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Abstract

Over the last few years, the concept of food addiction has become a common feature in the 

scientific literature, as well as the popular press. Nevertheless, the use of the term “addiction” to 

describe pathological aspects of food intake in humans remains controversial, and even among 

those who affirm the validity of the concept, there is considerable disagreement about its utility for 

explaining the increasing prevalence of obesity throughout much of the world. An examination of 

the literature on food addiction indicates that mesolimbic and nigrostriatal dopamine systems often 

are cited as mechanisms that contribute to the establishment of food addiction. However, in 

reviewing this literature, it is important to have a detailed consideration of the complex nature of 

dopaminergic involvement in motivational processes. For example, although it is often stated that 

mesolimbic dopamine mediates “reward”, there is no standard or consistent technical meaning of 

this term. Moreover, there is a persistent tendency to link dopamine transmission with pleasure or 

hedonia, as opposed to other aspects of motivation or learning. The present paper provides a 

critical discussion of some aspects of the food addiction literature, viewed through the lens of 

recent findings and current theoretical views of dopaminergic involvement in food motivation. 

Furthermore, compulsive food intake and binge eating will be considered from an evolutionary 

perspective, in terms of the motivational subsystems that are involved in adaptive patterns of food 

consumption and seeking behaviors, and a consideration of how these could be altered in 

pathological conditions.
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Introduction

The Emerging Concept of Food Addiction, and the Hypothesized Role of Dopamine

One of the first suggestions that food could have addictive properties was provided by 

Randolph in 1956 (1). Although this idea was relatively dormant for some time, there has 

been an explosion of research in this area during the last few years. A Medline search 

reveals that there were only 9 papers published with “food addiction” as a key phrase from 

1956 to 2007; since 2008, there have been more than 65. There have been many reasons for 

this explosion. Hoebel and colleagues (e.g. 2) have provided a body of animal work that 

offers a potential rodent model of this phenomenon, with all the associated opportunities for 

investigating physiological mechanisms. Clinicians have developed rating scales and 

structured interview techniques that have allowed for the characterization of addiction-like 

behaviors, and have yielded insights into pathological aspects of eating behavior in humans 

(3,4). Furthermore, though this is a scientific review, it is hard to ignore the impact of the 

concept of “food addiction” on the general public. In the midst of a dramatic increase in 

obesity in the developed world that some would say has reached epidemic proportions, the 

discussion of food addiction in venues ranging from the internet to television talk shows has 

also become an epidemic of sorts.

Of course, like most scientific endeavors, research on food addiction and related phenomena 

such as binge eating disorder is much more complex than the popular media would suggest. 

Though many researchers argue strongly for the validity of the concept of food addiction 

(5,6), others urge caution (7). It has been noted in multiple papers that many of the 

behavioral characteristics of food addiction or binge eating resemble some of the diagnostic 

criteria established for drug dependence, including the compulsive nature of the food 

seeking and taking behavior, the escalation of consumption, and the resistance to the effects 

of consequences (5, 8). Nevertheless, considerable controversy remains. Researchers and 

clinicians who focus on drug addiction often talk about dependence and withdrawal 

phenomena; applied to food as a general category, this concept is meaningless, because 

nutrients are a genuine physiological need. This recognition has led many to consider that, in 

some general sense, food addiction is an oversimplified term (9), because people and other 

animals that are said to have this condition are not addicted to food per se, but rather to 

foods with particular macronutrient contents (2,9,10,11,12), under certain environmental 

conditions (9). Moreover, the relation between food addiction and binge eating disorder, as 

well as the role that these conditions play in subtypes of obesity, remains uncertain. For 

example, it has been suggested that the number of food addicted people is relatively small 

compared to the number who are obese (13), and that there are sizeable proportions of 

underweight, normal weight, and overweight individuals who could be classed as food 

addicted based upon the Yale Food Addiction Scale (4).

In view of the continuing controversies in this area, it seems reasonable to suggest that the 

scientists and clinicians should exercise caution in interpreting these emerging findings, not 

only in the scientific literature, but also in terms of how this information is disseminated to 

the general public (14,15). For example, Rogers and Smit (14) argued that the vast majority 

of self-reported cases of food addiction should not be viewed as addictive behavior, and note 
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that overweight people attempting to resist consumption of sweets could be mislabeling 

cravings and desire for more as a sign of addiction. In addition, Esptein and Shaham (15) 

suggested that food addiction should not be viewed by patients as an excuse for overeating, 

and that the unhealthy eating associated with food addiction should not be equated with 

obesity. Certainly, too much exposure to superficial discussion of food addiction in the 

media, coupled with casual use of the term by health care professionals, could promote these 

kinds of misconceptions in the general public. Furthermore, one can question whether the 

general trend of labeling more and more patterns of behavior as “addictive” is causing this 

term to dilute its meaning. There are drug addictions for a wide array of substances. In 

addition, terms such as gambling addiction, sex addiction, email addiction, internet 

addiction, pornography addiction, and video game addiction are becoming every more 

widely used. There are of course alcoholics, but also workaholics and “chocoholics”. 

