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ABSTRACT

Epistatic miniarray profile (E-MAP) is a popular large-scale genetic interaction discovery
platform. E-MAPs benefit from quantitative output, which makes it possible to detect subtle
interactions with greater precision. However, due to the limits of biotechnology, E-MAP
studies fail to measure genetic interactions for up to 40% of gene pairs in an assay. Missing
measurements can be recovered by computational techniques for data imputation, in this
way completing the interaction profiles and enabling downstream analysis algorithms that
could otherwise be sensitive to missing data values. We introduce a new interaction data
imputation method called network-guided matrix completion (NG-MC). The core part of
NG-MC is low-rank probabilistic matrix completion that incorporates prior knowledge
presented as a collection of gene networks. NG-MC assumes that interactions are transitive,
such that latent gene interaction profiles inferred by NG-MC depend on the profiles of their
direct neighbors in gene networks. As the NG-MC inference algorithm progresses, it
propagates latent interaction profiles through each of the networks and updates gene net-
work weights toward improved prediction. In a study with four different E-MAP data assays
and considered protein–protein interaction and gene ontology similarity networks, NG-MC
significantly surpassed existing alternative techniques. Inclusion of information from gene
networks also allowed NG-MC to predict interactions for genes that were not included
in original E-MAP assays, a task that could not be considered by current imputation
approaches.

Key words: data integration, epistatic miniarray profile, gene network, genetic interaction, matrix

completion, missing value imputation.

1. INTRODUCTION

The epistatic miniarray profile (E-MAP) technology (Schuldiner et al., 2005; Collins et al., 2006;

Roguev et al., 2008; Wilmes et al., 2008; Surma et al., 2013) is based on a synthetic genetic array (SGA)

approach (Tong et al., 2001, 2004) and generates quantitative measurements of both positive and negative

genetic interactions (GIs) between genes. E-MAP was developed to study the phenomenon of epistasis,

wherein the presence of one mutation modulates the effect of another mutation. The power of epistasis
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analysis is greatly enhanced by quantitative measurements of interactions (Collins et al., 2006). E-MAP has

provided high-throughput measurements of hundreds of thousands of GIs in yeast (Schuldiner et al., 2005;

Collins et al., 2007; Wilmes et al., 2008) and has been shown to significantly improve gene function

prediction (Collins et al., 2007). However, E-MAP data suffer from a large number of missing values that can

be as high as *40% for a given assay (see also Table 1). Missing values correspond to pairs of genes for

which the strength of the interaction could not be measured during the experimental procedure or that were

subsequently removed due to low reliability. A high proportion of missing values can adversely affect

analysis algorithms or even prevent their use (Nanni et al., 2012). Missing data can introduce instability in

clustering results (de Brevern et al., 2004) or bias the inference of prediction models (Liew et al., 2011).

Accurate imputation of quantitative GIs is therefore an appealing option to improve downstream data

analysis and correspondence between genetic and functional similarity (Collins et al., 2007; Pu et al., 2008;

Bandyopadhyay et al., 2008; Ulitsky et al., 2008; Järvinen et al., 2008).

The missing value problem in E-MAPs resembles that from gene expression data where imputation has

been studied well (Troyanskaya et al., 2001; Brock et al., 2008; Liew et al., 2011). The objective of both

tasks is to estimate the values of missing elements in the given incomplete data matrix. Both types of data

may exhibit correlation between mutant and gene profiles that is indicative of pathway membership in the

case of E-MAP data (Ryan et al., 2010) and coregulation in the case of gene expression data. E-MAP data

sets are therefore often investigated with tools originally developed for gene expression data analysis

(Zheng et al., 2010). However, there are important differences between E-MAP and gene expression data

that limit direct application of gene expression imputation techniques to E-MAPs (Ryan et al., 2010).

E-MAP matrices report on pairwise relations between genes and have substantially different dimensionality

than gene expression data sets. They often contain substantially more missing values than gene expression

data sets with the latter having up to 5% missing data rate (Bø et al., 2004; Liew et al., 2011). These

differences coupled with the biological significance of E-MAP studies have spurred the development of

specialized computational techniques for recovery of missing interaction measurements in E-MAP-like

data sets (Ryan et al., 2010).

We here propose NG-MC (network-guided matrix completion), a hybrid and knowledge-assisted method

for imputing missing values in E-MAP-like data sets. NG-MC builds upon two concepts: probabilistic

matrix completion and propagation of NG-MC-inferred latent gene interaction profiles. Matrix completion

uses information on global correlation of elements in the E-MAP score matrix. Propagation of latent

profiles exploits the local similarity of genes as specified by the gene networks. The use of prior knowledge

in the form of gene networks gives NG-MC the potential to improve imputation accuracy beyond purely

data-driven approaches. This could be especially important for data sets with small number of genes and

high missing data rate such as E-MAPs. In what follows we present mathematical formulation of the

proposed approach and in a comparative study that includes several state-of-the-art imputation techniques

demonstrate its accuracy across several E-MAP data sets.

