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Abstract
Purpose Intraoperative coronary motion modeling with
motion surrogates enables prospective motion prediction in
X-ray angiograms (XA) for percutaneous coronary interven-
tions. The motion of coronary arteries is mainly affected
by patients breathing and heartbeat. Purpose of our work
is therefore to extract coronary motion surrogates that are
related to respiratory and cardiac motion. In particular, we
focus on respiratory motion surrogates extraction in this
paper.
Methods Wepropose a fast automatic method for extracting
patient-specific respiratory motion surrogate from cardiac
XA. The method starts with an image preprocessing step
to remove all tubular and curvilinear structures from XA
images, such as vessels and guiding catheters, followed by
principal component analysis on pixel intensities. The respi-
ratory motion surrogate of an XA image is then obtained by
projecting its vessel-removed image onto the first principal
component.
Results This breathing motion surrogate was demonstrated
to get high correlation with ground truth diaphragm motion
(correlation coefficient over 0.9 on average). In comparison
with other related methods, the method we developed did

B Hua Ma
h.ma@erasmusmc.nl

Theo van Walsum
t.vanwalsum@erasmusmc.nl

1 Biomedical Imaging Group Rotterdam, Departments
of Radiology and Medical Informatics, Erasmus MC,
Rotterdam, The Netherlands

2 Department of Cardiology, Royal Perth Hospital,
Perth, Australia

3 Department of Cardiology, Erasmus MC, Rotterdam,
The Netherlands

not show significant difference (p > 0.05), but did improve
robustness and run faster on monoplane and biplane data in
retrospective and prospective scenarios.
Conclusions we developed and evaluated a method in
extraction of respiratory motion surrogate from interven-
tional X-ray images that is easy to implement and runs in
real time and thus allows extracting respiratory motion sur-
rogates during interventions.

Keywords Respiratory motion · X-ray angiograms ·
Principal component analysis · Percutaneous coronary
intervention

Introduction

Percutaneous coronary intervention (PCI) is a minimally
invasive procedure for treating patients with advanced coro-
nary artery disease. With this technique, a catheter system
is introduced into patients’ circulation system through their
femoral or radial artery under local anesthesia. A preshaped
guiding catheter is positioned into the ostium of the coronary
artery. Through this catheter, a guide wire serving to deploy
devices, such as balloon catheters and stents, is advanced into
the branches of the artery. Once a stenosis is targeted, the bal-
loon is deployed at the lesion site to fix the vessel blockage
[1].

PCI is normally performed in a catheterization laboratory
under the guidance of X-ray angiography (XA) that coronary
arteries are opacified with contrast agent. However, due to
contrast agent toxicity, its injection times are limited, such
that guide wire and device advancement into the target lesion
is performed under “vessel-free” images. In this situation,
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interventional cardiologists have to mentally reconstruct the
position of coronary arteries and stenosis based on previous
images, which increases the risk of failure for the procedures,
especially in difficult cases.

To address this problem, Shechter et al. proposed tomodel
the coronary motion with surrogate signals from contrast-
enhanced images, and hence, the guidance in “vessel-free”
images becomes feasible by prospective motion correction
with such a model [3]. As the motion of coronary arteries
is mainly affected by patient’s breathing motion and cardiac
heart beat, it is reasonable to model the coronarymotion with
surrogateswhich are correlatedwith patients’ respiratory and
cardiac motion. With such an aim, we have been focusing on
respiratory-induced coronary motion modeling. Therefore,
the purpose of our studywas to develop and evaluate amethod
for fast and robust extraction of respiratorymotion surrogates
from X-ray angiograms for PCI.

Related works on respiratorymotion surrogates have been
reported. Signals from external apparatus, such as navigators
or bellows, have been used in many studies for respira-
tory motion modeling [2]. Usage of image-based surrogates
have also been investigated. One commonly used surro-
gate is diaphragm superio-inferior (SI) motion [3–5]. This
is extracted by drawing a rectangular ROI on diaphragm bor-
der followed by manual tracking the diaphragm or automatic
calculating the 1D translation. Thesemethods involve human
interaction to draw an ROI and hence not entirely automatic.
Automatic diaphragm detection and tracking were reported
in [6,7]. These methods use morphological operation to pre-
process XA images followed by a second-order curve fitting
to the diaphragm border. Studies on other respiratory-related
objects, e.g., coronary sinus catheter and tracheal bifurcation,
can be seen in [4,8]. These methods require specific objects
being present in images, which is not always the case in XA
images for PCI. Dimension reduction techniques have been
used for studying respiratory motion as well. In [9], an auto-
matic method based on principal component analysis (PCA)
was designed for retrospective motion gating. This method
first creates a mask using Hessian-based vesselness filtering
and analyzes pixels inside the mask with PCA technique.
In another study [10], hierarchical manifolding learning was
used to find correlation between image regions and respira-
tory motion.

