Skip to main content
. 2015 May 7;8(3):243–263. doi: 10.1007/s11869-015-0338-3

Table 4.

Comparison of common thermal/optical protocols: IMPROVE_A, STN, and EUSAAR_2

Carbon fraction Atmosphered IMPROVE_A_TORa STN_TOTb EUSAAR_2_TOTc
Temp. (°C) Residence time (s)e Temp. (°C) Residence time (s) Temp. (°C) Residence time (s)
OC1 Inert 140 80–580 310 60 200 120
OC2 Inert 280 80–580 480 60 300 150
OC3 Inert 480 80–580 615 60 450 180
OC4 Inert 580 80–580 900 90 650 180
Oven coolingf NA NA NA 30 NA 30
EC1 Oxidizing 580 80–580 600 45 500 120
EC2 Oxidizing 740 80–580 675 45 550 120
EC3 Oxidizing 840 80–580 750 45 700 70
EC4 Oxidizing NA NA 825 45 850 80
EC5 Oxidizing NA NA 920 120 NA NA

NA not applicable

aThe non-urban Interagency Monitoring of Protected Visual Environments (IMPROVE) network and urban Chemical Speciation Network (CSN), measures and reports both thermal/optical reflectance (TOR), and thermal/optical transmittance (TOT), following the IMPROVE_A_TOR protocol (Chow et al. 2007b, 2011)

bSpeciation Trends Network (STN), also called NIOSH-like protocol (Peterson and Richards 2002)

cEuropean Supersites for Atmospheric Aerosol Research, EUSAAR_2, protocol (Cavalli et al. 2010)

dInert atmosphere ultra-high purity (UHP) helium (He) for OC analysis. Oxidizing atmosphere 98 % He/2 % oxygen (O2) for all protocols

eRamping to the next temperature or atmosphere begins when the flame ionization detector (FID) response returns to either baseline or a constant value; these times represent minimum and maximum times to be spent in any segment, respectively

fAt the end of OC analysis, a cooling blower turns on for ∼30 s. EC analysis starts ∼10 s after the introduction of 98 % He/2 % O2