2. RELATED WORK

Imputation algorithms for gene expression data sets are reviewed in Liew et al. (2011), where they are

categorized into four classes based on how they utilize or combine local and global information from

within the data (local, global, and hybrid algorithms) and their use of prior knowledge in imputation

(knowledge-assisted algorithms). Local methods based on k-nearest neighbors that include KNNimpute

(Troyanskaya et al., 2001), local least squares (LLS) (Kim et al., 2005), and adaptive least squares

Table 1. Overview of the E-MAPs Considered

Data set Genes Missing interactions Measured interactions

Chromosome biology 743 34.0% 187,000

Lipid 741 9.2% 250,000

RNA 552 29.6% 107,000

Early secretory pathway 424 7.5% 83,000
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(LSimpute) (Bø et al., 2004) rely on local similarity of genes to recover missing values. Global methods

decompose data matrices using variations of singular value decomposition (SVDimpute) (Troyanskaya

et al., 2001), singular value thresholding algorithm for matrix completion (SVT) (Cai et al., 2010), and

Bayesian principal component analysis (BPCA) (Oba et al., 2003). Hybrid imputation approaches for

gene expression data make predictions by combining estimates from both local and global imputation

methods ( Jörnsten et al., 2005).

Only a handful of missing data imputation algorithms directly address E-MAP-like data sets. Ulitsky

et al. (2009) experimented with a variety of genomic features, such as the existence of physical interaction

or coexpression between genes, that were used as input to a classification algorithm. The NG-MC differs

from this approach as it directly uses the matrix of measured GI scores and does not require data-specific

feature engineering. Ryan et al. (2010, 2011) considered four general strategies for imputing missing

values—three local methods and one global method—and adapted these strategies for E-MAPs. They

modified unweighted and weighted k-nearest neighbors imputation methods (uKNN and wNN, respec-

tively) and adapted LLS and BPCA algorithms to handle symmetric E-MAP data. We refer the reader to

Ryan et al. (2010) for details on the algorithm modifications. We compare their imputation approaches with

the NG-MC (sec. 6). Pan et al. (2011) proposed an ensemble approach to combine the outputs of two global

and four local imputation methods based on diversity of estimates of individual algorithms. In this article,

we focus on the development of a single algorithm that, if necessary, could be used in an ensemble, and

therefore compare it with ensemble-free algorithms.

Another venue of research focuses on predicting qualitative, that is, binary, instead of quantitative

interactions. Here, predictions estimate the presence or absence of certain types of interactions rather than

their strength (Wong et al., 2004; Kelley and Ideker, 2005; Qi et al., 2008; Pandey et al., 2010). A major

distinction between these techniques and the method presented in this article is that we aim to accurately

impute quantitative genetic interactions using the scale of GI scores. Individual GI may by itself already

provide valuable biological insight as each interaction attests to a functional relationship of a pair of genes.

Prediction of synthetic sick and lethal interaction types in S. cerevisiae was pioneered by Wong et al.

(2004), who applied probabilistic decision trees to diverse genomic data. Wong et al. introduced 2-hop

features to capture the relationship between a pair of genes and a third gene. For example, if protein g

physically interacts with protein h, and gene w is synthetic lethal with the encoding gene of h, then this

observation increases the likelihood of a synthetic lethal interaction between the encoding gene of g and

gene w. Two-hop features were shown to be crucial when predicting GIs (Wong et al., 2004; Bandy-

opadhyay et al., 2008; Ulitsky et al., 2009) and are the rationale behind our concept of propagating latent

profiles over gene networks.

3. METHODS

We start by presenting a probabilistic model of matrix completion for missing value imputation in

E-MAP-like data sets in which the prediction of missing interaction measurement depends only on the

E-MAP score matrix. We then develop an efficient model-fitting approach called network-guided matrix

completion (NG-MC), which can additionally consider the prior knowledge in the form of any number of

gene networks. NG-MC uses information on topology of gene networks to propagate latent gene interaction

profiles among neighboring genes. It exploits the transitivity of interactions; that is, the property of the

relationship between a gene pair and a third gene (sec. 2). As such, NG-MC predicts missing values by

integrating E-MAP data with available network data. Any type of knowledge that can be expressed in the

form of gene networks can be passed to NG-MC. In our experiments we consider gene ontology (Ashburner

et al., 2000) semantic similarity network and protein–protein interaction network.

3.1. Problem definition

In the E-MAP study we have a set of n genes, fg1‚ g2‚ . . . ‚ gng. Genetic interaction of two genes is

scored according to the fitness of the corresponding double mutant and reported with an S-score, which

reflects both the magnitude and the sign of observed interaction measurement (Collins et al., 2006). Scored

GIs are reported in partially observed matrix G 2 Rn · n. In this matrix, the element Gij contains mea-

surement of GI between gi and gj. We assume that G is symmetric, Gij = Gji, and has its values scaled to
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[0, 1]-interval. Genetic interactions are mapped to [0, 1]-interval by normalizing G before data imputation

is performed.