In this work, we developed a real-time, PCA-based
method for extracting a respiratory surrogate from coro-
nary XA sequences. Our contributions are threefold: First,
we develop a method that is simple to implement and runs
in real time on common PC hardware; second, we evalu-
ate the method on several clinical datasets, comparing the
results with manual ground truth and existingmethods; third,
we assess the usability of the method on monoplane and
biplane image data in both retrospective and prospective
scenarios.

Methods

Coronary motion analysis in frames of XA sequence is com-
plicated by the existence of both respiratory and cardiac
motion in images. Therefore, respiratory motion surrogate
extraction could possibly benefit from elimination of the
objects representing cardiac motion from XA images. In
this situation, respiratory motion becomes the major source
of intensity change in XA sequence and could be analyzed
with methods having source decomposition capability, such
as principle component analysis.

To give an overview, our proposed method consists of two
major steps. First, images are downsampled and processed
with morphological closing to remove coronary arteries,
guiding catheters, etc. Next, pixel intensity changes in the
“vessel-removed” images are analyzed with principal com-
ponent analysis to extract respiratory motion information.
Each of the steps is explained in more detail in the next sec-
tions.

Preprocessing of XA images

First, each frame of the sequence is downsampled. Depend-
ing on the original image size, the downsampling factor is
chosen to be 4 if original size is 512×512 or 600×600, or 8
if previous size is 1024 × 1024. This operation converts the
original frame to an image of size 128 × 128 or 150 × 150,
which already allows fast processing in later steps and still
preserves enough original information that we need for sub-
sequent analysis.

Next, as we are interested in respiratory motion only, we
remove structures that show cardiac motion. To this end,
similar to [6], amorphological closing is applied to the down-
sampled image with a circular structuring element in order to
remove any tubular and curvilinear structures, such as coro-
nary arteries, guiding catheters, guide wires and stitches. The
size of the structuring element is chosen based on the max-
imal diameter of coronary arteries and guiding catheters.
Dodge reported that the lumen diameter of the left main
artery measures 4.5 ± 0.5mm [11]. In another study using
transthoracic echocardiography [12], the average wall thick-
ness of left anterior descending artery was 1.1 ± 0.2 mm
and its external elastic membrane diameter is 4.5± 0.9mm.
Having amaximumcoronary diameter of 5–7mmand amax-
imum magnification of 1.5, we use a structuring element of
around 11mm in diameter (roughly 7–8 pixels in radius in the
downsampled images) to remove the curvilinear structures.
This size is shown to be adequate and guarantee a complete
removal of vessels and guiding catheters from our images.

With the mentioned operations, objects representing car-
diac motion are effectively removed from downsampled
XA images, while the diaphragm border and lung tissues
still remain. Morphological closing might cause circular
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Fig. 1 Morphological closing operation on an XA image. a Original
XA. b Image processed with morphological closing: guiding catheter
and coronary arteries are removed

artifacts which, however, have lower contrast than the arter-
ies, which is sufficient to prevent the subsequent analysis
from being “contaminated” by cardiac motion. An example
morphological-closed image is showed in Fig. 1.

Principal component analysis

Principal component analysis (PCA) is typically used for
dimension reduction. It transforms a multivariate dataset to a
new orthogonal coordinate system such that most variance of
this dataset could be represented by a fewcoordinates.Hence,
reducing its dimension is normally achieved by preserving
only a few coordinates in the new coordinate system without
losing much information [14].