Indeed, one could be forgiven for wondering if neuroscientists and clinicians have become 

addicted to the term addiction, since the use of this term is escalating so much. But on a very 

serious note, one must always wonder in psychiatry whether the apparent increase in 

prevalence of a disorder stems from increased awareness, or sensitivity of the diagnostic 

tools, or if instead it represents overuse and overdiagnosis. Furthermore, one must exercise 

caution in the use of labels for disorders (7).

Amidst all this uncertainty and controversy related to food addiction, there is another set of 

concerns related to the hypothesized involvement of “reward” mechanisms that are said to 

involve dopamine (DA) systems. A significant fraction of the published studies in this area 

posit some type of DAergic mediation or regulation of food addiction. In many cases, these 

studies seem to rely on an uncritical acceptance of a series of tenets, which include the 

following concepts: a) “reward” is a valid term to describe a psychological or 

neurobehavioral process, and that there is a substantial uniformity or consensus in the 

meaning of this term across articles and laboratories, b) there is a “reward system” that 

mediates this neurobehavioral process, c) DA is a central component, perhaps the linchpin, 

of the “reward system”, d) that the DAergic “reward system” is a critical mediator of drug 

addiction, and e) that DAergic involvement in “reward” therefore provides a plausible 

explanation for the phenomena that scientists are attempting to capture by the use of the 

term “food addiction”. Yet despite the fact that many investigators uncritically accept the 

idea of DAergic mediation of “reward” (e.g.16), this hypothesis is no less controversial and 

contested than the idea of food addiction itself (e.g. 17,18,19). Therefore, the present review 

will briefly deconstruct these traditional and oft mentioned tenets of the DA hypothesis of 

reward, highlight the complex findings in the literature that call them into question, and then 

re-examine the hypothesized involvement of DA in food addiction in light of this revised 

view of DA function. Finally, food addiction and binge eating will be considered from an 

evolutionary perspective, in terms of the motivational subsystems that are involved in 

adaptive patterns of food consumption and seeking behaviors, and a consideration of how 

these could be altered in pathological conditions.
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Conceptual Problems with Dopamine Hypothesis of “Reward”: What is “Reward”, 
anyway?

Of course, when the term “reward” is used as a noun, essentially as a synonym for 

“reinforcer”, its meaning is clear (e.g. “The child received a reward at school.”). Also, when 

it is used as a verb to signify the presentation of a reinforcer, that also has a clear meaning 

(e.g. “The child was rewarded for good behavior”). However, when someone uses the term 

“reward” to signify a psychological process that is mediated by neural mechanisms, there 

are several problems. There is no standard scientific meaning of this term, when used in this 

way. As noted before (19,20,21,22,23,24), people tend to use the term “reward” in one of 

three ways: a) as a synonym for pleasure or hedonia, b) as a general term for appetitive 

motivation, and c) as a synonym for reinforcement. To obfuscate things even more, at times 

the term “reward” is used to refer to some hybrid process that includes combinations of a, b 

and c above, and in some cases, it can be used to mean different things in different parts of 

the same article. One of the difficulties with this is that when articles only use the term 

“reward”, it is not clear which of these definitions is being employed. It is arguable that the 

psychological language would be clearer if, when one meant pleasure, one would use words 

like pleasure or hedonia, rather than “reward”. Similarly, since reinforcement has been the 

accepted psychological term in the lexicon of instrumental conditioning for almost a 

century, it is reasonable to suggest that when one is attempting to refer to reinforcement (in 

the sense of strengthening responses during acquisition and maintenance of instrumental 

behavior), then that term should be used. The same is true for appetitive motivation, which is 

arguably a more useful term as a general descriptor of the processes regulating approach or 

“seeking” behavior (i.e., increasing the proximity, probability or availability of stimuli) as 

well as consumption or “taking”. The term appetitive motivation does not necessarily or 

explicitly connote subjective pleasurable emotions, per se, and provides a clear contrast with 

the term aversive motivation. Is pleasure isomorphic with appetitive motivation and 

reinforcement? Aren’t these just three different ways of saying exactly the same thing? No. 

It is clear from the behavioral neuroscience literature that hedonia, appetitive motivation, 

and positive reinforcement learning are dissociable processes. Indeed, much of the work 

from Berridge, Robinson and colleagues over the last 20 years serves as a testament to the 

dissociability of these processes (e.g. 25,26,27,28,29). In view of this research, ambiguities 

about the definition of “reward” are not merely some esoteric semantic exercise; words are 

tools as much as any scientific technique, and the term “reward”, when used to refer to a 

neurobehavioral process, is a very blunt instrument. While one paper may maintain that DA 

systems mediate “reward” but not hedonia, other papers use “reward” and hedonia 

synonymously. Exactly what is meant when a paper states that palatable food “activates the 

reward system” (e.g. 30)? Clearly, one can question the utility of the concept that DA 

mediates “reward”, and that this involvement has anything to do with food addiction, when 

one considers that “reward” can be made to mean so many different things.

