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Uveal melanoma is the most common malignancy of the adult eye. Although it is a relatively infrequent tumor, clinical prognosis is
often poor owing to a high incidence of aggressive metastatic disease, for which there are limited treatment options. Little is known
about the etiology of this condition, although several risk factors have been identified. Unlike cutaneous melanoma, however,
ultraviolet radiation does not figure prominently among these risk factors. In this review, we focus on an associated form of visible
electromagnetic radiation, high-energy short-wave (blue) light, a causative agent in various forms of age-related retina damage, as
a previously overlooked risk factor in uveal melanoma development and progression. Finally, we discuss the impact of these data
on contemporary ocular therapy, particularly the debate surrounding the filtering capabilities of intraocular lenses used to replace

dysfunctional crystalline lenses during cataract surgery.

1. Introduction

Uveal melanoma (UM) is the second most common primary
malignancy of the eye worldwide after childhood retinoblas-
toma and is the principal fatal intraocular disease in adults
[1]. The reported incidence ranges from 4 to 11 cases per
million/year [2-4], varying by country and ethnicity, with a
significantly higher incidence in Caucasians than in African
and Asian populations. UM arises in melanocytes located
within the three different regions of the uveal tract: the iris,
ciliary body, and choroid.

UM can be diagnosed at any age but it is more common
in middle to later life, with a median age of onset of 55-60
years [1, 3]. Although it is a relatively rare neoplasm, UM
is associated with particularly high mortality, primarily due
to a high level of metastatic liver disease which develops in
almost half of patients within 15 years of diagnosis [5, 6]. Once
liver metastasis is detected, prognosis is poor, with a reported
median survival duration ranging from 2.2 to 12.5 months [7-
9]. A poor clinical outcome, coupled with limited treatment
options (there are no specific therapeutic modalities currently
available for metastatic UM) [10-12], underscores the need
to define precisely the underlying risk/predisposing factors

that lead to uveal melanocyte transformation and subsequent
metastasis, with the focus as much on prevention as on early
diagnosis.

Various risk factors associated with UM have been iden-
tified. A correlation between UM incidence and latitude in
European populations suggests that lack of ocular pigmenta-
tion could be a risk factor for UM [4,13,14], and light iris color
has also been linked to poor prognosis in patients with UM
[15]. Within populations with light irises, however, elevated
levels of choroidal pigmentation have been linked to an
increased incidence of UM [16]. Other recognized risk factors
include Caucasian ethnicity [13], preexisting choroidal nevi
[17, 18], and genetic factors such as specific chromosomal
abnormalities and GNAQ/1I mutations [19, 20]. Furthermore,
some familial factors have been associated with an increased
risk of UM and the prevalence is higher in men than women
[19].

A link between ultraviolet exposure and UM, as observed
with cutaneous melanoma, has been suggested, but the
evidence for this is inconclusive [21, 22]. It has been known
for many years that ultraviolet exposure, coupled with specific
skin pigment gene polymorphisms, is a prominent factor in
the development of cutaneous melanoma [23, 24]. This strong
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link has in turn driven efforts to establish whether there is a
similar link in patients with UM; however, epidemiological
and genetic studies have generally failed to show such
a connection. Sunlight exposure does not show a strong
association with UM [21, 22], although arc welding (a source
of ultraviolet/blue light) does [21, 22, 25].

Genetic studies also suggest that ultraviolet radiation
does not significantly contribute to UM. For example, the
oncogenic V600E bRAF mutation, expressed in the majority
of patients with cutaneous melanoma, is thought to be the
result of solar ultraviolet exposure [26-28] and is absent from
melanomas occurring in body locations that are naturally
protected from ultraviolet radiation [28]. This link provides
a useful molecular tool that allows direct insight into the
contribution of solar ultraviolet radiation to UM incidence
[29, 30]. Genetic analysis of V60OE bRAF expression in
patients with UM has uncovered a relationship between the
frequency of this mutation and the ocular location of the
melanoma. V600E mutations have been detected in patients
with anterior UM, such as those of the iris [31], consistent
with ultraviolet exposure; however, most UM cases arise in
the posterior uveal tract and V600E mutation rates here are
negligible [19, 32]. These data imply that while ultraviolet
radiation may well play a role in some cases of anterior UM,
it does not significantly contribute to the oncogenic changes
driving the majority of UM arising in the posterior uveal
tract.