Network-guided matrix completion can simultaneously consider multiple gene networks. Given a

weighted adjacency matrix P 2 Rn · n of a gene network from a collection of networks P‚ NP
g denotes a set

of direct neighbors of g in P, where for h 2 NP
g the value Pgh (Pgh s 0) represents the strength of asso-

ciation of gene g with gene h. Prior to the inference of factorized model we normalize each row of P by the

sum of the weights of incident edges such that
Pn

j = 1 Pij = 1 for all i. A nonzero entry Pgh denotes the

dependence of g-th latent feature vector on h-th latent feature vector. Using this idea, latent features of

genes that are indirectly connected in the network P become dependent after a certain number of algorithm

iterations, the number of steps being determined by the distance between genes in the network. Hence,

information about gene latent representation propagates through network P.

The model inference task is defined as follows: given a pair of genes, gi and gj, for which Gij (and Gji) is

unknown, predict quantitative GI between gi and gj using G and P. Let F 2 Rk · n and H 2 Rk · n be gene

latent feature matrices with column vectors Fi and Hj representing k-dimensional gene-specific latent

feature vectors of gi and gj, respectively. Let W 2 Rn · jPj be the networks weighting matrix where Wip

represents the influence of gi’s neighborhod in P 2 P on the latent feature vector of gi. Network-guided

matrix completion infers gene latent feature matrices and network weighting matrix and utilizes them for

missing value imputation in E-MAP-like data sets.

3.2. Preliminaries

We begin with a probabilistic view of matrix completion for missing value imputation that does not

consider prior biological knowledge. This approach builds upon probabilistic matrix factorization of Mnih

and Salakhutdinov (2007) and Salakhutdinov and Mnih (2008), and we refer to it as MC. Genome-scale

genetic interaction mapping (Costanzo et al., 2010) has suggested the existence of coherent groups of genes

participating in related biological processes. Hence, a desirable computational model of interactions should

model interactions not only in terms of pairwise measurements, but also in terms of how these measure-

ments relate to each other. Matrix completion models this intuition by assuming E-MAP score matrix G has

low rank and factorizes observed values in G into a product of two low-dimensional latent feature matrices,

F and H. In order to learn gene latent feature matrices MC formulates the conditional probability of

observed interactions as:

p(GjF‚ H‚ r2
G) =

Yn

i = 1

Yn

j = 1

N
�

Gijjg(FT
i Hj)‚ r2

G

�IG
ij

‚ (1)

where N (xjl‚ r2) is Gaussian distribution with mean l and variance r2, and IG
ij is an indicator function that

is equal to 1 if the interaction measurement of gi and gj is available and is equal to 0 otherwise. As such, the

conditional probability of interaction data regards only observed entries in matrix G. It should be noted that

predictions of matrix completion are not biased by a priori setting the missing entries in G to some fixed

value selected in an ad hoc manner, which is otherwise common in matrix factorization algorithms (Lee

and Seung, 2000; Lee et al., 2012; Wang et al., 2013). Another appealing property of matrix completion is

sharing of gene latent feature vectors between all estimates of interaction measurements that involve a

certain gene. In particular, latent feature vector Fi is used in estimations of interaction measurements Gij

for all j. Similar factor sharing is used in estimations of H. The function g is a logistic function, g(x) =
1/(1 + e - 0.5x), which bounds the range of g(FT

i Hj) within interval (0, 1). Our assumption of Gaussian

distribution in Equation (1) is justified by the scoring scheme of genetic interactions in E-MAP technology

that uses a modified t-value score, called S-score (Collins et al., 2006). We further assume a zero-mean

Gaussian prior for gene latent feature vectors in F given by p(Fjr2
F) =

Qn
i = 1N (Fij0‚ r2

FI) and similarly,

endow H with Gaussian prior distribution, p(Hjr2
H) =

Qn
i = 1N (Hij0‚ r2

HI), parameterized by r2
F and r2

H,

respectively.

Through Bayesian inference we obtain the log-posterior probability of latent feature matrices given the

interaction measurements, p(F‚ HjG‚ r2
G‚ r2

F‚ r2
H). We then select the factorized model consisting of F and

H by finding maximum a posteriori estimate with gradient descent technique while keeping the observation

noise variance r2
G and prior variance r2

F and r2
H fixed.
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3.3. Network-guided matrix completion

Network-guided matrix completion (NG-MC) extends matrix completion model (MC) from the previous

section by borrowing latent feature information from neighboring genes in networks P. An illustration of

NG-MC algorithm with prior knowledge of one gene network is shown in Figure 1. The biological

motivation for the propagation of interactions stems from the transitive relationship between a gene pair

and a third gene (see sec. 2) and indicates that the behavior of a gene is affected by its direct and indirect

neighbors in the underlying gene networks P. In other words, the latent feature vector of gene g, Fg, is in

each iteration of NG-MC algorithm dependent on the latent feature vectors of its direct neighbors, h 2 Ng in

networks P. The influence is formulated as bFg =
P

P2P Wgp

P
h2Ng

PghFh, where bFg is the estimated latent

feature vector of g given feature vectors of its direct neighbors, and Wgp is the weight of g in network P as

inferred by NG-MC. Thus, latent feature vectors in F of genes that are indirectly connected in networks P
are dependent and hence information about their latent representation propagates according to the con-

nectivity of gene networks as the NG-MC algorithm progresses.