Does DA Mediate Hedonia Instigated by Food Consumption?

For many years, it was thought that DA, especially mesolimbic DA, mediated pleasure or 

hedonia. One still can hear this mentioned at scientific meetings, or see it referred to in an 

article, including one that is focused on phenomena related to food addiction/binge eating 
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(e.g. 31). Nevertheless, evidence has been accumulating for some time indicating that this is 

a grossly oversimplified view of DAergic function. Although consumption or preference of 

sucrose solutions is sometimes used as a measure of food-related hedonia (32), there are 

several reasons why consumption measures per se are not a reliable index of the emotional 

state (28,33). If sucrose consumption is impaired by a particular manipulation, it could 

reflect changes in a number of different processes, including oral motor function, approach 

to the drinking tube, or sensorimotor processes (18,28,33). One of the tests that has become 

widely accepted as a measure hedonic reactivity to sweet solutions is the taste reactivity 

paradigm. An enormous body of work from Berridge and colleagues has demonstrated that 

systemic administration of DA antagonists, as well DA depletions in whole forebrain or 

nucleus accumbens, do not blunt appetitive taste reactivity for food (25,26,28,34). 

Moreover, microinjections of amphetamine into nucleus accumbens, which elevates 

extracellular DA, failed to enhance appetitive taste reactivity for sucrose (29). Sederholm et 

al. (33) reported that D2 receptors in the nucleus accumbens shell regulate aversive taste 

reactivity, and that brainstem D2 receptor stimulation suppressed sucrose consumption, but 

neither population of receptors mediated the hedonic display of taste.

Because of the proposed similarity between food addiction and drug abuse, it is relevant to 

examine the literature on the effects of DA antagonism on drug-induced hedonic responses 

in humans. Several years ago, it was reported that DA antagonism could blunt the subjective 

pleasure induced by amphetamine (35). Since that time, the preponderance of evidence in 

this area has failed to support this observation. Gawin (36) found that the DA D2 antagonist 

haloperidol did not reduce the self-reported euphoria produced by cocaine, and several 

subsequent studies have shown that DA D2 antagonism did not blunt stimulant-induced high 

or euphoria (37,38). The D1 antagonist ecopipam did not reduce the subjective euphoria 

induced by cocaine (39). Inhibition of catecholamine synthesis induced by tyrosine/

phenylalanine depletion did not blunt the subjective euphoria induced by cocaine (40). In a 

recent study, catecholamine synthesis inhibition failed to reduce the self-reported craving 

and hedonic reactions to cigarettes, though it did reduce progressive ratio operant 

responding for this reinforcer (41). Liggins et al. (42) found that L-DOPA, which enhances 

catecholamine synthesis, did not have any effect upon self-reported positive mood. 

Interestingly, a recent imaging paper showed that doses of L-DOPA that enhanced the 

striatal representation of appetitively motivated actions did not affect the neural 

representation of reinforcement value (43).

In the literature related to food addiction and binge eating, it is reported that repeated 

exposure to sucrose in a manner that instigates binge consumption is associated with 

increases in mesolimbic DA activity (10,44). Moreover, this response does not habituate in 

animals exposed to the conditions that induce bingeing upon sucrose. To researchers who 

are not familiar with the specifics of DAergic involvement in aspects of motivation, this 

finding could be misinterpreted as signifying a simple state of hedonia or pleasure. But as 

pointed out by Avena et al. (10), this finding is much more complicated, because DA release 

is involved in many features of appetitive motivation, including “food seeking and 

reinforcement of learning, incentive motivation, stimulus salience and signaling a stimulus 

change” (p 22). Indeed, the literature describing the response of mesolimbic DA to 

appetitive stimuli that act as positive reinforcers is complicated, and needs to be interpreted 
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with caution (45). In a general sense, does food increase DA neuron activity or accumbens 

DA release? It depends upon the conditions. There are a number of methods that are used to 

study DA release, which provide measures across various timescales (45–59). 

Electrophysiology methods record fast phasic activity of putative or identified DA neurons 

(46, 55–59), while voltammetry methods (e.g. fast cyclic voltammetry) record DA 

“transients” that are fast phasic changes in extracellular DA that are thought to represent the 

release from bursts of DA neuron activity (45,47,51). In contrast, microdialysis methods 

provide a measure of extracellular DA that is integrated over larger units of time (i.e., slow 

phasic activity) relative to electrophysiology or voltammetry (45,48,49,52–54). 