The combined epidemiological/genetic case against a
significant role for ultraviolet radiation in the etiology of
this disease is consistent with the established properties
of the adult crystalline lens and cornea, which collectively
filter out all wavelengths below 400 nm [29, 30, 33, 34].
Perhaps the key to understanding the link between UM
and activities that generate high amounts of electromagnetic
radiation (e.g., arc welding) does not lie in what is filtered
out but in what can pass through the lens and cornea. For
instance, arc welding produces significant amounts of intense
short-wave light [25, 35]. Unlike ultraviolet radiation, short-
wave (perceived as blue) light (400-500 nm) can reach the
posterior uveal tract while retaining sufficient energy to be
deleterious to biological structures. In fact, although visible
light reaching the retina is a prerequisite for sight, phototoxic
damage caused by its higher energy blue component is not
an uncommon feature of the mammalian eye. A significant
number of articles have documented blue-light-mediated
damage to cells derived from the retinal pigment epithelium,
retinal ganglion cell layer, and other epithelia, especially blue
light in the 425-475 nm range [36-41]. This cellular damage
is thought to be primarily photochemical and arises from
chromophores, such as melanin, retinoids, and lipofuscin.
Blue light can also generate reactive oxygen species (ROS)
in mitochondria [36]. This damage usually results in cell
dysfunction or death, the main causes of cellular aging
and age-related macular degeneration (AMD), but may also
contribute to tumorigenesis [41]. In this paper, we review the
available evidence for a causal link between blue light and
UM.
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2. Role of Blue Light in Uveal Melanoma

Systematic literature searches conducted through Ovid
(Embase and PubMed) showed that the earliest reports
of an association between exposure to blue light and the
development of UM have come from in vitro and animal
work. Several studies have shown that blue light has a mitotic
effect on human UM cell lines [42, 43]. Cultured human
UM cells exposed to blue light (peak 475nm) significantly
increased their mitotic division rate relative to blue-light-
shielded controls, an effect that was blocked using a blue-
light-filtering lens [43]. Although the exact mechanism
underlying the relationship between blue light and increased
proliferation of uveal melanoma cells is unknown, it has been
shown that shorter wavelengths of light can induce retinal
pigment epithelial cell death by mitochondrial-derived ROS
production [40]. Thus, although specific studies are required,
investigating ROS production following blue light exposure
in uveal melanoma cells would be a good starting point for
elucidating the aforementioned relationship.

This interesting observation was followed up by a study
that sought to mimic the effect of blue light on UM cells
within the context of the mammalian eye. Human UM
cells xenografted into the eye of an albino rabbit model of
ocular melanoma and subsequently exposed to blue light
showed enhanced proliferation upon removal and reculture,
compared with control samples protected from blue light
[42]. The significance of this finding is that the UM cells
were exposed to blue light while residing within the choroid,
effectively demonstrating that blue light affects uveal cells and
can enhance their mitotic ability, a crucial step in linking blue
light to malignant changes within uveal melanocytes in vivo.
A final confirmation of the link between blue light and UM
in vivo comes from a study in Long Evans rats, a strain with
pigmented eyes in which there have been no reported cases of
intraocular melanoma. This study described the development
of an ocular tumor in one animal following blue light
exposure (434-475nm) coupled with the administration of
an antiapoptotic agent [44]. The tumor involved the iris,
ciliary body, choroid, and sclera, and contained large amounts
of melanin.