Similar to [9], we first use the PCA technique on
morphological-closed images to obtain principal compo-
nents for each sequence. Representing a frame of an XA
sequence with an n × nmatrix, we concatenate each pixel in
such matrix into a single column vector xi , whose size is D
× 1, where D = n2. Thus, an XA sequence consisting of N
frames is represented as a D × N matrix X = [x1, . . . , xN].
We then center X to obtain a zero mean matrix. Without
losing generality, we still write the zero mean matrix as X.
Seeking the principal components of X is equivalent to com-
puting the eigenvectors of covariance matrix XXT , which is a
D×Dmatrix. AsD is usually a large number and in our case
D >> N, we adopt the approach from [14] to apply eigen
analysis to the N × N matrix XTX. Then we have

E = X Ẽ�−1, (1)

where E is theD×Nmatrix of eigenvectors of XXT , Ẽ is the
N × N matrix of eigenvectors, and � is the N × N diagonal
matrix of eigenvalues of XTX. With this approach, we benefit
computation efficiency from computing the eigenvectors of
a smaller matrix XTX. Next, we project the XA sequence on
the first principal component e1 by computing

p = XT e1, (2)

where e1 is the first column of E representing the direction
of the largest variance and p is a N× 1 projection vector. So
each frame in such sequence is represented by an element
in vector p. The assumption underlying our approach is that
respiratory motion is the major source of variation in these
sequences where cardiacmotion is eliminated. Therefore, we
use p as our breathing surrogate.

Experiments

Image data

For our experiments, we used anonymized imaging data that
were acquired from Department of Cardiology at Erasmus
MC (University Medical Center Rotterdam) in Rotterdam,
the Netherlands. XA images of eight patients who underwent
a PCI procedure that were acquired with Siemens AXIOM-
Artis biplane system were analyzed. The frame rate of all
sequences is 15 frames per second. The number of frames
per series ranges from 55 to 244, corresponding to 3.7–
16.3 s of imaging time. All eight patients have in total 1898
frames. From our image data, five are 512 × 512 pixels,
two are 600 × 600, and one is 1024 × 1024, with pixel
size 0.216 × 0.216 or 0.279 × 0.279, 0.184 × 0.184 and
0.139 × 0.139 mm2. The diaphragm can clearly be seen in
seven patients in both images of the biplane data, whereas
the diaphragm border is not visible in the other one. In that
case, some lung tissues motion can still be observed and
served as the main indicator of respiratory motion. Contrast
agent injection and fading during imaging can be seen in all
sequences.

Ground truth data

Ideally, ground truth should be a direct indicator of respira-
tory motion. We first manually selected a rectangular ROI in
original XA sequence on diaphragm border or where there
is lung tissue motion, see Fig. 2a. Stacking all frames into a
image volume and inspecting the “sagittal” view of the ROI,
we observed a profile representing the change of diaphragm
position, see Fig. 2b.

Manual labeling diaphragm or lung tissue’s motion track
was subsequently done on the sagittal view of ROI image
(Fig. 2c). This labeling was performed such that there is only
one marker in each frame. This labeling step resulted in a
vector of real numbers representing the diaphragm position
in the ROI over time and it served as the ground truth data in
our study.
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Fig. 2 Ground truth data. a Drawing a rectangular ROI on diaphragm border. b Sagittal view of ROI. c Manual labeling of diaphragm border

Retrospective evaluation

For retrospective evaluation, we used all frames of an XA
sequence to compute the first principal component. The
resultant projection vector p represents respiratory motion
of such sequence and was compared with the previously
mentioned ground truth diaphragm labeling. This compar-
ison was quantified by calculating the correlation coefficient
between projection vector p and ground truth vector. In order
to gain insight of the usability of our method on differ-
ent system, the retrospective analysis was tested with both
monoplane and biplane data. For biplane data, we com-
bined information from both planes by simply using the
concatenated matrix X = ( XA

XB

)
in the same approach we

have described in section “Principal component analysis”.
By doing so, we could calculate one single projection vector
p for both planes.

In addition, we compared the performance of our method,
called Vessel Removed in later sections, with a recently
published method that uses a masked-PCA approach [9].
Masked-PCA technique was designed for retrospective car-
diac and respiratory motion gating on interventional cardiac
X-ray images. In order to extract respiratorymotion surrogate
with this method, we slightly changed its implementation
by directly using the projection vector on the first principal
component without filtering it. We call itWith Mask method
in subsequent sections. We also investigated other possi-
ble variations of PCA-based methods, e.g., running PCA
on the downsampled images without morphological clos-
ing (called Downsampled Image), and running PCA with
an inverted mask of the mask created in [9] (called Inverted
Mask). In all cases, the correlation coefficient of the resulting
respiratory motion surrogate and the ground truth was cal-
culated to quantify the performance on respiratory motion
extraction.