Electrophysiology studies have shown that presentation of novel food reinforcers is 

accompanied by increases in activity of putative ventral tegmental DA neurons, but that this 

effect goes away with repeated exposure or training (46). In a paper employing voltammetry 

methods to measure rapid and transient changes in DA release, Roitman et al. (47) showed 

that, in trained animals, exposure to a conditioned stimulus signaling that lever pressing 

would result in sucrose delivery was accompanied by an increase in DA transients, however, 

the actual presentation of the sucrose reinforcer was not. DiChiara and colleagues showed 

that consumption of a 20% sucrose solution increased prefrontal cortex DA release, but did 

not increase nucleus accumbens DA release (48). However, exposure to novel palatable 

snack foods significantly increased extracellular DA in nucleus accumbens as measured by 

microdialysis (48). This increase in extracellular DA rapidly habituated in the accumbens 

shell, but persisted in the core if food was presented again 24 hrs after initial exposure (48). 

A recent microdialysis paper demonstrated that presentation and consumption of high 

carbohydrate food reinforcers in previously exposed rats (i.e., rats that had consumed the 

food for several weeks) did not produce any change in extracellular DA in accumbens core 

or shell (49). In contrast, both the acquisition and maintenance of fixed ratio lever pressing 

was associated with increases in DA release (49). A similar pattern was shown when 

markers of DA-related signal transduction (c-Fos and DARPP-32) were measured (50). 

Thus, the animal literature does not support the widely held belief that food presentation per 

se, including that of palatable foods, increases accumbens DA release across a broad range 

of conditions. Rather, the response of accumbens DA to food consumption varies depending 

upon the type of food, the degree of pre-exposure, the environmental context, and the DA 

terminal region (51).

In this context, it also is worth noting that enhancement of mesolimbic DA activity is not 

unique to appetitive conditions; this system also is activated by aversive stimuli. Research 

with animals has shown that a wide array of aversive conditions (e.g. shock, restraint stress, 

aversive conditioned stimuli, aversive drugs, social defeat stress) can increase nucleus 

accumbens DA release as measured by microdialysis (52,53,54). In addition, 

electrophysiological activity of putative or identified DA neurons has been shown to 

increase in response to aversive stimuli (46, 55,56,57,58,59). Furthermore, imaging methods 

in human research have demonstrated that the nucleus accumbens/ventral striatum also 

responds to stress, aversion and hyperarousal/irritability (60,61,62,63,64,65,66). Putting all 

this together, the finding that conditions promoting sucrose binging also increase nucleus 

accumbens DA release clearly are significant, but they do not in themselves serve as an 

unambiguous marker that DA is specifically mediating some type of hedonic emotional 
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experience. Rather, increased DA transmission could be participating in a number of 

behavioral functions associated with aspects of learning, motivation, emotion or stress.

What is the Role of Mesolimbic DA in Food Motivation?

A thorough review of the involvement of forebrain DA systems in food motivation is 

beyond the scope of this paper. Nevertheless, several important points are worth 

emphasizing for the present discussion. First of all, there are multiple DA systems, and 

different pathways have distinct functions. Pharmacological studies have demonstrated that 

hypothalamic DA is involved in appetite modulation, and indicate that blockade of 

hypothalamic DA receptors stimulates food intake (67), while stimulation of DA receptors, 

specifically in the perifornical hypothalamus, is associated with a suppression of food intake 

(68,69). Neostriatal DA, particularly in the lateral neostriatum (70,71,72) is particularly 

important for sensorimotor and motor aspects of food intake, including food handling and 

oral motor function. Interestingly, it is often assumed that DA depletions or antagonism in 

the so-called “reward system” (i.e., nucleus accumbens DA) would exert a powerful effect 

on food intake. However, this is not supported by the literature. Rather, it has been shown 

several times over the last few decades that, in contrast to neostriatal DA depletions, 

interference with nucleus accumbens DA transmission by DA depletions or antagonism has 

little or no effect on food intake (70–75). In fact, food intake is most greatly affected by DA 

depletions in ventrolateral neostriatum (70,71,72), but there is no evidence that these 

impairments are related specifically to motivational dysfunctions. Rather, the effects of 

ventrolateral neostriatal DA depletions on food intake are related to motoric dysfunctions 

affecting feeding rate and forepaw usage during feeding, and occur in parallel with the 

induction of oral tremor that has the characteristics of parkinsonian resting tremor 

(18,71,76).

If nucleus accumbens DA does not mediate food-related hedonic reactions, appetite, or food 

consumption, then what is the nature of its involvement in food motivation? This is a 

complex question, the study of which has been an area of very intense interest in behavioral 

neuroscience research over the last few decades. This area is too vast and detailed to cover 

in the present section, and there have been many reviews published over the last few years 

that provide a more detailed theoretical discussion (18,19,28,77,78,79,80). Briefly, there is 

considerable agreement that manipulations affecting nucleus accumbens DA transmission 

act to dissociate components of food motivation from each other; these manipulations leave 

core aspects of food-induced hedonia, appetite, or primary food motivation intact, but 

nevertheless affect critical components of the instrumental (i.e., food seeking) behavior. 