Suppose that for a given i and j, the observation in Gij comes from distribution N (Gijjg(FT
i Hj)‚ r2

G).
Considering that interaction measurements are generated independently, we model partially observed

matrix G as p(GjF‚ H‚ r2
G) =

Qn
i = 1

Qn
j = 1N (Gijjg(FT

i Hj)‚ r2
G)IG

ij . We achieve the coupling of interaction

measurements by sharing latent gene profiles among all measurements of a certain gene. Note that in-

corporating prior knowledge in the form of gene networks P does not change our probabilistic model of

observed interaction measurements from Equation (1). Instead, it only affects the formulation of gene latent

feature vectors in F. We describe them with two factors: a zero-mean Gaussian prior to avoid overfitting

and a conditional distribution of gene latent feature vectors given the latent feature vectors of their direct

neighbors:

p(FjP‚ W‚ r2
F‚ r2

P) /
Yn

i = 1

N Fij0‚ r2
FI

� �
·
Yn

i = 1

N
�

Fij
X
P2P

Wip

X
j2NP

i

PijFj‚ r2
PI

�
: (2)

First iteration
Second iteration

FIG. 1. A toy application of the network-guided matrix completion (NG-MC) algorithm. A hypothetical E-MAP data

set with five genes is given, fg1‚ . . . ‚ g5g. Prior knowledge is presented through one gene network P (jPj = 1). Gene

interaction profiles are listed next to corresponding nodes in gene network P (left) and are shown in the sparse and

symmetric matrix G (right). Different shades of gray quantify interaction strength while white elements in G denote

missing values. Matrices F and H are gene latent feature matrices. Gene latent feature vector Fgi depends on each

iteration of the NG-MC on the latent feature vectors of gi’s direct neighbors in P. For instance, the latent vector of gene

g1 in F depends on the first iteration of the NG-MC algorithm on latent vectors of its neighbors g4 and g5 (Fg4 and Fg5

are shown on input edges of g1) whose degrees of influence are determined by P14 and P15, respectively. In the second

iteration, the update of Fg1 depends also on the latent vector of g1’s 2-hop neighbor, g2, hence the influence of gene

latent feature vectors propagates through P. Gene latent feature matrix H is not influenced by gene neighborhoods in P.
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Such formulation of gene latent matrix keeps gene feature vectors in F both small and close to the

latent feature vectors of their direct neighbors. Because NG-MC borrows its strength across all

available observations and gene neighborhoods in estimating each Gij, it can lead to more accurate

inference than simply learning Gij independently of any additional domain knowledge. In a Bayesian

estimation setting of our NG-MC model, one is interested in the behavior of the posterior distribution

of gene latent feature matrices F and H given the observed genetic interaction scores G and gene

networks P:

p(F‚ HjG‚P‚ W‚ r2
G‚ r2

P‚ r2
F‚ r2

H) /
Yn

i = 1

Yn

j = 1

N
�

Gijjg(FT
i Hj

�
‚ r2

G)IG
ij

·
Yn

i = 1

N
�

Fij
X
P2P

Wip

X
j2NP

i

PijFj‚ r2
PI

�
·
Yn

i = 1

N
�

Fij0‚ r2
FI
�

·
Yn

j = 1

N
�

Hjj0‚ r2
HI
�
: (3)

We then compute the log-posterior probability to obtain:

ln p(F‚ HjG‚P‚ W‚ r2
G‚ r2

P‚ r2
F‚ r2

H) = -
1

2r2
G

Xn

i = 1

Xn

j = 1

IG
ij (Gij - g(FT

i Hj))
2 -

1

2r2
F

Xn

i = 1

FT
i Fi -

1

2r2
H

Xn

j = 1

HT
j Hj

-
1

2r2
P

Xn

i = 1

��
Fi -

X
P2P

Wip

X
j2NP

i

PijFj

�T�
Fi -

X
P2P

Wip

X
j2NP

i

PijFj

��

-
1

2
nk

�
ln r2

F + ln r2
H + ln r2

P

�
-

1

2

Xn

i = 1

Xn

j = 1

IG
ij

 !
ln r2

G + C: (4)

Our goal is to learn F, H, and W, which maximize the conditional posterior probability over gene latent

feature vectors. To do so, we formulate a minimization problem that is equivalent to maximization of the

log-posterior probability in Equation (4) and employ gradient descent technique on F, H, and W to solve it.

