetes-induced cardiac damage
are needed. Unfortunately, the lack of clear diagnostic criteria
for diabetic CM in combination with sub-optimal diabetic
animal models has limited progress in this area. That being
said, mitochondrial dysfunction is a common theme present in
virtually all human and animal studies of diabetes complica-
tions. Moreover, mitochondrial pathology can explain many of
the findings associated with diabetic heart disease, including
altered cardiac metabolism, lipid accumulation, oxidative
stress, and inflammation. For these reasons, targeting mito-
chondrial dysfunction and/or its sequela are attractive thera-
peutic targets for improving cardiac function in patients with
HF and diabetes. However, additional studies from human tis-
sue and relevant animals models will be required to develop
appropriate strategies for intervention. In particular, investigat-
ing diabetes in combination with other cardiac co-morbidities
will be important to move the field forward in a clinically
relevant manner. The importance of preventative medicine
should also be emphasized, especially since diet and exercise
can reverse early stages of disease. Together, such approaches
have the potential to substantially reduce the morbidity and
mortality associated with diabetes in patients with HF.
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CPT1¼ carnitine palmitoyl transferase 1
DAG¼ diacylglycerol

diabetic CM¼ diabetic cardiomyopathy
FA¼ fatty acid

FAO¼ fatty acid oxidation
HFpEF¼ heart failure with preserved ejection fraction
HFrEF¼ heart failure with reduced ejection fraction

HTN¼ hypertension
LVH¼ left ventricular hypertrophy

MMP¼mitochondrial membrane potential
OX-PHOS¼ oxidative phosphorylation

PET¼ positron emission tomography
ROS¼ reactive oxygen species
TAG¼ triacylglercerol
TCA¼ tricarboxylic acid
Trx2¼ thioredoxin 2
UCP¼ uncoupling protein
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