Within that overall framework, there remains some uncertainty about the best way to 

characterize the involvement of mesolimbic DA in specific aspects of instrumental 

behaviors, including food reinforced ones. Investigators have suggested that nucleus 

accumbens DA is particularly important for behavioral activation (22,24,81,82), pavlovian 

to instrumental transfer (22,83), flexible approach behavior (79), energy expenditure and 

regulation (80,84), and responding during delayed reinforcement (85,86). Considerable 

evidence indicates that accumbens DA is involved in the exertion of effort and the 

behavioral economics of overcoming work-related response costs in animals (19,77,78, 

87,88,89,90), which could be relevant for understanding effort-related motivational 
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symptoms of depression in humans (19,23,91). Pharmacology and imaging studies in 

humans have shown that striatal areas are involved in making cost/benefit decisions 

involving effort (92,93,94,95). Several investigators have found it useful to make 

dichotomous distinctions between aspects of motivation that are impaired by DAergic 

manipulations and those that are intact (e.g., activational vs. directional aspects of 

motivation, instrumental vs. consummatory behavior, wanting vs. liking; see Figure 1).

There is extensive evidence that DA systems, including mesolimbic DA, participate in 

motivational decision making related to effort, delay and risk (19,88,86). For example, low 

doses of DA antagonists, as well as accumbens DA antagonism or depletions, bias animals 

being tested in effort-related choice procedures towards the selection of activities with 

relatively low work-related response costs (19,78,97,98). These effects do not occur because 

of changes in appetite or food preference (97,99,100), and are not dependent upon drug 

effects on delay discounting (86). Knockdown of the DA transporter or administration and 

amphetamine increase the tendency towards selection of high effort activities (95,101,102).

In view of the studies reviewed in this section, and the vagaries involved in the use of the 

term “reward”, it appears that any general or unqualified statement that DA mediates 

“reward” is so oversimplified as to be practically meaningless. Moreover, in view of the 

frequent connotation of “reward” as referring to subjective pleasure or euphoria, such as 

statement appears to be largely a misrepresentation of the literature. For these reasons, 

researchers who are studying food addiction and binge eating in humans need to be careful 

before assigning any specific meaning to the role that DA may play in this phenomenon.

Dopaminergic Involvement in Motivational Aspects of Food Addiction/Binge Eating: Which 
aspects?

The complex nature of DAergic involvement in specific aspects of food motivation should 

present a note of caution for those attempting to determine the role of DA in normal food 

consumption in humans, as well as food addiction, binge eating, or related phenomena. 

Clearly, one cannot simply assume that DA directly mediates the pleasure induced by food 

consumption, and that striatal DA directly controls the emotional basis of the intake of 

highly palatable foods, which in turn leads to binge eating, and eventually, obesity. Research 

on the role of striatal and accumbens DA in human food intake appears to be every bit as 

complex as the animal research described above (103). A review of this emerging area of 

research is beyond the scope of this paper, but a brief summary can highlight some of the 

complexities seen in the literature.

O’Doherty et al. (104) reported that DAergic areas of the brain (e.g. midbrain, striatum, 

orbitofrontal cortex) showed fMRI activation in response to visual cues associated with a 

sweet taste (glucose), but not to the actual receipt of the reinforcer, a finding similar to much 

of the animal work described above. Volkow et al. (105) found that an imaging marker of 

extracellular DA (i.e., displacement of radioactive raclopride binding) was increased in the 

neostriatum, but not the ventral striatum/nucleus accumbens, of humans who were exposed 

to a display of food, but did not consume it; this response was correlated with self reports of 

hunger and desire for food. More recent imaging studies (106) have implicated a wider 

network of structures in anticipation of the delivery of palatable food, including ventral 
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striatum, amygdala and mediodorsal thalamus, though the most reproducible results were 

with the amygdala and thalamus. A recent meta-analysis identified the ventral striatum/

nucleus accumbens, as well as the amygdala, insula, and orbitofrontal cortex, as being 

consistently responsive to food-associated cues in fMRI studies (107). The imaging 

literature related to the neural representation of primary gustatory reinforcement is equivocal 

about the responsiveness of striatal areas to consumption of palatable foods or sweet tastes. 

Frontal cortical areas, including orbitofrontal and insula/operculum regions, appear to 

respond relatively consistently to palatable gustatory stimuli (106,108). In contrast, studies 

of the responsiveness of ventral or dorsal striatum to palatable foods or sweet tastes have 

yielded mixed results (104,106,108,109,110). Wang et al. (110) recently used imaging 

methods to characterize putative markers of DA release in obese subjects. They reported that 

striatal DA release was not increased in response to food-related stimulation (i.e., seeing, 

smelling and tasting a palatable food) in obese subjects not diagnosed with binge eating 

disorder, even if they were treated with methylphenidate, which enhances extracellular 

levels of DA. Like the O’Doherty et al. (104) study, this is consistent with animal research 

showing a lack of DAergic responsiveness to palatable foods in organisms with previous 

experience of that food, and appears to underscore the conclusion that it is difficult to make 

blanket statements about neostriatal or accumbens DA being released due to food 

presentation per se.