In particular, we minimize the objective function:

L(G‚P‚ W‚ F‚ H) =
1

2

Xn

i = 1

Xn

j = 1

IG
ij Gij - g(FT

i Hj)
� �2 +

kF

2

XN

i = 1

FT
i Fi +

kH

2

XN

j = 1

HT
j Hj

+
kP
2

Xn

i = 1

��
Fi -

X
P2P

Wip

X
j2NP

i

PijFj

�T�
Fi -

X
P2P

Wip

X
j2NP

i

PijFj

��
‚ (5)

where kF = r2
G=r

2
F, kH = r2

G=r
2
H, and kP = r2

G=r
2
P . We normalize interaction measurements in G before

performing numerical optimization such that the elements of G are in [0,1] interval. Normalization is due to

estimates in bG = g(FT H) being bounded by the logistic function g. We keep the observation noise variance

r2
G and prior variances r2

F, r2
H, and r2

P fixed and use gradient descent algorithm to find the local minimum

of L(G‚P‚ W‚ F‚ H) and estimate gene latent feature matrices. The parameters kF and kH serve as to

regularize latent gene profiles and the presence of kP trades off the sole reliance on observed measurements

against the inclusion of domain knowledge.

NG-MC algorithm (Alg. 1) iteratively updates gene latent feature vectors Fi and Hj for each i and j

based on the latent feature vectors from the previous iteration and gene neighbors in network P.

In each iteration, NG-MC also refines weights of genes in considered gene networks given in

W in order to account for the contribution of genes to current latent feature vectors of their

neighbors. Successive updates of Fi and Hj converge to a maximum a posteriori estimate of the

posterior probability formulated in Equation (3). In practice, the algorithm stops iterating once the

reconstruction error over observed interaction measurements does not decrease after the update of

F, H, and W.
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Input: Sparse matrix G 2 Rn · n containing interaction measurements, gene networks P = fP 2 Rn · ng, parameters

kF = kH, kP , rank k, and learning rates a and aP .

Output: Data matrix bG, latent matrices F and H and gene networks weights W.

1. Normalize each row of P 2 P such that
Pn

j = 1 Pij = 1.

2. Sample F ~U[0‚ 1]k · n and H ~U[0‚ 1]k · n and set W = [ 1
jPj ]

n · jPj.
3. Repeat until convergence:

a. For i‚ j = 1‚ 2‚ . . . ‚ n:

qL
qFi

=
Xn

j = 1

IG
ij Hjg

0(FT
i Hj)(g(FT

i Hj) - Gij) + kFFi + kP

 
Fi -

X
P2P

Wip

X
j2NP

i

PijFj

!

- kP
X
P2P

X
fjji2NP

j
g

WjpPji

 
Fj -

X
R2P

Wjr

X
l2NR

j

RjlFl

!
‚

qL
qHj

=
Xn

i = 1

IG
ij Fig

0(FT
i Hj)(g(FT

i Hj) - Gij) + kHHj:

b. For i = 1‚ 2‚ . . . ‚ n and p = 1‚ 2‚ . . . ‚ jPj:

qL
qWip

= - kPFT
i

X
j2NP

i

PijFj + kPWip

X
j2NP

i

PijF
T
j

X
k2NP

i

PikFk +
kP
2

X
j2NP

i

PijF
T
j

X
�P2P
�p 6¼p

Wi�p

X
j2NP

i

�PijFj:

c. Set Fi)Fi - a qL
qFi

for i = 1‚ 2‚ . . . ‚ n.

d. Set Hj)Hj - a qL
qHj

for j = 1‚ 2‚ . . . ‚ n.

e. Set Wip)Wip - aP qL
qWip

for i = 1‚ 2‚ . . . ‚ n and p = 1‚ 2‚ . . . jPj.
4. Compute bG = g(FT H). Predict interaction of gi and gj as (bGij + bGji)=2.

Algorithm 1. Network-guided matrix completion (NG-MC) algorithm. We observed that parameter values

kH = kF = 0.01 and learning rates a = 0.1 and aP = 0:001 gave accurate results across a number of different

data sets. Parameter kP , which controls the influence of gene networks P on gene latent feature vectors in

F, depended on data set complexity (Brock et al., 2008). We omitted step 3.e in experiments that included

only one gene network (jPj = 1).

4. EXPERIMENTAL SETUP

In the experiments, we consider an existing incomplete E-MAP matrix from each of the E-MAP studies

and artificially introduce an additional 1% of missing values for a set of arbitrarily selected gene pairs

(Ryan et al., 2010; Pan et al., 2011). These gene pairs and their data constitute a test set on which we

evaluate the performance of imputation algorithms. Because of E-MAP symmetry, for a given test gene pair

and its corresponding entry Gij, we also hide the value of Gji. We repeat this process 30 times and report on

the averaged imputation performance.

It may be noted that established performance evaluation procedure of missing value imputation methods

for gene expression data is not directly applicable to E-MAPs for several reasons discussed in Ryan et al.

(2010). That procedure first constructs a complete data matrix by removing genes with missing values and

then artificially introduces missing values for evaluation. Gene expression data contain a substantially

lower fraction of missing data than E-MAPs (Table 1), and removing a small number of genes and

experimental conditions does not significantly reduce the size of gene expression data sets, whereas this

does not hold for E-MAP data sets.