Prospective evaluation

Wealso evaluatedwhether themotion surrogate derived from
ourmethod could beused for prospective respiratory-induced
coronary motion modeling in PCI. In this experiment, we
only utilized a part of the sequence to build the PCA-derived
model and used it to make predictions on subsequent frames.
Considering a scenario in coronary motion modeling, we
would build a model based on frames with contrast agent
and use it to improve alignment of preoperative data onto XA
on frames where contrast agent has been flushed away. This
makes it reasonable to choose frames before contrast agent
starts fading for the PCA learning phase and use frameswith-
out contrast for the prediction phase. Similar to retrospective
experiment, we used the correlation coefficient to quantita-
tively evaluate the results with monoplane and biplane data
and also compared with performances of other previously
mentioned methods.

All experimentswere implemented inMATLAB2013bon
an Intel Core2 2.66 GHz computer with 4 GB RAM running
Windows. Computation time for each patient was recorded
in all experiments.

Results

Retrospective analysis

Example results of experiments on monoplane and biplane
data from one patient are shown in Fig. 3. Figure 3a, c, e
presents the comparison of projection vector p and ground
truth diaphragm position. These figures show a high correla-
tionbetween the twovectors. Linearly rescalingp to the range
of ground truth data and overlaying it onto the ROI image
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Fig. 3 Retrospective projection on the first principal component for
one patient, in comparison with diaphragm position in ROI image. a, b
PCA was done on one sequence of the biplane data; c–f principal com-

ponents were derived from the concatenated sequence of both planes.
c, d show the projection in comparison with plane A; e, f illustrate the
comparison with plane B

provides another way to evaluate their correlation qualita-
tively. Figure 3b, d, f reveals a good agreement between p
and diaphragm border.

Table 1 provides quantitative measure results on corre-
lation coefficients. The average correlation coefficient was
calculated over all sequences for the various methods. From

the table, it can be seen that all methods give high correla-
tion coefficient (over 0.85, close to 1). The Vessel Removed
method has slightly higher average correlation and lower
standard deviation than other methods. For the patient whose
XA sequences contain no diaphragm border, the correlation
coefficients for Vessel Removed method are also high for the
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Table 1 Average correlation coefficient of projection vector p and
diaphragm positions for various methods for retrospective evaluation

Methods Monoplane Biplane
(mean ± std) (mean ± std)

Vessel Removed 0.9490 ± 0.0446 0.9529 ± 0.0424

Downsampled Image 0.9330 ± 0.0754 0.9357 ± 0.0742

With Mask 0.8637 ± 0.1883 0.8552 ± 0.2503

Inverted Mask 0.9032 ± 0.1156 0.9007 ± 0.1197

Fig. 4 Boxplot of correlation coefficients calculated using various
methods on monoplane and biplane data for retrospective evaluation

monoplane (0.89 and 0.88) and biplane data (0.88 and 0.95).
Boxplots in Fig. 4 illustrate similar observations: The major-
ity of correlation coefficients are over 0.8 for all methods;
non-mask-based methods (vessel-removed and Downsam-
pled Image) slightly outperform other methods.

To investigate whether there is a statistically significant
difference between the performance of these methods on
retrospective respiratory motion surrogates extraction, we
used a one-tailed Wilcoxon rank-sum test to check the cor-
relation coefficients, as their distribution is not necessarily
a normal distribution and most of values are close to 1.
Result (see Table 2) shows that the p values for monoplane
experiments range from 0.09 to 0.55 (in upper triangle); p
values for biplane experiments range from 0.11 to 0.42 (in

lower triangle). The result means these methods have simi-
lar performance on retrospective task in terms of statistical
significance.

Figure 5 illustrates the frequency distribution of corre-
lation coefficients for various methods in our retrospective
analysis. In both the monoplane and biplane experiments, it
can be observed that Vessel Removed method has the most
number of correlation coefficients over 0.9 and no correla-
tion coefficients lower than 0.8, which outperforms all other
methods. This observation suggests that the Vessel Removed
method is more robust than the other approaches.

Table 3 compares the average per-frame computation time
that is needed to compute the projection vector p. This
includes the time for image preprocessing, building statis-
tical model through PCA and making projection on the first
principal component. The comparison reveals the advantage
of non-mask-based methods to mask-based method that the
computation time they need ismuch shorter, which is favored
for real clinical workflow.

Prospective analysis

Example results of the prospective analysis for the same
patient as in Fig. 3 are shown in Fig. 6. Figure 6a, c, e present
retrospective projection for frames used for learning the sta-
tistical model and prospective projection for frames excluded
from the learning phase. It can be seen that the prospective
projection vector p still maintains good correlations with
ground truth diaphragm position.

