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Alzheimer’s disease affects millions of people worldwide and incidence is expected to rise as the population ages, but no effective
therapies exist despite decades of research andmore than 20 known disease markers. Research has shown that Alzheimer’s disease’s
missing heritability remains extensive with an estimated 25% of phenotypic variance unexplained by known variants. The missing
heritability may be explained by missing variants or by epistasis. Researchers often focus on individual loci rather than epistatic
interactions, which is likely an oversimplification of the underlying biology since most phenotypes are affected by multiple genes.
Focusing research efforts on epistasis will be critical to resolving Alzheimer’s disease etiology, and a major key to identifying and
properly interpreting key epistatic interactions will be bridging the gap between statistical and biological epistasis. This review
covers the current state of epistasis research in Alzheimer’s disease and how researchers can bridge the gap between statistical and
biological epistasis to help resolve Alzheimer’s disease etiology.

1. Introduction

Alzheimer’s disease is the most common form of dementia
and affects as many as 35 million people worldwide [1], and
incidence is expected to increase rapidly as the population
ages. The reduced cognition and required full-time care that
are characteristic of Alzheimer’s disease exact a tremendous
emotional and financial burden on family members and the
health care system. Developing viable therapies is becoming
a worldwide necessity.

To date, more than 20 Alzheimer’s disease markers have
been identified (Table 1), but none have led to the develop-
ment of effective therapies [1–4].Themajority of these mark-
ers were identified using genome-wide association studies,
and most are common with small effects on disease risk. In
the last several years next-generation sequencing has enabled
researchers to sequence whole genomes revealing several
rare variants in new genes with large effects [5–8]; however,
research suggests that Alzheimer’s disease’s missing heri-
tability remains extensive [9]. Alzheimer’s disease’s missing
heritability may be explained by missing variants or epistasis,
and discovering these genetic factors will require novel study
designs [9]. Most studies to date have treated the effect

of candidate variants individually. Epistasis in Alzheimer’
disease is largely unexplored, but there is compelling evidence
that it could play a role in disease [10–13].

Epistasis involves multiple genes contributing to a single
phenotype, but the biological nature and implications of
epistatic interactions are not always clear. Epistatic interac-
tions are generally discovered in two ways: statistically and
biologically. Statistical epistasis is a deviation from additive
effects between factors in the model [14], while biological
epistasis is a physical interaction between two or more
biological components.

Bridging the gap between statistical and biological epista-
sis is an essential next step towards understanding the genet-
ics of complex phenotypes such as Alzheimer’s disease, since
most phenotypes in complex organisms involve epistasis. To
bridge the gap, we must first understand the benefits and
shortcomings for discovering epistasis both statistically and
biologically.

Two major challenges for biological epistasis are resour-
ces and interpretation. Experiments to discover physical
interactions are challenging and expensive to carry out—
generally limiting experiments to candidate interactions
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Table 1: Known Alzheimer’s disease associated genes/variants.

Variant Gene Abbreviation Risk/protective
rs744373 Bridging integrator 1 BIN1 Risk
rs11136000 Clusterin CLU Protective
rs3764650 ATP-binding cassette, subfamily A (ABC1), member 7 ABCA7 Risk
rs3818361 Complement component (3b/4b) receptor 1 CR1 Risk
rs3851179 Phosphatidylinositol binding clathrin assembly protein PICALM Protective
rs610932 Membrane-spanning 4-domain, subfamily A, member 6A MS4A6A Protective
rs3865444 CD33 molecule CD33 Protective
rs670139 Membrane-spanning 4-domain, subfamily A, member 4E MS4A4E Risk
rs9349407 CD2-associated protein CD2AP Risk

rs9271192∗ Major histocompatibility complex, class II, DR beta 5 HLA-DRB5 RiskMajor histocompatibility complex, class II, DR beta 1 HLA-DRB1
rs28834970 Protein tyrosine kinase 2 beta PTK2B Risk
rs11218343 Sortilin-related receptor, L(DLR class) A repeats containing SORL1 Protective

rs10498633∗ Solute carrier family 24 (sodium/potassium/calcium exchanger), member 4 SLC24A4 ProtectiveRas and Rab interactor 3 RIN3
rs8093731 Desmoglein 2 DSG2 Protective
rs35349669 Inositol polyphosphate-5-phosphatase, 145 kDa INPP5D Risk
rs190982 Myocyte enhancer factor 2C MEF2C Protective
rs2718058 NME/NM23 family member 8 NME8 Protective
rs1476679 Zinc finger, CW type with PWWP domain 1 ZCWPW1 Protective
rs10838725 CUGBP, Elav-like family member 1 CELF1 Risk
rs17125944 Fermitin family member 2 FERMT2 Risk
rs7274581 Cas scaffolding protein family member 4 CASS4 Protective
∗These SNPs are located close to two different genes so both are listed here (as named in the primary publication reporting the association).

identified statistically or by some other means. Regard-
ing interpretation, if a physical interaction is discovered
only through biological experiments, the implications across
phenotypes are often less obvious because discovering an
interaction alone does not indicate which phenotypes the
interaction affects, thus ultimately leaving questions regard-
ing the biological significance of the interaction.Thepotential
benefits, however, to discovering biological epistatic inter-
actions are substantial. The discovery that two biological
molecules interact physically provides crucial functional and
pathway information and enables researchers with phenotype
information to interrogate a given interaction’s role in the
phenotype.