Interestingly, Wang et al. (110) did observe an increase in striatal DA release in response to 

food-related stimulation in obese binge eaters who were treated with methylphenidate. 

Although results can vary depending upon the methods, and this result needs to be replicated 

to demonstrate its reliability, the fact that these authors directly compared binge eaters and 

non binge eaters under the same conditions suggests that there may be something different 

about the striatal DAergic responsiveness of binge eaters. Moreover, these findings are 

consistent with the microdialysis results showing that increases in accumbens DA release in 

response to sucrose in binge eating rats does not habituate in the same way as it does in 

normal rats (6,12). However, interpretation of these results is somewhat complicated by 

findings from some pharmacology studies. For example, methylphenidate has been shown to 

decrease appetite in patients diagnosed with binge eating disorder (111). Drugs that facilitate 

DA transmission have long been known to suppress appetite, and evidence indicates that this 

effect could be related to actions upon DA in the perifornical hypothalamus (68,69,112). 

Thus, the specific functional significance of increases in striatal DA release in binge eaters 

remains uncertain.

It is possible that increased ventral or dorsal striatal DA release in binge eating people does 

not mediate appetite or food consumption in a general sense, but instead acts to promote 

food-related learning, modulate quantitative or organizational features of the consummatory 

response (e.g. speed, compulsiveness, or perseveration), or enhance the tendency to engage 

in active food seeking behavior. Such a suggestion is consistent with much of the animal 

work described above (19,24), and is compatible with the observation of Hoebel et al. (2) 

that mesolimbic DA acts as a kind of “go” mechanism that facilitates appetitive behavior. 

Moreover, it is consistent with recent research on the involvement of DA in regulating some 

of the motivational effects of leptin and ghrelin. Leptin is a protein that suppresses food 
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intake, and has actions on a number of brain areas, including mesolimbic DA neurons (113). 

A recent paper showed that leptin acts on the lateral hypothalamus to regulate body weight, 

caloric intake, and body fat in rats, but interacts with mesolimbic DA to modulate effort-

related responding for food (114). Also, antagonism of DA D1 receptors blocked the ability 

of ghrelin to stimulate the tendency of rats to work for sucrose on a progressive ratio 

schedule, but did not affect licking parameters (115). Obesity in itself may be an important 

factor modulating the tendency to work for food. Berthoud et al. (116) reported that rats 

made obese by feeding upon a high fat diet showed a reduced tendency to work for food, 

and that effort-related responding was restored after gastric bypass surgery. Moreover, 

human studies involving patients with binge eating disorder indicate that the tendency to 

work for food is a potentially important measure of food motivation in these individuals, 

over and above any role of obesity. Nasser et al. (117) used progressive ratio performance 

reinforced by food access to study the motivation to eat across multiple groups of people 

(binge eating disorder, obese and lean people who were not binge eaters). They observed 

that prefeeding people who were not binge eaters with a liquid meal before the operant test 

session reduced their work output on the progressive ratio schedule. In contrast, prefeeding 

the people who met criteria for binge eating disorder actually led to increased progressive 

ratio responding for food access. In addition, in the pre-fed condition, people with binge 

eating disorder worked on the schedule significantly more than obese people without binge 

eating disorder. Future research should determine if mesolimbic or neostriatal DA is 

involved in this strong tendency of binge eaters to show enhanced work output in food 

seeking behavior.

Comparisons between food addiction and drug addiction often are made in the literature, and 

although a thorough exploration of these similarities and differences is the focus of other 

papers, it is worthwhile to highlight some of the recent trends in drug addiction research. It 

often is stated that many of the brain mechanisms involved in aspects of food motivation 

also are involved in drug addiction. For example, imaging studies have demonstrated that 

similar brain areas are activated by food-related and drug-related cues (107). Another 

finding has been that obese people and drug addicts tend to show reduced expression of DA 

D2 receptors in striatal areas (118,119). Yet despite these findings, it is still not clear what 

these DA receptor data represent from a functional perspective. “Reward” deficiency has 

been suggested, but other explanations also are plausible, including psychomotor retardation 

(120), impaired behavioral flexibility or impulsivity, or reduced tendency to expend energy 

by exercising (80). Striatal D2 receptors were reported to be decreased in obese rats, and the 

development of compulsive eating was further enhanced by knockdown of D2 receptors 

(31). In summarizing their conclusion, the authors suggested that this meant that hedonic 

mechanisms were being altered, and supported this by pointing out that intracranial self-

stimulation thresholds were increased in obese animals. However, it should not be assumed 

that this measure is an unambiguous marker of “anhedonia”. For example, attaching a ratio 

work requirement also increases self-stimulation thresholds (121). Moreover, a recent paper 

has emphasized that multiple factors contribute to self-stimulation thresholds, and has 

demonstrated that DAergic modulation of self-stimulation thresholds is not due to drug-

induced changes in reward value, but instead involves shifts in the tendency to overcome 

response costs, such as effort or opportunity costs (122).
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Emerging Concepts of DA Function and their Relation to Food Addiction