Paradoxically, however, 450 nm blue light appears to be
phototoxic to mouse cutaneous melanoma cells [45, 46].
Initial work reported that 450 nm light from a light-emitting
diode was cytostatic to B16 cells, [45] as well as inhibiting the
ability of these cells to metastasize to the lung when injected
intravenously into mice [47]. Further work has extended
these early observations to show that 450 nm light is both
cytostatic and cytocidal to B16 cells [46]. It has also been
suggested that blue light therapy may be of clinical benefit
in cases of hemorrhagic metastatic melanoma, based on data
from a single patient receiving aggressive chemotherapy for
a melanoma on the anterior forearm. It should be noted that
these phototoxic data are all based on cutaneous melanoma
and for the most part the behavior of a single mouse cell line.

Further evidence underpinning a link between blue light
and UM comes from neonatal blue light therapy studies. Blue
light therapy is an essential tool in treating neonatal jaundice
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because dermal/subcutaneous bilirubin absorbs light max-
imally at 425-475nm, leading to its conversion to a less
toxic soluble form. A reported long-term side effect of this
therapy is the increased risk of dysplastic nevus development
in both the skin and eye (clinically, atypical nevi, or dysplastic
nevi, are generally accepted to increase an individual’s risk of
melanoma) [48]. An initial report described a higher preva-
lence of atypical but not common melanocytic nevi in the
skin of school children who had previously received neonatal
blue light therapy [49]. Although broad-spectral emission
bulbs are frequently used in this therapy (370-600 nm, max-
imal emission 450 nm), ultraviolet A contamination remains
negligible at approximately 0.3% of output [48]. A follow-up
study of monozygotic and heterozygotic twins, in which one
of each pair had received and one had not received neonatal
blue light therapy, not only reproduced these findings, but
also found an increase in benign ocular pigmented lesions of
the iris in the cohort who had received blue light therapy [50].
The latter finding is surprising because eye protection is worn
in neonatal blue light therapy; however, accidental removal of
eye coverings may occur and the neonatal eye allows greater
transmission of lower frequency blue light relative to the adult
eye [29].

Blue light has been shown to induce nuclear DNA
lesions, suggesting a possible mechanism for tumorigenesis.
Specific nuclear DNA lesions resulting from blue light have
been recorded in the presence of lipofuscin, a photoinduced
intracellular generator of ROS [36]. Furthermore, although
no study has shown DNA mutations in uveal melanocytes
in the presence of blue light, the carcinogenic potential
of radiation in the 365-436 nm ultraviolet A/blue light
crossover region has been demonstrated. In animal models
of melanoma, ultraviolet A/blue light is not directly absorbed
by DNA but rather exerts its effect through a photochemical
interaction with melanin [51]. Given the filtering power of
the crystalline lens and cornea, there is a significant window
of mutagenic opportunity for blue light of 400-436 nm, and
probably higher, because 365-436 nm represented the peak
of activity. Interestingly, it has been shown that ultraviolet B
and ultraviolet A differentially induce cutaneous melanoma
through direct DNA damage and indirect melanin-derived
ROS-mediated damage, respectively [52]. The wavelengths of
ultraviolet A and blue light are adjacent and their biological
effects probably overlap, as their shared ability to gener-
ate ROS demonstrates. Although the relationship between
melanocyte melanin (eumelanin, pheomelanin, and their
precursors), ROS generation, and DNA damage is complex
[53], a plausible scenario involving blue-light-triggered ROS-
induced melanocyte mutation can be hypothesized as a
precipitating factor leading to UM.