Statistical epistasis has its own challenges and benefits.
The primary challenge for statistical epistasis is that statistical
associations are generally based on genetic variations rather
than biological molecules, and the association does not give
evidence that the corresponding molecules actually interact
physically. In fact, many such statistical associations are
based on genetic variations that are not even transcribed
(e.g., intergenic) and are not believed to be involved in gene
regulation, leaving no obvious biologicalmechanism for their
involvement in known pathways. While this is not always
the case, these challenges leave to researchers the arduous
task of explaining how the genetic variations, or a nearby
gene, could play a role in the phenotype. These explanations
often require stepping beyond known biology and sometimes
seem implausible. Another major limitation of statistically
derived epistasis is the frequency of false-positive and false-
negative results. False-positive results are common when

testing numerous hypotheses, while false negatives are caused
by poor statistical power.

Statistical epistasis can, however, provide insights into
unknown biology. For example, just because two proteins
are not known to physically interact does not mean they do
not both affect the same phenotype; the two proteins may be
involved in the same pathway and cause different cascading
events, or a given phenotype may be determined by multiple
pathways. Such an interaction would be missed in studies
of biological epistasis but be discoverable using statistical
epistasis. Thus, statistical epistasis can provide the founda-
tion for discovering new biology and generating testable
hypotheses. Furthermore, using statistics we can explore
whether multiple genetic factors have a nonadditive effect on
a phenotype. If so, these genetic factors may be coinvolved
in the phenotype’s presentation. In this review we discuss
the strengths and weaknesses of different approaches for
identifying statistical epistasis and review previous studies of
epistasis in Alzheimer’s disease. Finally, we make suggestions
for future studies of epistasis in Alzheimer’s disease.

2. Methods to Identify Statistical Epistasis:
Merits and Limitations

Identifying statistical epistasis is the most common and cost-
effective approach to discovering gene-gene interactions, but
most studies of genetics in human disease focus on single
genetic loci—likely an oversimplification of the underly-
ing biology. To advance our understanding of the genetic
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architecture of complex phenotypes, we must elucidate the
underlying epistatic relationships.

Several analysis methods have been developed specifi-
cally to identify gene-gene interactions, includingmultifactor
dimensionality reduction [15–30], log-linear [31] (a form
of multifactor dimensionality reduction), logistic regression
[10, 11, 32–42], entropy model [43], and the log-likelihood
ratio model [44]. Multifactor dimensionality reduction and
logistic regression are the twomost commonly usedmethods.
Synergy factors are an extension of logistic regression and
for the purposes of this discussion are included in that
group. Multifactor dimensionality reduction is a nonpara-
metric approach while logistic regression is parametric. Each
method has distinct strengths andweaknesses that determine
their ability to identify interactions.

Logistic regression has several drawbacks when detecting
epistasis: (1) interaction terms grow exponentially as the
number of main effects included in the model increases [45];
(2) parameter estimates have large standard errors because
the data is high-dimensional—decreasing power to detect
interactions [45]; and (3) logistic regression is generally only
valid for binary interactions because of limited sample size
[12]. Park and Hastie, however, proposed penalized logistic
regression as a method to overcome the limitations and
showed that penalized logistic regression performs better
thanmultifactor dimensionality reduction in some situations
[46].

Many studies have demonstrated the utility of multifactor
dimensionality reduction [47–51]. Advantages of multifactor
dimensionality reduction include increased power [28, 52]
and superior ability to identify high-order interactions even
when main effects are statistically insignificant [46]. Mul-
tifactor dimensionality reduction, however, is incapable of
identifying additive main effects [46] and is less effective if
there are missing values in high-dimensional data [45].

Given the complementarity of logistic regression and
multifactor dimensionality reduction, combining approaches
may be an effective option. For example, multifactor dimen-
sionality reduction could be used to discover complex inter-
actions while logistic regression can be used for main effects.