Correlation coefficients are shown in Table 4. In general,
these numbers are lower than those in the retrospective exper-
iments, while Vessel Removed method still maintains a high
average correlation coefficient over 0.9. Its standard devia-
tion is also lower than other methods. For the patient whose
diaphragm cannot be seen in the XA sequences, the corre-
lation coefficients for Vessel Removed method remain good
for one of sequences in the monoplane data (0.96 and 0.70)
and both sequences in the biplane data (0.91 and 0.87). Box-
plots in Fig. 7 show that the medians of all methods are
quite close to each other, but Vessel Removed method has
fewer correlation coefficients lower than the median value
compared to other methods. We also used Wilcoxon rank-
sum test to check the statistical significance, and the results
are shown in Table 5. No significant difference is found

Table 2 Statistical significance
between various methods for
retrospective evaluation
(p values). The numbers in the
upper and lower triangle in the
table show the results of
monoplane and biplane cases
respectively

Vessel Removed Downsampled Image With Mask Inverted Mask

Vessel Removed × 0.28 0.15 0.09

Downsampled Image 0.31 × 0.24 0.22

With Mask 0.23 0.42 × 0.55

Inverted Mask 0.11 0.24 0.36 ×
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Fig. 5 Frequency distribution of correlation coefficients for various methods in retrospective analysis

Table 3 Average per-frame computation time for various methods for
retrospective evaluation (milliseconds)

Methods Monoplane (ms) Biplane (ms)

Vessel Removed 17.2 34.4

Downsampled Image 8.0 15.5

With Mask 821.6 2227.8

Inverted Mask 854.7 2920.0

among these methods (p > 0.14), which means their per-
formance are similar to each other in terms of statistical
significance.

Frequency distribution of correlation coefficients in Fig. 8
reveals that for both monoplane and biplane experiments,
more lower value correlation coefficients appear for all meth-
ods compared to retrospective analysis. It is also clear that
Vessel Removed method has the most high correlation coeffi-
cients (CC≥0.9) and the least lower correlation coefficients
(CC<0.8) among all methods.

Average per-frame prediction time for various methods
is listed in Table 6. The prediction time includes the time
for image preprocessing and computing projection on the
first principal component. It is obvious that Downsampled
Image method has the shortest prediction time, while Vessel
Removed method is also quite fast. Mask-based methods are
slower than non-mask-based methods, especially when they
were run on biplane data.

Discussion

Wedeveloped an automaticmethod to extract patient-specific
respiratory motion surrogate from cardiac interventional X-
ray angiograms using principal component analysis. The

methodwas evaluated onmonoplane and biplane data in both
retrospective and prospective manner.

Our experiments demonstrated that Vessel Removed
method is able to extract breathing information having high
correlation with the ground truth diaphragm or lung tissue
motion. The average correlation coefficient is higher than
those for other related methods in our experiments. Vessel
Removed method is also more robust than the other three
methods giving that more correlation coefficients for the
method are over 0.9 and less are below 0.8.

It is also observed that the difference between the men-
tioned methods in this paper is yet not so profound that no
statistically significant difference on the correlation coeffi-
cientswas found. Thismight be due to the choice of similarity
metric. Correlation coefficient is although one of the com-
monways tomeasure the similarity of two time series signals,
there are other measures which could potentially improve the
difference between these algorithms, such as distance corre-
lation [13].

The limited number of patients (only eight) may also
be a reason for the lack of statistical significance. In the
future, we will evaluate the method on a much larger set
of patients. Despite the lack of statistical insignificance, the
Vessel Removedmethod performs at least as good as the other
three approaches.

From the aspect of computation efficiency, the time that
Vessel Removed method needs for building the statistical
model and making prediction on our computer are less than
67 ms, corresponding to the 15-Hz imaging rate of our data,
whereas mask-based methods need longer time to accom-
plish the same task. This means that Vessel Removed method
could run in real time.

Image-based respiratory motion surrogates in interven-
tional X-ray angiograms have been studied previously [3–5].
These works either need manually putting a rectangular
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Fig. 6 Prospective projection on the first principal component for one
patient, in comparison with diaphragm position in ROI image. a, b PCA
was implemented on monoplane data; c–f principal components were

derived from the concatenated sequence of biplane. c, d show the pro-
jection in comparison with plane A; e, f illustrate the comparison with
plane B

ROI or require specific object being present in images. The
methodwe have presented is fully automatic andmore robust
to various image content. The diaphragm is not necessarily
required to be present as long as there is sufficient breath-
ing motion observed, which is true in most of the cases in

PCI procedures since the lung tissue is usually seen in the
background.