Blue light may also play a role in neovascularization, a key
event in the successful development of any solid tumor, and
by extension UM. A central player in this process is vascular
endothelial growth factor (VEGF), a signaling protein that
stimulates both vasculogenesis and angiogenesis. Hypoxia
is known to induce VEGF production by UM cells [54,
55], and high levels of VEGF have been reported in both
the aqueous and vitreous humors of patients with UM [56,
57]. Furthermore, VEGF is an associated biomarker of UM

metastasis [58, 59]. In cultured retinal pigment epithelial cells,
VEGF production in response to white light exposure can
be inhibited by directly blocking the blue light component
[60-62]. While it remains to be seen if this phenomenon
can be replicated in either primary ocular melanocytes or
UM cells, particularly with respect to its relationship with
hypoxia, these data lend further mechanistic credibility to the
link between blue light and a critical stage in the development
of UM.

3. Clinical Implications

If blue light is a known risk factor for AMD and, at
the very least, a suspect in UM development, can this
knowledge be translated into some form of meaningful
preventive measure? One area of immediate relevance is the
current debate surrounding intraocular lens (IOL) implants
used after cataract surgery [63-65]. The replacement of the
crystalline lens by an IOL is a central component of this
procedure. IOLs are designed to filter out ultraviolet radiation
to protect the eye from damage. Early IOL models filtered
out ultraviolet radiation, but more recently developed IOLs
filter out a wider spectral range, including at least the more
energetic parts of blue light because, ideally, the spectral
emission characteristics of an IOL should mimic those of
the lens that was removed. As the crystalline lens ages, it
yellows and filters out significantly more blue light above
400 nm. This process appears to be caused by the progressive
accumulation of yellow chromophore deposits, primarily 3-
hydroxykynurenine glucoside derivatives [66], estimated to
reduce the blue light transmission capacity of the crystalline
lens by around 0.7-0.8%/year [67]. Consequently, the 400-
500 nm transmission capacity of 80-90% associated with the
lens of a healthy child or young adult [68, 69] is cumulatively
reduced in later life, dropping to around 50% by the fifth
decade and to as little as 25% or less at 70 years and over
[68-72]. There is also evidence to suggest that retinal tissue
becomes more sensitive to phototoxicity, possibly owing to
increased lipofuscin concentration and impaired antioxidant
activity [29, 65], concomitant with altered lens function.
Therefore, there is a clinical rationale for considering the use
of blue-filtering IOLs, and this is further supported by the
evidence presented in this paper (Figure 1).

4. Conclusions

In summary, cumulative epidemiological and experimental
evidence indicates that blue light is a credible risk factor for
the development of UM. Additional studies are required to
clarify the risk associated with blue light and the protective
potential of blue-filtering IOLs following cataract surgery.
As life expectancy continues to increase, individuals are
expected to live longer after cataract surgery. Shielding
individuals from the known harmful effects of blue light,
a role normally performed by the aging crystalline lens,
through the use of blue-filtering IOLs is of clinical benefit as
a preventive measure against UM.
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FIGURE 1: (a) The young crystalline lens and cornea together filter UVA and UVB while allowing transmission of most blue light (defined as
400-500 nm) to the retina. Around 80-90% of blue light at 450 nm can pass through the young lens. (b) As the crystalline lens ages it yellows
and progressively filters more blue light until, by the sixth or seventh decade, blue light transmission can be as low as 20% of that transmitted
by the young lens. (c) Early types of IOLs used to replace the crystalline lens during cataract surgery effectively filter UV but do not block blue
light. It is hypothesized that blue light reaching the retina increases the risk of preexisting dysplastic nevi (indicated as CN, choroid nevus)
progressing to UM. A typical CN is shown in the small retinal photograph, while a UM is shown in the magnified retinal photograph. (d)
Blue-light-filtering IOLs are designed to filter up to 50% of blue light. This models the natural filtering ability of the middle-aged eye, reducing
potentially damaging radiation while not impacting on vision. We argue that preexisting CNs (shown in the small retinal photograph) are
less likely to progress to UMs in this environment. CN, choroidal nevus; IOL, intraocular lens; UM, uveal melanoma; UV, ultraviolet; UVA,
ultraviolet A; UVB, ultraviolet B.
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