We select the latent dimensionality k and regularization parameters kF and kP of the NG-MC with the

following procedure. For each data set and before the performance evaluation, we leave out 1% of

randomly selected known values and attempt to impute them with varying values of parameters in grid
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search fashion. Parameter values that result in the best estimation of the left-out values are then used in all

experiments involving the data set. Notice that the left-out values are determined before performance

evaluation and are therefore not included in the test data set. We set the parameters of competitive methods

to values recommended by Ryan et al. (2010) (for wNN, LLS, and BPCA) or optimize parameter selection

through grid search (for SVT, MC, and NG-MC).

We consider two measures of imputation accuracy. These are the Pearson correlation (CC) between the

imputed and the true values, and the normalized root mean square error (NRMSE) (Oba et al., 2003) given

as NRMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E((by - y)2)=Var(y)

q
, where y and by denote vectors of true and imputed values, respectively.

More accurate imputations give a higher correlation score and a lower NRMSE.

To test if the differences in performance of imputation methods are significant, we use the Wilcoxon

signed-rank test, a nonparametric equivalent of a paired t-test. Its advantage is that it does not require

Gaussian distribution or homogeneity of variance, but it has less statistical power, so there is a risk that

some differences are not recognized as significant.

5. DATA

We consider four E-MAP data sets in a comparative evaluation of NG-MC with five state-of-the-art

methods for missing value imputation. The evaluated data sets are from budding yeast S. cerevisiae; they

include S-scores of interaction measurements, but differ in the subset of studied genes and the proportion of

missing values (Table 1):

� Chromosome biology (Collins et al., 2007) is the largest data set considered, encompassing interac-

tions between 743 genes involved in various aspects of chromosome biology, such as chromatid

segregation, DNA replication, and transcriptional regulation.
� RNA processing (denoted by RNA) (Wilmes et al., 2008) focused on the relationships between and

within RNA processing pathways involving 552 mutants, 166 of which were hypomorphic alleles of

essential genes.
� The early secretory pathway (denoted by ESP) (Schuldiner et al., 2005) generated genetic interaction

maps of genes acting in the yeast early secretory pathway to identify pathway organization and

components of physical complexes.
� Lipid E-MAP (Surma et al., 2013) focused on lipid metabolism, sorting, trafficking, and various

aspects of lipid biology, and its data were indicative of a dedicated bilayer stress response for

membrane homeostasis.

We have considered two data sources for gene network construction. The first network is constructed

based on gene ontology (GO) (Ashburner et al., 2000) annotation data. It is a weighted network of genes

included in the E-MAP study whose edge weights correspond to the number of shared GO terms between

connected genes, excluding annotations inferred from GI studies (i.e., those with the igi evidence code).

The second network represents physical interaction data from BioGRID 3.2 (Stark et al., 2006). The

physical interaction network is a binary network in which two genes are connected if their gene products

physically interact. Depending on the considered network, we denote their corresponding NG-MC models

by NG-MC-GO and NG-MC-PPI, respectively.

6. RESULTS AND DISCUSSION

6.1. Imputation performance

Table 2 shows the CC and NRMSE scores of imputation algorithms along with the baseline method of

filling-in with zeros. NG-MC-PPI and NG-MC-GO achieved highest accuracies on all considered data sets.

We compared their scores with the performance of the second-best method (i.e., LLS on chromosome

biology data set, SVT on ESP data set, and MC on RNA data set) and found that improvements were

significant in all data sets.

We did not observe any apparent connection between the proportion of missing values in a data set and

the performance of any of the imputation methods. The performance was better on smaller ESP and RNA

data sets, although differences were small and further investigation appears to be worthwhile.
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The baseline method of filling-in with zeros had the worst performance on all data sets. While this

approach seems naı̈ve, it is justified by the expectation that most genes do not interact. We observed that

BPCA failed to match the performance of weighted neighbor-based and local least squares methods, wNN

and LLS, respectively, on all three evaluated E-MAP data sets. Local imputation methods, wNN and LLS,

demonstrated good performance across all three data sets. Solid performance of neighbor-based methods on

larger data sets could be explained by a larger number of neighbors to choose from when imputing missing

values, which resulted in more reliable missing value estimates.

Global methods, BPCA, SVT, and MC, performed well on the ESP data set but poorly on a much larger

chromosome biology data set. These methods assume the existence of a global covariance structure

between all genes in the E-MAP score matrix. When this assumption is not appropriate, that is, when genes

predominantly exhibit local similarity substructure, the imputation becomes less accurate. The comparable

performance of SVT and MC across data sets was expected. Both methods solve related optimization

problems and operate under the assumption that the E-MAP score matrix has low rank.

The superior performance of NG-MC models over other imputation methods can be explained by their ability

to introduce circumstantial evidence into model inference. As a hybrid imputation approach, NG-MC can

benefit from both global information present in the E-MAP data and local similarity structure between genes.