Based upon the literature reviewed above, one can see that there is a behavioral pattern that 

can be observed in humans and other animals, which involves binge eating and or escalating 

consumption of food, compulsive patterns of food-related behavior, and resistance to the 

consequences of this activity. Some have labeled this as food addiction, whereas others are 

more cautious in the use of this term; some stress the role that this pattern may play in 

obesity, while others emphasize the myriad of other factors that contribute to obesity. At the 

very least, this pattern of behavior is present in a subset of people, some of whom are obese, 

while others are not. Thus, despite some of the ambiguities and concerns about this research, 

or the specific labels used, a pattern of eating behavior with some of the features of 

addiction is indeed discernable in some humans, and some of these features can be modeled 

in animals. The discussion above has focused less on the details of the food addiction 

literature, and more on the potential role of DA systems. In particular, the review 

emphasized that the involvement of DA in food motivation is highly selective for particular 

aspects, and that the effects of DAergic manipulations are dissociative in nature, profoundly 

affecting some aspects of food motivation while leaving others basically intact (18,19,23). 

Acknowledging these complexities in DAergic function (123), which is more nuanced than 

simply painting DA with the broad brush of being a mediator of “reward” or hedonia, can 

shed light on the potential involvement of DA systems in normal food-related behaviors, as 

well as obesity, food addiction, binge eating, and related phenomena.

In the last few years, much of the addiction literature has moved beyond the original DA 

hypothesis of “reward”. There has been a growing emphasis on the idea that addiction 

should be viewed as a compulsive incentive habit (22,124). According to this view, chronic 

drug exposure promotes the shift from drug-related action-outcome reinforcement to a 

compulsive response habit, and this process involves a shift from ventral to dorsal striatal 

regulation, as well as a transition from prefrontal executive control to striatal habit-related 

(i.e., stimulus-response) control (125). Viewed in this way, compulsive eating and drug 

addiction could be seen as belonging to a larger group of impulsive-compulsive syndromes, 

which also includes attention deficit hyperactivity disorder, obsessive-compulsive disorder, 

and compulsive gambling (126). This type of disorder is thought to be characterized by a 

failure of neural mechanisms involved in inhibitory control, which ultimately manifests 

itself as an escalating pattern of consumption and repeated relapse. Future studies with 

humans, and in animal models (127), will be necessary to extend some of these emerging 

concepts from the drug addiction literature into the realm of compulsive eating and food 

addiction. Additional research in the drug abuse field has identified individual differences in 

behavioral patterns shown by rats during pavlovian approach conditioning, which are related 

to the propensity to self-administer drugs. Rats that show greater response to conditioned 

cues (sign-trackers) display different patterns of DAergic adaptation to training as compared 

to animals that are more responsive to the primary reinforcer (goal trackers; 128). It has 

been suggested that these distinct behavioral patterns may be related to the differential 

vulnerability of some individuals towards drug addiction (129). Moreover, sign trackers are 

more sensitive to cue-induced reinstatement of food seeking behavior, which may be related 

to the effect that food-related cues have on people with compulsive eating disorders (130).
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As described above, DA systems are involved in several aspects of motivational decision 

making. In dealing with a complex environment, organisms must assign relative value to, or 

establish preferences between, different stimuli or activities. This process can be very 

specific, because aspects of the neural mechanisms involved in selection of food, vs. water, 

vs. sexual activity, are distinct from each other (indeed, there are multiple types of hunger, 

and multiple types of thirst). On the other hand, there are neural mechanisms involved in 

aspects of reinforcement seeking that are more general, and span multiple types of 

reinforcers; for example, mesolimbic DA is involved in reinforcer-seeking behavior for 

food, water and sex (18,77,78). Ultimately, organisms must reconcile their preference 

structure with their behavioral output, and allocate time and effort resources across multiple 

options. People who are addicts, whether drug addicts or ones addicted to foods, end up 

showing a radically altered preference structure for motivational stimuli, with selection of 

the particular drug or food taking a distorted position atop the hierarchy of possible 

motivational stimuli. Drug addicts, for example, can show markedly reduced behavioral 

activation in response to natural reinforcers and can display psychomotor retardation during 

drug withdrawal (120), but they also allocate a disproportionate amount of behavioral and 

financial resources into drug seeking. This exaggerated effort invested in stimulus seeking in 

addicts may involve DA, though it also is possible that it is relatively DA independent, 

relying instead upon the recruitment of other components of the brain circuitry involved in 

motivation. Nevertheless, these patterns of behavior indicate that the addiction process 

appears to be characterized by a substantial restructuring of both directional and activational 

aspects of motivation (131).