The prevalence of false positives is a concern for all
available methods. According to Page et al. [53], there are
four reasons why an allele or interaction between alleles
can be associated with a complex disease: (1) it is actually
causative; (2) the association is by random chance; (3) a single
allele is in disequilibrium with the causative allele; and (4)
the association is due to a systematic bias in some portion
of the study. Because of the high-dimensionality and small
sample size of many studies, there is an increased likelihood
of false positives because of the reasons stated by Page et al.
“Overfitting” is another potential cause of false positives.
Overfitting happens when a complex model is fit to data
and is not generalizable beyond the population from which
the sample was derived [54]. The cause has commonly been
attributed to either genetic or environmental heterogeneity
[55], or due to epistasis [14, 56].

There are many approaches designed to prevent false
positives and overfitting when studying predictive alleles in
a given disease, but they are not foolproof. For instance,

protocol when performing multiple comparisons—millions
in the case of genome-wide association studies—involves
adjusting 𝑃 values to limit the number of false positives
due to chance. Similar methods exist to prevent overfitting
statistical models to data. Although these methods are useful,
researchers mistakenly report false associations.

Even though many weak associations are reported, this
practice is not completely wrong. Statistical analyses are
limited by the available data, and data is limited by external
restraints such as financial support, limited patient availabil-
ity, genetic material, and even ethical restrictions. Given the
various challenges researchers face to produce data, it is not
surprising thatweak associations are reported.Thekey to sep-
arating true and false associations will be testing in indepen-
dent data sets if they are large enough, or usingmeta-analyses
across many smaller data sets to determine if the signal is
consistent and significant. If a signal is replicable, researchers
then need to test associations in cell lines ormodel organisms.

3. Epistasis in Alzheimer’s Disease

Numerous studies have identified statistical epistasis in
Alzheimer’s disease using logistic regression [10, 11, 32–42]
and multifactor dimensionality reduction [15–27]. Here we
describe studies where results have been replicated in at least
two independent samples.

In 2004 Robson et al. identified statistical epistasis
between the transferrin (TF) C2 allele and the haemochro-
matosis (HFE)C282Y allele using logistic regression and syn-
ergy factor analysis [33]. These genes were targeted because
of their role in metabolizing iron and previous evidence of
iron buildup in Alzheimer’s disease patients [57–59]. In 2009,
Kauwe et al. replicated the findings from Robson et al. in a
separate cohort [34]. There is strong evidence of a biological
cascading effect for this statistical interaction, as suggested
by Kauwe et al. [34]. HFE binds with transferrin receptor
1 (TfR1), but the C282Y allele has a lesser affinity, allowing
TfR1 to bind TF more easily [34, 60]. It was hypothesized
thatmore aggressive binding of TFmay cause overabsorption
of dietary iron, leading to iron deposits in various tissues
[34, 61]. Additionally, Giunta et al. suggested that wild-type
TF plays an important role in iron transport and limits
amyloid aggregation [34, 62]. All the information supports
hypotheses by Robson et al. [33] and Lehmann et al. [63] that
this interaction increases Alzheimer’s disease risk through
increased redox-active iron and oxidative stress.

Likewise, in 2004 Infante et al. identified statistical epis-
tasis between interleukin-6 (IL-6) and interleukin-10 (IL-10)
associated with decreased risk for Alzheimer’s disease based
on previous evidence that patients with Alzheimer’s disease
produce more proinflammatory interleukin-6 and less anti-
inflammatory interleukin-10 [64]. In 2009 Combarros et al.
replicated the statistical interaction in a separate cohort [10].
This interactionmay play a critical role in Alzheimer’s disease
because Remarque et al. demonstrated that Alzheimer’s
disease patients have a proinflammatory phenotype and that
Alzheimer’s disease patients produce more IL-6 (proinflam-
matory) and less IL-10 (anti-inflammatory) when compared
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to controls [65]. It is difficult to determine, however, whether
this inflammation is contributing to Alzheimer’s disease or is
simply another side effect of the underlying cause.

In 2009, Combarros et al. performed a comprehen-
sive analysis of over 100 reports of statistical epistasis in
Alzheimer’s disease, using and introducing their own synergy
factor statistic. The synergy factor is a valuable statistic
because it relates the expected odds ratio to the observed,
summarizing the nonadditive effect of the interaction. This
study highlights the innate challenges in discovering sta-
tistical epistasis. The authors were only able to support
27 of the originally reported gene-gene interactions using
their synergy factor analysis. The challenge with epistatic
replication is that there are many factors that influence
whether the interaction can be detected in a given data set.
Sample size, heterogeneity, and environmental factors are
likely the most influential for detecting a real interaction.