One could vary the level of influence of global and local patterns on the imputation through kP parameter of the

NG-MC model, where a higher value of kP indicates more emphasis on locality. In this way, our approach can

adequately address data of varying underlying complexity (Brock et al., 2008), where data complexity indicates

the difficulty of mapping the E-MAP score matrix to a low-dimensional space. To quantify the complexity of

gene expression matrices, Brock et al. (2008) devised an entropy-based imputation algorithm selection scheme

that was based on observation that global imputation methods performed better on gene expression data with

lower data complexity and local methods performed better on data with higher complexity. Their selection

scheme could be adapted to work with E-MAP-like data sets and be used to set kP in an informed way.

We studied the sensitivity of NG-MC to variations in algorithm parameters. In particular, we investigated

how NG-MC imputation performance was affected as a function of parameters values. The parameters of

NG-MC algorithm are the latent dimensionality of the factorized model (k), the degree of regularization of

latent matrices (kF), and the impact of network neighborhood (kP). In additional experiments performed on

ESP data set (Fig. 2) and with NG-MC-GO model we found that performance of our NG-MC approach is

robust for a broad range of parameter values.

6.2. Missing value abundance and distribution

Ulitsky et al. (2009) described three different scenarios of missing values in E-MAP experiments (Fig.

3). The simplest and the most studied scenario is the random model for which we assume that missing

Table 2. Accuracy as Measured by the Pearson Correlation Coefficient and Normalized

Root Mean Squared Error Across Three E-MAP Data sets and Eight Imputation Methods

Chromosome biology ESP RNA

Approach CC NRMSE CC NRMSE CC NRMSE

Filling with zeros 0.000 1.021 0.000 1.011 0.000 1.000

BPCA (k = 300) 0.539 0.834 0.619 0.796 0.589 0.804

wNN (k = 50) 0.657 0.744 0.625 0.776 0.626 0.787

LLS (k = 20) 0.678 0.736 0.626 0.764 0.626 0.776

SVT (k = 40) 0.631 0.753 0.672 0.719 0.649 0.765

MC (k = 40) 0.641 0.742 0.653 0.722 0.651 0.760

NG-MC-GO (k = 60) 0.691 0.693 0.732 0.648 0.727 0.641

NG-MC-PPI (k = 60) 0.722 0.668 0.742 0.667 0.701 0.652

MC denotes matrix completion model (sec. 3.2). The NG-MC-GO and NG-MC-PPI are network-guided matrix completion models

(sec. 3.3) that utilize gene ontology annotation and physical interaction data, respectively. For descriptions of other methods see sec. 2.

Highlighted results are significantly better than the best non-NG-MC method according to the Wilcoxon signed-rank test at 0.05

significance level.

ESP, early secretory pathway; CC, Pearson correlation coefficient; NRMSE, normalized root mean squared error; BPCA, Bayesian

principal component analysis; wNN, weighted k-nearest neighbors; LLS, local least squares; SVT, singular value thresholding algorithm.
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measurements are generated independently and uniformly by a random process. The submatrix model

corresponds to the case where all interactions within a subset of genes (e.g., essential genes) are missing.

The cross model arises when interactions between two disjoint subsets of genes are missing. This model

concurs with the situation when two E-MAP data sets that share a subset of genes are combined into a

single large data set. We identified the fourth missing value configuration, which we call the prediction

scenario (Fig. 4d). It occurs when complete GI profiles are missing. Learning in such a setting is sub-

stantially harder than learning with other missing value arrangements as genes with missing values in the

prediction scenario do not have any associated interaction measurements. In the previous section, we

compared the imputation methods using the random configuration, and we study other configurations in this

section. Here we are interested in the effect that various missing data configurations have on NG-MC, and

we compared the NG-MC algorithm to its variant, which does not use domain knowledge (MC).

Figure 4 reports on the predictive performance of our matrix completion approach obtained by varying

the fraction of missing values in the four missing data scenarios presented in Figure 3. For

x = 5‚ 10‚ 20‚ . . . ‚ 90 we hid x% of E-MAP measurements in the ESP data and inferred prediction model.

Our results are reasonably accurate (CC > 0.4) when up to 60% of the E-MAP values were hidden in the

Random and Submatrix models. It should be noted that when we hide 60% of the ESP E-MAP mea-

surements, the E-MAP scores are present in less than 40% of the matrix because the original ESP data set

a b

FIG. 2. Impact of different values for latent dimensionality (a) and regularization parameters (b) on the imputation

performance of network-guided matrix completion. Experiments that varied latent dimensionality set the regularization

parameters to kF = 0.01 and kP = 0:01. When investigating the influence of regularization the latent dimensionality was

set to k = 60 and the remaining regularization parameter to 0.01. Results of sensitivity to parameter selection is reported

for the early secretory pathway data set and network derived from gene ontology annotations. Similar behavior was

observed with other E-MAP data sets.