The application of dimensional reduction techniques in
extraction of respiratory motion information was seen in
[9,10]. [10] presented one example case, and the method in
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Table 4 Average correlation coefficients of the prospective projection
vector and diaphragm positions for various methods

Methods Monoplane Biplane
(mean ± std) (mean ± std)

Vessel Removed 0.9197 ± 0.0733 0.9128 ± 0.1239

Downsampled Image 0.8823 ± 0.1418 0.8815 ± 0.1413

With Mask 0.7548 ± 0.3291 0.8282 ± 0.2540

Inverted Mask 0.7772 ± 0.2649 0.8201 ± 0.2117

Fig. 7 Boxplot of correlation coefficients calculated using various
methods on monoplane and biplane data for prospective evaluation

Table 6 Average per-frame prediction time for various methods (mil-
liseconds)

Methods Monoplane (ms) Biplane (ms)

Vessel Removed 9.6 20.0

Downsampled Image 1.6 3.8

With Mask 16.3 282.6

Inverted Mask 31.0 792.4

[9] was originally designed for retrospective gating. In com-
parison with these works, the method we have developed is
simpler and needs no vessel extraction from images thus is
also faster. In addition, we have evaluated the usability of our
method on monoplane and biplane data in retrospective and
prospective manner and achieved good correlation in both
tasks.

Observations on principal components of XA images
would help understanding the mechanism of our proposed
method. The first four principal component images, called
“eigenimages,” of two example sequences with and without
diaphragmare shown in Fig. 9. It is obvious that in both cases,
the cardiac motion pattern is still present in eigenimages of
the original images, but significantly suppressed in those of
the morphological-closed images. Also in vessel-removed
images, for the case with a diaphragm, the diaphragm bor-
der is enhanced in the eigenimages showing a white or dark

Table 5 Statistical significance
between various methods in
prospective evaluation (p
values). The numbers in the
upper and lower triangle in the
table show the results of
monoplane and biplane cases
respectively

Vessel Removed Downsampled Image With Mask Inverted Mask

Vessel Removed × 0.31 0.15 0.17

Downsampled Image 0.52 × 0.18 0.17

With Mask 0.31 0.36 × 0.57

Inverted Mask 0.18 0.19 0.39 ×

Fig. 8 Frequency distribution of correlation coefficients for various methods in prospective analysis
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Fig. 9 The first four principal components (eigenimages) of images
with and without diaphragm being present. The first two rows of images
have diaphragm and the last two rows do not. The first and third row

show the original images and their eigenimages, and the second and
fourth row are the same images in the first and third row after morpho-
logical closing operation

stripe, while in the sequence where diaphragm is not present,
white and dark pixels represent background lung tissues.
It can also be observed that the first eigenimage contains
strong respiratory motion signals which makes it reasonable
of projecting XA sequence on the first principal component
to obtain breathing motion feature.

In prospective surrogate extraction, the frames that are
needed for building the statistical model are required to
cover the maximal range of respiratory motion; therefore,
our proposed method might be limited for different breath-
ing patterns. The method we developed is also only applied
to one fixed view angle. Detector position changes during
interventions require model rebuilding, which having been
seen to be fast in our experiments.

The method we developed could directly be used for
patient-specific coronary motion modeling. Its short model-
ing and prospective extraction time enables the possibility of
running in real time and being used during interventions. Due
to the robustness of the method to different image contents,
it could also be potentially used for extraction of respira-

tory motion surrogate for other types of interventions using
different imaging modalities.

In the future, we will extend the study with more patients’
data. We will also investigate on cardiac motion surrogates
extraction from XA sequences with similar framework and
adapting the current approach to varying view angles.

Conclusion

We have presented a fast automatic method that can be used
to retrospectively and prospectively extract patient-specific
respiratory motion surrogate from cardiac XA sequences.
Our experiments demonstrate a high correlation coefficient
with manual ground truth: Average correlation coefficients
are over 0.9 in the retrospective and prospective evaluations.
The method is easy to implement and runs in real time and
thus allows to extract respiratory motion surrogates during
interventions.
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