In 2014, Gusareva et al. published the first replicable
interaction associated with Alzheimer’s disease using an
exhaustive, genome-wide screening approach [66]. They
identified an interaction between KHDRBS2 (rs6455128) and
CRYL1 (rs7989332) using a cohort from France (2,259 cases
and 6,017 controls).The interaction was replicated in a cohort
from Germany (555 cases and 824 controls). The interaction
was further supported by a meta-analysis using five more
independent Alzheimer’s disease cohorts. Transcriptome
analysis showed decreased expression for both genes in the
temporal cortex and cerebellum brain regions. Gusareva
et al. hypothesized a biological link between KHDRBS2
and CRYL1 through a potential association with heat-shock
proteins and Alzheimer’s disease. KHDRBS2 is believed to
affect transcription of heat-shock proteins because of studies
in its homologue Slm1 in Saccharomyces cerevisiae [66, 67].
Slm1 was shown to interact with and activate TORC2 [68],
a kinase complex that is part of the TOR pathway, which
Pierce et al. demonstrated to affect amyloid 𝛽 and cognitive
function in Alzheimer’s disease mouse models [69]. Pierce
et al. hypothesized that upregulated heat-shock proteins,
resulting from inhibition of the TOR pathway, affect amyloid
𝛽 and cognition. This study in particular demonstrates an
effective approach to elucidate the functional repercussions
of epistasis.

4. Epistasis among Top Alzheimer’s
Disease Genes

Most epistasis studies in Alzheimer’s disease involve candi-
date genes, but to date, few studies [13, 70] have addressed
combined effects of the top Alzheimer’s disease genes (see
Table 1). Verhaaren et al. examined the contribution of the
nine AlzGene.org risk alleles to Alzheimer’s disease status
prediction [70]. They calculated an additive genetic risk
score and compared Alzheimer’s disease status prediction
performance of age, gender, and the apolipoprotein E (APOE)
𝜀4 allele using logistic regression with and without the
additive genetic risk score. The genetic risk score did not
improve prediction performance significantly, suggesting
that the nine alleles may not be diagnostically useful when

constrained to an additive relationship. The assumption of
additive relationships between risk loci is common but is
likely to be an oversimplification of the underlying biology
for Alzheimer’s disease and other complex diseases [11, 12, 14].
In fact, there may be underlying gene-gene interactions not
examined in the Verhaaren et al. study or others that improve
Alzheimer’s disease status prediction performance.

Ebbert et al. [13] evaluated the possible interactions
between the AlzGene.org variants and their effects on
Alzheimer’s disease in several large, independent data sets.
Briefly, Ebbert et al. genotyped each locus in 2,419 subjects
from the Cache County Study on Memory Health and Aging
to verify results by Verhaaren et al. and explore statistical
epistasis among the loci to determine if any interactions
are informative to the model in the presence of the main
(individual) allele effects. Two interactions were significant
in the model: an interaction between CD33 and MS4A4E
(𝑃 < 0.003; SF 5.31, 95% CI 1.79–15.77) and between CLU
andMS4A4E (𝑃 < 0.016; SF 3.81, 95% CI 1.28–11.32).

5. Future Directions

Many researchers are focusing their efforts on epistasis and
the community is beginning to discover epistatic interactions
that play a role in Alzheimer’s disease, but based on odds
ratios none of the as-yet discovered interactions appear to
play a significant role in Alzheimer’s disease etiology. Each
of the top candidate genes individually has a consistent
and strong signal across numerous data sets, making it a
reasonable hypothesis that there are interactions between
them. It is not reasonable, however, to assume that the most
critical interactions are only between loci with main effects.
As such, researchers must approach epistasis in Alzheimer’s
disease with even larger data sets using exhaustive, genome-
wide approaches as demonstrated by the exciting study by
Gusareva et al. [66].

The International Genomics of Alzheimer’s Project
(IGAP) has a data set of over 74,000 cases and controls [4]—
a massive data set by today’s standards. Given the success by
Gusareva et al., a similar agnostic (hypothesis-free) approach
in such a large data set would likely result in more stable
interactions associated with Alzheimer’s disease case-control
status, thus leading to potentially useful approaches for both
diagnostics and therapeutics. IGAP also discovered several
more alleles with main effects in a recent study (Table 1) [4].
Rerunning our analysis across the top loci including IGAP’s
newly discovered loci may uncover new interactions.

Ultimately, however, we must bridge the gap between
statistical and biological epistasis. Biological experiments
demonstrating tangible effects on known or novel Alz-
heimer’s disease pathology will be essential to understanding
the underlying etiology. These gene-gene interactions may
involve physical interactions between proteins, or they may
be indirect where they affect a downstream product.

6. Conclusions

Epistasis plays a central role in most phenotypes and may
play a significant role in Alzheimer’s disease. To understand
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Alzheimer’s disease etiology, researchers must utilize both
statistical and biological epistasis studies to identify critical
interactions and to characterize their functional roles. Some
studies have already demonstrated that epistasis plays a role
in Alzheimer’s disease, but the findings are insufficient to
develop effective therapies. By focusing on epistasis and
bridging the gap between the statistical and biological knowl-
edge base, researchers will contribute invaluable information
for revealing the disease’s etiology and developing effective
treatments.
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