FIG. 3. The four configurations producing missing values in E-MAP data. Random configuration has hidden a subset

of genetic interactions selected uniformly at random. Submatrix and cross configurations have hidden all interactions

within a random subset of genes or between two random disjoint subsets of genes, respectively. In the prediction

scenario, complete genetic interaction profiles of a gene subset are removed.
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already contains *8% missing values (Table 1). When more than 80% of the data were removed, the three

considered prediction models still achieved higher accuracy (CC & 0.2) than filling-in with zeros. As

expected, predictions were more accurate for the random model than for the submatrix model for almost all

fractions of hidden data (cf., Fig. 4a and b). However, the difference in performance between the random

and submatrix models tended to be small when less than 30% or more than 70% of the measurements were

hidden. From this experiment we conclude that inclusion of additional genomic data is more useful in

structured missing value scenarios, that is, the submatrix and the cross model (Fig. 4b and c), demonstrating

that individual gene networks provide complementary information.

Imputation accuracy has improved (Fig. 4) when E-MAP data were combined with gene annotation (NG-

MC-GO) or protein–protein interaction (NG-MC-PPI) networks. These results support findings from ex-

perimental studies (Tong et al., 2004; Collins et al., 2007; Costanzo et al., 2010) that showed that if two

proteins act together to carry out a common function, deletions of their corresponding encoding genes may

have similar GI profiles. Furthermore, gene ontology annotations and synthetic lethality are correlated with

*12% and *27% of genes that genetically interact, having either identical or highly similar gene ontology

annotations, respectively (Tong et al., 2004; Michaut and Bader, 2012). Our NG-MC-GO and NG-MC-PPI

models could exploit these strong links between functionally similar genes, physically interacting proteins,

and GIs. Performance of integrated models in Figure 4 suggests the importance of combining interaction

and functional networks for prediction of missing values in E-MAP data sets.

Random scenario Submatrix scenario

Cross scenario Prediction scenario

a b

c d

FIG. 4. Performance of imputation methods (Pearson correlation coefficient) proposed in this article for different

missing data rates and missing value configurations. Refer to the main text and Figure 3 for description of the missing

value scenarios. MC denotes matrix completion approach (sec. 3.2). Network-guided matrix completion (sec. 3.3) is

represented by NG-MC-GO and NG-MC-PPI. Performance was assessed for the early secretory pathway E-MAP data

set, because it contains the least missing values. The cross configuration is not applicable when more than 50% of the

values are missing.
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We observed deterioration of imputation accuracy when complete genetic interaction profiles were

removed and NG-MC could only utilize circumstantial evidence (Fig. 4d). Decreased prediction perfor-

mance suggests that measured gene interactions are the best source of information for predicting missing

values in the E-MAP data. However, when the proportion of missing interactions was increased, the

inclusion of additional genomic data was more helpful. With the exception of the prediction model for

which the opposite behavior was observed, the performance difference between MC and NG-MC was small

(*10%) as long as < 50% of the data were removed, but rose to above 20% when ‡ 60% of the data were

removed (Fig. 4).

6.3. Data imputation by integration of gene networks

We studied imputation performance of our proposed approach on the recent lipid E-MAP data set by

Surma et al. (2013). Figure 5 shows the Pearson correlation between the imputed and true interaction

measurements when different types of circumstantial evidence were considered and various amounts and

distributions of genetic interactions were excluded from the training set. Similarly as in experiments with

the ESP data set (Fig. 4), prediction models inferred from the lipid E-MAP data that included prior

knowledge performed better than models, which considered only interaction measurements. Figure 5

also reveals that best performance was attained when our NG-MC approach collectively considered both

protein–protein interaction network and network derived from gene functional annotation data (NG-MC-

GO-PPI). The NG-MC can simultaneously consult multiple gene networks during model inference and

modify gene weights in each of the networks to achieve better prediction accuracy. As such, it does not

require substantial network preprocessing prior model inference and is able to adjust for network influence

by taking into account entire collections of considered networks. Figure 5 also conveys that the inclusion of

additional knowledge into prediction models is more pronounced in scenarios with high missing data rates

and nontrivial structure of missing measurements. Good performance of our approach in such scenarios is

an appealing property and hence, NG-MC seems to be an attractive data imputation approach.

7. CONCLUSION

We have proposed a new missing value imputation method called network-guided matrix completion

(NG-MC) that targets gene interaction data sets. The approach is unique in combining gene interaction and

network data through inference of a single probabilistic model. Experiments with epistatic MAP interaction

Random scenario Cross scenario

a b

FIG. 5. Imputation performance of network-guided matrix completion (NG-MC) for different fractions and distri-

butions of missing values in the lipid E-MAP data set and for various sources of biological network information. Prior

knowledge is included in the form of protein–protein interaction network (PPI), a network derived from gene ontology

annotation data (GO) and collective consideration of both PPI and GO. Refer to Figure 3 for description of random and

cross missing value configurations.
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data sets show that inclusion of prior knowledge is crucial and helps NG-MC to perform better than a

number of state-of-the-art algorithms we have included in our study. The results are encouraging and have

potentially high practical value for prediction of genetic interactions that are otherwise unavailable to

existing interaction measurements.
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