Conclusions

An Evolutionary Perspective

This issue of food addiction has vast public policy implications (132), and having 

considered food addiction, binge eating, and related phenomena from medical, 

neurobiological and behavioral neuroscience perspectives, it is useful to finish by 

speculating about the evolutionary significance of this pattern of behavior. First of all, why 

was this behavioral pattern not selected against by natural selection processes? In 

contemplating this question, it is useful to remember that only a few thousand years ago, 

humans were hunter-gatherers. It seems unlikely that the capacity for binge eating in 

adolescence, for example, would have conveyed enough evolutionary disadvantages such 

that it would have prevented most people from reaching reproductive age. Perhaps the only 

disadvantages would have been social, or the ill effects of eating too much after a period of 

extended starvation. On the other hand, one can argue that the capacity to engage in some 

type of binge consumption would have had adaptive advantages for hunter-gatherers, who 

often comb wide areas foraging for food, hunting animals and collecting fruits, nuts and 

plants for consumption. Under these conditions, periods of relative scarcity of food would 

have alternated with periods of food excess. Although drying of fruits and smoking of meats 

or fish was available to humans for several thousand years before the agricultural revolution, 

it is still true that for many thousands of years before that, there was no way to store food for 

long periods. Therefore, food had to be consumed when available. In this context, the 

capacity to engage in overconsumption appears to provide some evolutionary advantages. A 

Salamone and Correa Page 12

Biol Psychiatry. Author manuscript; available in PMC 2015 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



group of hunter-gatherers who had been through a period of deprivation could suddenly 

come upon a herd of game, or a dense patch of berry bushes, and the ability to consume 

beyond fullness, even to the point of discomfort, would have enabled them make better use 

of available resources by storing excess calories as fat. Thus, having central and peripheral 

mechanisms that enable this type of activity to occur would probably have conveyed some 

advantages. Of course, modern humans do not live this kind of existence; most of us do not 

burn thousands of calories each day foraging for food, and in the developed world, food is 

hardly scarce for most people. Thus, a pattern of behavior that may have conveyed some 

advantages in this evolutionary context has distinct disadvantages in a modern world in 

which calorically dense foods are available continuously, and people are constantly 

bombarded by food-related stimuli (see the discussion of what is sometimes called 

“evolutionary mismatch” in refs. 133, 134). Dieting (in the sense of excessive caloric 

restriction) may act to stimulate the natural physiological response to food scarcity, and 

ultimately lead to rebound periods of over eating. Perhaps the tendency to over eat every 

once in a while is present in virtually all of us; we can struggle to resist gorging ourselves at 

holiday parties or harvest festivals, and try to rely on inhibitory control mechanisms to limit 

the impact of this tendency. However, for various reasons, individuals vary in the extent to 

which these control mechanisms work, and the result is that some people eventually 

experience an escalating tendency to have consumption of some foods spiral out of control. 

Ultimately, an understanding of food addiction and related conditions may depend upon our 

understanding of evolutionary, cultural and anthropological factors as well as 

neurobiological and psychological ones.
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Figure 1. 
For several years, researchers have been making distinctions between aspects of motivated 

behavior that are differentially affected by dopaminergic manipulations. Salamone (82) 

emphasized the distinction between directional aspects of motivation (i.e., that behavior is 

directed towards or away from stimuli) and activational aspects of motivation (i.e., that 

motivated by behavior is characterized by a high degree of activity, vigor and persistence), 

and suggested that DA antagonists impair activational aspects of food motivation but leave 

directional aspects intact. Blackburn et al. (135) suggested that DA antagonists impaired 

preparatory behaviors instigated by a conditioned stimulus at doses that did not impair 

consummatory behavior. Salamone (96) emphasized the distinction between consummatory 

behaviors and instrumental responses, and also tried to link this distinction to others by 

stating that highly active instrumental behaviors elicited and supported by conditioned 

stimuli are very sensitive to disruption of accumbens DA transmission. Berridge (34) 

distinguished between the role of DA in “liking” vs. “wanting”, and suggested that 

interference with striatal and accumbens DA transmission affected incentive motivation 

(“wanting”) for sucrose, but had little effect on hedonic reactions instigated by sucrose 

(“liking”). Foltin (136) distinguished between food “seeking” (i.e., instrumental responses 

reinforced by food) vs. “taking” (consumption), and reported that amphetamine increased 

food seeking behavior while decreasing food taking behavior. More recently, Ikemoto and 

Panksepp (137) and Burgdorf and Panksepp (138) stated that it is useful to distinguish 

between consummatory “reward”, which is relatively unaffected by interference with 

accumbens DA transmission, and preparatory or anticipatory aspects of “reward”, which are 

more greatly impaired. Czakowski et al. (139) studied the effects of DA antagonism on 

ethanol seeking and intake, and reported that the D2 antagonist remoxipride had substantial 

effects on measures of ethanol seeking behavior (lever pressing) in a dose range that had 

little effect on ethanol intake.
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